
Chapter 3
Dealing with Demand Uncertainty us-
ing Sample Average Approximation

The sample average approximation (SAA) method is an approach for

solving stochastic optimization problems by using Monte Carlo simulation.

In this technique proposed by Shapiro and Homem-de Mello (1998), the

expected objective function of the stochastic problem is approximated by a

sample average estimate derived from a random sample. The resulting sample

average approximating problem is then solved by deterministic optimization

techniques. The process is repeated with di↵erent samples to obtain candidate

solutions along with statistical estimates of their optimality gaps.

This approach has been used in the literature as a method of avoiding the

di�culty of dealing with a large number of scenarios. Linderoth and Wright

(2003) applied the SAA technique to several linear programming models using

parallelization in a computational grid to accelerate the solution obtaining

process. Kleywegt et al. (2002) presented important theoretical considerations

regarding the method for combinatorial problems and illustrated them with

numerical examples of some applications. Verweij et al. (2003) demonstrated

the application of SAA to routing problems with large numbers of scenarios

(up to 21,694) and obtained solutions with optimality gaps of approximately

1.0%. Santoso et al. (2005) proposed an application that was specifically aimed

at supply chain design and applied it to a real study of the beverage industry.

More recently, Schütz et al. (2009) applied the SAA methodology to a supply

chain design problem for food products.

In this chapter we present the development of SAA techniques to deal

with the demand uncertainty considered in the stochastic programming model

presented in chapter 2. We show how we can approximate the solution by

means of statistical bounds to be obtained by repeatedly solving the problem

considering samples from the original scenario set. Moreover, we show how

one can use the SAA technique to estimate the minimum number of scenarios

that guarantee certain statistical properties for the estimated optimal solution

under a Monte Carlos sampling framework. At last, we present a case study

DBD
PUC-Rio - Certificação Digital Nº 0913452/CA



Chapter 3. Dealing with Demand Uncertainty using Sample Average

Approximation 27

where the mathematical model proposed in chapter 2 is used to study the

supply chain investment planning process for the distribution of petroleum

products in northern Brazil.

3.1 Sample Average Approximation

Consider the problem:

v? = min
x2X

⇢
f(x) = E⌦ [F (x, ⇠)] =

Z

⌦

G(x, ⇠)g(x)dx

�
(3.1)

where g is the density function of ⇠. Note that the two-stage stochastic

programming problem with recourse is a particular instance of problem 3.1.

This can be straightforwardly seen if one defines

1. X = {x | Ax = b}

2. f(x) = cTx+Q(x)

3. Q(x) = E⌦[Q(x, ⇠)]

4. Q(x, ⇠) = min
y

�
qTy | Wy = h(⇠)� Tx

 

where x is a n-dimensional vector of first-stage variables, A is a m⇥n matrix,

b is a m-dimensional vector, c is a n-dimensional vector representing the first-

stage decision costs, ⇠ 2 ⌦ represents the possible realizations of uncertainty,

y is a p-dimensional vector representing the second-stage decisions, T and W

are matrices of size q ⇥ n and q ⇥ p, respectively, q is a p-dimensional vector

representing the second-stage costs, and h is m-dimensional vector.

The main di�culty in solving problem 3.1 is related with the calculation

of the expected value E⌦ [F (x, ⇠)] due to its multi-dimensional characteristics.

The approach proposed in the SAA method seeks to obtain an approximation

of this value, by considering a sample of N realizations of the random variable

⇠. In this sense, following Shapiro and Homem-de Mello (1998) we can define

our Sample Average Approximation (SAA) problem as

v̂
N

= min
x2X

(
f̃
N

(x) =
1

N

X

n=1,...,N

F (x, ⇠n)

)
(3.2)

Let ŷ
N

denote the optimal solution of problem 3.2. Note that v̂
N

and ŷ
N

are random in the sense that they are functions of the corresponding random

sample. However, for a particular realization ⇠1, . . . , ⇠N of the random sample,

problem 3.2 is deterministic and, thus, can be solved by appropriate optimiz-

ation techniques.
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Since we are trying to approximate f(x), it is important to keep in mind

two important properties of the SAA problem 3.2:

Property 1. f̃
N

(x) consists of an unbiased estimator for f(x).

