Título: | PETROLEUM SUPPLY CHAIN MANAGEMENT UNDER UNCERTAINTY: MODELS AND ALGORITHMS | ||||||||||||||||||||||||||||||||||||||||
Autor: |
FABRICIO CARLOS PINHEIRO OLIVEIRA |
||||||||||||||||||||||||||||||||||||||||
Colaborador(es): |
SILVIO HAMACHER - Orientador |
||||||||||||||||||||||||||||||||||||||||
Catalogação: | 10/NOV/2021 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55799&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55799&idi=2 |
||||||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.55799 | ||||||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||||||
In this thesis we investigate the investment planning problem for the petroleum
supply chain under demand uncertainty. We formulate and solve a
two-stage stochastic programming model that seeks to accurately represent
the particular features that are inherent to the investment planning for the
petroleum logistics infrastructure.
The incorporation of uncertainty in this case inevitably increases the complexity
of the problem, which becomes quickly intractable as the number of
scenarios grows. We circumvent this drawback by relying on Sample Average
Approximation (SAA) to control the number of scenarios required to
reach a prespecified level of tolerance regarding solution quality. We also
focus on efficiently solving the stochastic programming problem, exploiting
its particular structure by means of a scenario-wise decomposition. Following
this idea, we propose two novel approaches that focus on decomposing
the problem in a way that it could be efficiently solved.
The first algorithm is based on stochastic Benders decomposition, which
we further improve by using new acceleration techniques proposed in this
study. The second is a novel algorithm based on Lagrangean decomposition
that was designed to deal with the case where we have integer variables in
the second-stage problem. The novel feature in this algorithm is related
with the hybrid strategy for updating the Lagrange multipliers, which
combines subgradient, cutting-planes and trust region ideas. In both cases,
we have assessed the proposed approaches considering a large-scale realworld
instances of the problem. Results suggests that they attain superior
performance.
|
|||||||||||||||||||||||||||||||||||||||||
|