Proof : It is not di�cult to see that:

E⌦

h
f̃
N

(x)
i
=

1

N
E⌦

"
X

n=1,...,N

F (x, ⇠n)

#
=

1

N
Nf(x) = f(x) ⇤ (3.3)

Property 2. v̂
N

is a lower bound for v?.

Proof : Note that:

v? = min
x2X

{E⌦ [F (x, ⇠)]} = min
x2X

(
E⌦

"
1

N

X

n=1,...,N

F (x, ⇠n)

#)
(3.4)

With this in mind, we can then state the following:

min
x2X

(
1

N

X

n=1,...,N

F (x, ⇠n)

)
 1

N

X

n=1,...,N

F (x, ⇠n) (3.5)

Taking the expectation on both sides, we have that:

E⌦

"
min
x2X

(
1

N

X

n=1,...,N

F (x, ⇠n)

)#
 E⌦

"
1

N

X

n=1,...,N

F (x, ⇠n)

#
(3.6)

According with 3.2, we can rewrite 3.20 as

E⌦ [v̂
N

]  E⌦

"
1

N

X

n=1,...,N

F (x, ⇠n)

#
(3.7)

which implies that

E⌦ [v̂
N

]  min

(
E⌦

"
1

N

X

n=1,...,N

F (x, ⇠n)

#)
= v? ⇤ (3.8)

(a) Lower bound approximation

Provided the above properties, we are still left with the task of calculating

the lower bound E⌦[v̂N ], which again is not a trivial task. To circumvent this

drawback, we rely on a sampling approach to come up with an approximation

for it. For this purpose, we generate M independent samples ⇠nm, n =

1, . . . , N,m = 1, . . . ,M . For each batch m of N samples, we solve the following

SAA problem

v̂m
N

= min
x2X

(
1

N

X

n=1,...,N

F (x, ⇠nm)

)
(3.9)
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Each of the M problems 3.9 provides a realization of the random variable v̂
N

.

Therefore, we can define an approximation for E⌦[v̂N ] as

L
NM

=
1

M

X

m=1,...,M

v̂m
N

(3.10)

Following the ideas that we used to demonstrate Property 1, it is straightfor-

ward to see that L
NM

represents an unbiased estimate for E⌦[v̂N ] and therefore,

a good candidate to approximate the lower bound of the original problem 3.1.

To construct a confidence interval for L
NM

, we can build upon the Central

Limit Theorem, which states that

p
M [L

NM

� E⌦[v̂N ]] ) N (0, �2
L

) (3.11)

where �2
L

is the variance of v̂m
N

,m = 1, . . . ,M , and ”)” denotes distributional

convergence to a normal distribution with mean 0 and variance �2
L

. To

approximate �2
L

, we can use the sample variance estimator s2
L

, which is defined

as

s2
L

=
1

M � 1

X

m=1,...,M

(v̂m
N

� L
NM

)2 (3.12)

And finally, provided a tolerance ↵, we can define a (1�↵)% confidence interval

for L
NM

as


L
NM

� z
↵

s
Lp

M
,L

NM

+
z
↵

s
Lp

M

�
(3.13)

where z
↵

is the standard normal deviate such that P (z  z
↵

) = 1� ↵.

(b) Upper bound approximation

An upper bound can be obtained by noting that, for any feasible solution

x̂, we have immediately from 3.1 that f(x̂) � v?. Therefore, by selecting x̂ to

be a near-optimal solution, for example using the SAA problem 3.5, and by

using some unbiased estimator of f(x̂), we can obtain an estimate of an upper

bound for v?. To obtain such an estimate, we generate T independent samples

⇠nt, n = 1, . . . , N ; t = 1, . . . , T and define

f̂ t

N

(x̂) =
1

N

X

n=1,...,N

F (x̂, ⇠nt) (3.14)
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which is again unbiased estimator for f(x) and N is such that N > T > N .

We highlight the idea of using a larger sample size N and sample batch size

T , in this case, in order to improve precision. In general, when it comes to

two-stage stochastic programming problems, the evaluation of f provided a

fixed solution x̂ is not computationally demanding and can also benefits from

decomposition and parallelization techniques.

We can then use the average value defined by

U
NT

(x̂) =
1

T

X

t=1,...,T

f̂ t

N

(x̂) (3.15)

as an estimate of f(x̂). Note that here we consider the upper bound estimator

U
NT

(x̂) as dependent on the solution x̂ selected. In the same spirit of what we

did for the lower bound, by applying the Central Limit Theorem, we have that

p
T [U

NM

� f(x̂)] ) N (0, �2
U

) (3.16)

where �2
U

is the variance of f̂ t

N

(x̂), t = 1, . . . , T , and ”)” denotes distributional

convergence to a normal distribution with mean 0 and variance �2
U

. We can

replace �2
U

by the sample variance estimator s2
U

, which is given by

s2
U

=
1

T � 1

X

t=1,...,T

(f̂ t

N

(x̂)� U
NT

(x̂))2 (3.17)

And finally, provided a tolerance ↵, we can define a (1�↵)% confidence interval

for U
NT

(x̂) as


U
NT

(x̂)� z
↵

s
Up
T

, U
NT

(x̂) +
z
↵

s
Up
T

�
(3.18)

where z
↵

is the standard normal deviate such that P (z  z
↵

) = 1� ↵.

(c) Estimating the gap

Provided that we have available estimates 3.10 and 3.15, we may wish to

estimate the optimality gap f(x̂)� v?. Consider the di↵erence

GAP
NMNT

(x̂) = U
NT

� L
NM

(3.19)

It follows by the Law of Large Numbers that GAP
NMNT

(x̂) converges to

f(x̂) � v? with probability one as N , M , N , and T tends to 1. Moreover,

since that x̂ is not the optimal solution, then f(x̂)�v? is strictly positive. The
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variance s2
GAP

of GAP
NMNT

(x̂) is then estimated by

s2
GAP

= s2
U

+ s2
L

We have to keep in mind that three di↵erent sources of uncertainty

contributes to the error in the statistical estimator GAP
NMNT

(x̂) of the gap

f(x̂)� v?, namely

1. variance of U
NT

2. variance of L
NM

3. bias v? � E⌦[v̂N ]

Remind that U
N,T (x̂) and L

NM

are unbiased estimators of f(x̂) and E⌦[v̂N ],

respectively. Moreover, their variances can be estimated from the samples and

may be reduced by either increasing sample sizes N , M , and T . In addition to

that, we have that GAP
NMNT

(x̂) is an unbiased estimator of f(x̂) � E⌦[v̂N ],

and that f(x̂)�E⌦[v̂N ] > f(x̂)� v?. That is, GAP
NMNT

(x̂) overestimates the

true gap f(x̂) � v?, and has bias v? � E⌦[v̂N ]. Shapiro and Homem-de Mello

(1998) show that, for ill conditioned problems, this bias may be relatively large

and tends to zero at a rate of O
�
N�1/2

�
. Therefore, the bias can be reduced

by increasing the sample size N of the SAA problem 3.2 or by using a more

sophisticated sampling technique (by using Latin Hypercube Sampling, for

example). Nevertheless, an increase in N leads to a larger problem instance to

be solved, while increases in N , M , and T to reduce components 1 and 2 of

the error lead only to more instances of the same size to be solved.

3.2 Scenario generation using SAA

In stochastic programming approaches, a random process can be either

represented by continuous or discrete random variables. However, stochastic

programming problems with continuous random variables can only be solved

in small or illustrative examples in the best case. In fact, it is frequently

impossible to evaluate a possible solution in this kind of problems. For this

reason, the discrete representation of random variables using a finite set of

possible outcomes becomes essential in actual decision-making problems under

uncertainty.

In order to create a discrete representation of the random phenomenon

considered in the model presented in chapter 2, we rely on an sampling strategy.

That is, after identifying a particular model that best represents the continuous

stochastic process, a repeated random generation of this model is performed to
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produce a discrete approximation in the form of a scenario set. Consequently,

in order for this approximation to be accurate, a high number of scenarios

is usually necessary. Provided that the computational burden of a stochastic

programming model rapidly increases with the number of scenarios, we must

carefully manage the size of the scenario set in order to reconcile scenario

generation and computational tractability.

We can use the framework present on section 3.1 as means of managing

the scenario set size. Following this idea, it is possible to rely on the sampling

framework to achieve prespecified confidence levels. Kleywegt et al. (2002)

showed that, for combinatorial problems such as 2.1 - 2.18, assuming that the

SAA problem 3.2 is solved up to a optimality gap �, the sample size required

to ensure the attainment of ✏-optimality with probability 1�↵ can be bounded

by:

N � 3�2
max

(✏� �)2
log

✓
2n

↵

◆
=

3�2
max

(✏� �)2
[n log 2� log↵] (3.20)

where ✏ � �, ↵ 2 [0, 1], n = |A
K

| ⇥ |L
K

| ⇥ |T |, and 2n represents the total

number of possible first-stage solutions, considering that all first-stage variables

are binary. In 3.20, the term �2
max

is defined as the maximal variance of

certain function di↵erences in the optimal solution (Kleywegt et al., 2002). The

main drawback related with bound 3.20 is that it can be highly conservative

for practical applications, thus yielding large sample sizes. Nevertheless, 3.20

suggests that the sample size required to reach complete convergence grows at

most linearly with the size of the first-stage variable solution space.

A practically convenient alternative for estimating the minimum number

of scenarios can be reached by the use of confidence intervals for the objective

value of the SAA problem 3.2. Recall that the expected cost value is a

random variable itself in this context, we can use sampling theory to obtain an

estimation of the sample size N , based on the degree of confidence expected

for the solution(Kleywegt et al., 2002). Following this idea, let

ĝ
N

(w, y) = min
w,y

(
X

l,t

CKL
lt

w
jt

+
X

a,t

CKA
at

y
at

+
NX

n=1

1

N
Q(w, y, ⇠n)

)

(3.21)

be the optimal objective function for the SAA problem, provided the given

sample ⇠1, . . . , ⇠N of size N , and let

g
n

(w, y, ⇠n) =
X

l,t

CKL
lt

w
jt

+
X

a,t

CKA
at

y
at

+Q(w, y, ⇠n) (3.22)
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be the objective function evaluated for scenario ⇠n. The Monte Carlo sampling

variance estimator of the result for this stochastic programming problem is

given by

s
N

=

sP
N

n=1 (ĝN(w, y)� g
n

(w, y, ⇠n))2

N � 1
(3.23)

We can then state the 1� ↵ confidence interval for ĝ
N

(w, y) as


ĝ
N

(w, y)�
z
↵/2sNp
N

, ĝ
N

(w, y) +
z
↵/2sNp
N

�

where z
↵/2 is the standard normal deviate such that P (z  z

↵/2) = 1 � ↵/2.

Finally, once we define a maximum percent deviation �, we have that

N =

✓
z
↵/2sN

(�/2)ĝ
N

(w, y)

◆2

(3.24)

Note that the term (�/2)ĝ
N

(w, y) represents the fraction of the total cost

one wishes to consider as the confidence interval absolute size for each side.

For example, if one wishes to attain a confidence interval of 5% around the

expected total cost, then � = 0.1. In practical terms, the choice of the number

of scenarios should take into account the trade-o↵ between the computational

e↵ort to obtain a solution and the quality level required for the solution.

3.3 Case Study

In this section we present an application of the SAA technique combined

with the model presented in chapter 2 to a real case study on the distribution

of petroleum products in northern Brazil.

(a) Case description

The transport in the region considered is primarily performed using

waterway modals, which are strongly a↵ected by seasonality issues regarding

the navigability of rivers. For this study, four di↵erent products were considered

- diesel, gasoline, aviation fuel and fuel oil - to be distributed over 13 bases, 3

of which have sea terminals. Three supply sources were considered including

one refinery and two external supply locations. The external supply, coming

from Pauĺınia (SP) and São Luiz (MA), represents the connection of the

regional logistics network under study with the rest of the country. The case

study does not include international commercialization. Four distinct modes

of transportation are considered including waterways (using large ferries and
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small boats), roadways and pipelines. Waterway transportation is generally

performed by large ferries, which are typically used during periods of river

flooding, and by smaller boats, which are able to navigate the rivers during

droughts (i.e., low water level seasons). However, the use of small boats as

means of transportation is expensive and only carried out when the use of

large ferries is not possible.

Figure 3.1: Case study distribution network

Figure 3.1 schematically represents the network under study. The region

considered comprises approximately 3.7 million km2, which represents nearly

43% of Brazil’s national territory. As shown in this figure, the bases of Manaus

(AM), Itacoatiara (AM), Santarém (PA), Macapá (AP), and Belém (PA) are

particularly relevant because they act also as distribution points of the supply

coming from São Luiz (MA).

Depending on the season, these arcs may or may not be available for

navigation. Table 3.1 shows how the seaworthiness was modeled in various

parts of the region under study. The checkmarks represent periods in which

the given stretch is available for navigation by that mode. Observe that during

certain times of the year, the Cruzeiro do Sul base remains completely isolated

from communication with the system (3rdquarter ), while the base of Caracaráı

can only rely on supply via the roadway mode during the first two quarters of

the year.
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Origin Destination Mode 1st Q. 2nd Q. 3rd Q. 4th Q.
Itacoatiara Itaituba Ferries X X

Small Boats X X X
Itacoatiara Porto Velho Ferries X X X X

Small Boats X X X X
Manaus Caracaráı Ferries X

Small Boats X
Manaus Cruzeiro do Sul Ferries X

Small Boats X X
Manaus Itaituba Ferries X X

Small Boats X X
Manaus Porto Velho Ferries X

Small Boats X X X
Santarém Itaituba Ferries X X

Small Boats X X
Santarém Porto Velho Ferries X X

Small Boats X X X

Table 3.1: Seaworthiness between locations

Figure 3.2 shows the level of demand for each of the bases. Manaus (AM)

is the main hub of the region’s demand, followed by Porto Velho (RO), Belém

(PA) and Macapá (AP).

The portfolio of projects considered in the study consists of 28 local pro-

jects and one arc project. Such projects are considered mutually independent

and can therefore be combined. Table 3.2 represents the portfolio of invest-

ments considered, showing the site where each investment will be conducted

and the type of project.

Locations
Projects Manaus Macapá Santarém Belém Cruzeiro do Sul Itacoatiara

Diesel tank X X X X X X
Gasoline tank X X X X X X
Av. Fuel Tank X X X X X X
Fuel Oil tank X X X
Pumps/sub. X X X X

Pier X X

Table 3.2: Investment portfolio for locations

Three distinct types of investments are considered at each location in-

cluding investments in storage capacity that increase the location’s capacity for

processing and storing a given product, investments in pumps and substations
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Figure 3.2: Case study demand levels

that reduce the operating costs and increase the ability to rotate the tanks,

and investments in the construction of a new pier, which make the demurrage

cost curves per handled volume smoother. The investment portfolio also has an

investment available for the implementation of a multi-product pipeline that

connects the bases of Porto Velho and Rio Branco.

The planning horizon considered was 8 years, which are divided into a

total of 32 quarterly periods. All of the costs considered in the model are

discounted to a present value under a yearly interest rate of 6.8%.

To take into account the uncertainty in demand levels for petroleum

products, we generated scenarios by the following first-order autoregressive

model:

D
lpt

= D
lpt�1 [1 + !

p

+ �
p

✏] (3.25)

where !
p

represents the forecasted average growth rate for the consumption

of product p over the planning horizon, �
p

represents the estimated maximum

deviation of the product p consumption and ✏ is a random error that follows

a standard normal distribution. The estimate of the maximum deviation used

was simplified as being identical for each product due to the lack of data

regarding the historical consumption of the products in the studied region. This

estimation was made based on an analysis of the annual Brazilian petroleum

products consumption series over the last 40 years. Each scenario represents

a possible demand curve for the entire time horizon considered and for each

product and distribution base in the considered problem. Figure 3.3 gives an
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example of 50 demand scenarios for diesel consumption in Manaus.

Figure 3.3: Example of demand scenarios

(b) Results

The mathematical model and the scenario generation routines were

implemented in AIMMS 3.12. The mixed-integer linear programming (MILP)

model was solved using CPLEX 11.2. Table 3.3 describes the size of the

instances for the case study in question together with the mean and standard

deviation of the solution time for solving each SAA problem. All of the

experiments were performed using a Pentium Quad-Core 2.6 GHz with 8 GB

RAM. To obtain estimates of the upper and lower limits, experiments were

performed with N equal to 20, 30 and 40. These values for N were defined

approximating the true values obtained using the estimate of Monte Carlo

sampling standard deviation (Equation 3.23) for N = 50(s50) considering

� = 0.1, and three di↵erent values for ↵, namely 0.05, 0.025, and 0.01, yielding

samples with approximated sizes of 20, 30, and 40, respectively. The average

solution time ranged from 532.83s for instances with 20 scenarios to 1,472.05s

for those with 40 scenarios. To obtain the lower limits, we performed 50

replications (i.e., M = 50), with a time limit of 3,600s and a relative GAP

of 1% defined as stop criteria.
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N # Variables # Constraints Average(s) Standard Deviation(s)

20 250400 304144 532.83 967.26

30 455504 374880 971.42 1500.20

40 606864 499360 1472.05 864.41

Table 3.3: Summary of model sizes

Thirty-six distinct candidate solutions were generated for N = 20,

22 solutions for N = 30, and 19 solutions for N = 40. We developed

the following experimental procedure in order to avoid the complete (and

thus time consuming) evaluation of all candidate solutions. First, all of the

candidate solutions were previously assessed with 50 replications. From this

first evaluation, we selected the three solutions that showed the best results

in terms of solution gap and subsequently further evaluated them with 1000

replications in order to increase the precision of the estimates.

Table 3.4 shows the best results for each experiment in terms of the lower

and upper limits estimated for the solution of the real problem. The results

suggest that the configuration of the experiment with 50 replications (M =

50) for the lower bound was considered satisfactory given that the deviation

obtained for the lower limit is approximately 1%. For the upper limit, it should

be noted that its variability is related to the number of scenarios considered

in obtaining the lower limit, and it is reduced from 13.4% (N = 20) to 4.9%

(N = 40). This e↵ect is related with the fact that, in general, a larger number

of scenarios implies a more comprehensive investment profile in terms of its

ability to cope with higher demands, which makes the system more robust with

respect to variations in the total costs of meeting the demand (i.e., smaller

fluctuations in second-stage costs).
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N Lower Limit Upper Limit

20 Amount(MM$) 800.12 818.76

St. Dev. (MM$) 9.81 109.66

% Deviation 1.2% 13.40%

30 Amount(MM$) 801.25 821.67

St. Dev. (MM$) 10.22 50.63

% Deviation 1.2% 6.20%

40 Amount(MM$) 805.28 817.12

St. Dev. (MM$) 8.22 40.03

% Deviation 1.0% 4.90%

Table 3.4: Experiment results: statistical limits (lower and upper)

Table 3.5 shows the statistics obtained on the estimate of the optimality

gap for the three best solutions obtained in each experiment. The experiments

suggest a reduction of the estimated variability of the gap for the experiments

with larger number of scenarios, which supports the hypothesis that these

solutions are close to the real optimal solution of the problem. In practical

terms, this optimality gap is considered acceptable, given the uncertainty

inherent in the input data that is considered deterministic. This result is

noteworthy, especially because this estimator is biased (as discussed in to

3.1(c)), thus, such an estimate always corresponds to an upper limit of the

real gap.

N gap

Solution Value(MM$) % St. Dev.(MM$)

20 A 19.61 2.4% 107.41

B 26.40 3.2% 72.82

C 18.64 2.3% 110.10

30 A 23.18 2.8% 63.73

B 26.95 3.3% 82.40

C 20.42 2.5% 51.57

40 A 17.38 2.1% 44.03

B 11.83 1.4% 41.22

C 14.85 1.8% 49.43

Table 3.5: Experiment results: estimative of the optimality gap

Table 3.6 provides the solutions with the lowest GAP obtained from the
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three experiments including Solution Number 3 for N = 20 and N = 30, and

Solution Number 2 for N = 40. As can be observed from Table 3.6, the profile

of investments has little variability between experiments. An investment was

made in fuel oil storage for Santarém in the first period in all runs, which

indicates the attractiveness of this investment. This may be explained by the

central position of Santarém in the petroleum products distribution network

of the region and by the low level of tankage for fuel oil currently available

at that location. Other investments also tend to have low variability in their

positioning along the time horizon. The greatest variability was seen in the

investment in pumps and substations in Macapá, which is directly related

to the existence of an anticipated increase in demand for fuel oil in Belo

Monte1, which is transported from São Luiz. The solutions also suggest that

Santarém is a strategic location for the logistics of products other than fuel oil

because the model suggests investing in three tanking projects in the region.

Another relevant observation is related to the projects that did not constitute

Project N = 20 N = 30 N = 40
Period Invested Period Invested Period Invested

Manaus av. fuel 7 7 6
Santarém diesel 21 16 17

Santarém gasoline 24 22 16
Santarém Fuel Oil 1 1 1

Belém diesel 29 24 27
Macapá pumps/sub. 23 27 26

Table 3.6: Investment profiles of solution 3 for N = 20, solution 3 for N = 30
and solution 2 for N = 40

the optimal portfolio. None of the projects for the physical expansion of the

marine terminals (piers) is selected for investment, which suggests that the

terminal system as modeled is appropriate to the scenarios of demand for the

products considered. The pipeline connecting the Porto Velho and Rio Branco

bases turned out to be not economically attractive and was not included in

the optimal portfolio of investments in any of the simulated scenarios. This

is probably because of the high cost of that project and the existence of an

alternative road coming from Pauĺınia that, despite its high costs, is more

economically e�cient. The demand was completely satisfied in all experiments.

1The data used considers the construction of Belo Monte hydroelectric dam, which will
be the second-largest hydroelectric dam complex in Brazil and the world’s third-largest in
installed capacity. As a consequence, it is forecasted an increase in the demand for petroleum
products in the region.
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3.4 Conclusions

In this chapter we presented the SAA methodology to solve the problem

of investment planning in the supply chain of petroleum product distribution

in northern Brazil considering the uncertain demand for such products in

the region. Moreover we showed how we can use the SAA approach as a

scenario reduction technique and how we can organize the experiments in

order to obtain statistically certified good solutions. The results show that it

was possible to obtain solutions with acceptable estimates of optimality gaps

in practical terms (i.e., in terms of the solution quality and the computational

time required to obtain the solutions) even with a relatively small number

of scenarios. In the proposed approach, it is possible to delineate reasonably

acceptable confidence intervals and thereby define the total number of scenarios

required to statistically guarantee that the solutions obtained. It is important

to highlight that the amount of scenarios required are strongly related with

the variability of the recourse cost of the particular instance considered.

The case study showed that from the proposed portfolio, only six projects

comprise the optimal portfolio of investments. The results suggest that the

Santarém region has a particular strategic importance for the planning as

half of these investments were assigned to that region. Another important

observation is the finding that many projects in the set of possible investments

were not relevant to the optimization of the logistics in the region for the data

set considered.

The results seem to be in line with what has been observed in the liter-

ature(Linderoth and Wright, 2003; Kleywegt et al., 2002; Verweij et al., 2003;

Santoso et al., 2005; Schütz et al., 2009) when it comes to the successful applic-

ation of the SAA methodology to solve practical large-scale problems. It can

be observed that, even for a modest number of scenarios (ranging from 20 to

40, in this case), the method can provide high quality solutions with relatively

small optimality gaps. Therefore, the proposed methodology can support the

decision making process, while identifying solutions and statistically ensuring

its quality without the need for time-consuming discussions of the adequacy

of possible methods for generating scenarios.
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