
Chapter 4
Scenario decomposition framework
for continuous second-stage problem:
stochastic Benders decomposition

Cutting-plane schemes has been successfully used in solving both large-

scale deterministic and stochastic problems since the pioneering paper of

Geo↵rion and Graves (1974), e.g., the uncapacitated network design problem

with undirected arcs (Magnanti et al., 1986), stochastic transportation-location

problems (Franca and Luna, 1982), locomotive and car assignment problems

(Cordeau et al., 2000), stochastic supply chain design problems(Santoso et al.,

2005; Uster and Agrahari, 2011), stochastic scheduling and planning of process

systems (Saharidis et al., 2011; Yang and Lee, 2011) and the stochastic unit

commitment problem (Peng and Jirutitijaroen, 2010), to name a few.

The combination of Benders algorithm principles and stochastic problems

is commonly referred to as the stochastic Benders decomposition, or also com-

monly referred to as the L-Shaped Method (Van Slyke and Wets, 1969). In this

context, the decomposition is carried out by decomposing the complete determ-

inistic equivalent problem (Birge and Louveaux, 1997) into a Master Problem

(MP), which comprises the complicating variables and related constraints, and

a Slave Problem (SP), which is represented by the recourse decisions.

Nevertheless, under certain conditions, the traditional Benders decom-

position (and consequently its stochastic version) might fail to achieve the

aforementioned e�ciency, a fact that has been broadly mentioned in the liter-

ature (see, for example Rei et al. (2007); Saharidis et al. (2010)). To circumvent

this drawback various strategies have been proposed for accelerating Benders

decomposition. McDaniel and Devine (1977) proposed the generation of cuts

using the solution of a relaxed MP, and relaxing its integrality constraints.

Furthermore, the authors present heuristic rules for determining when the in-

tegrality constraint is needed in order to ensure convergence of the algorithm.

Although the results appear promising, the classical Benders decomposition

can be more e�cient in some cases. Cote and Laughton (1984) showed another

approach for accelerating Benders algorithms. In their approach, the MP is
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not solved to optimality but only the first integer solution obtained is used

to generate the optimality or feasibility cut from the SP. The main drawback

of this strategy is that by generating only cuts associated with suboptimal

solutions, the algorithm may fail to generate cuts that are necessary to ensure

convergence.

Within the context of generating more e↵ective cuts, most researchers

have sought either to generate additional “stronger” cuts at each iteration,

or by modifying the way that Benders cuts are generated. Magnanti and

Wong (1981) proposed a seminal procedure for generating Pareto-optimal cuts

to strengthen the standard Benders optimality cuts, though with the often

challenging requirement of identifying and updating a core point, which is

required to lie inside the relative interior of the convex hull of the problem

subregion defined in terms of MP variables. Papadakos (2008) highlights that

the Magnanti-Wong’s cut generation problem dependency on the solution of

SP can sometimes jeopardize the algorithm’s performance. To circumvent this

di�culty, the author showed that one can obtain an independent formulation

of the Magnanti-Wong cut generation problem. The author also provided

guidelines for e�ciently generating additional core points through convex

combinations of previously known cores points and feasible solutions of the

MP. More recently, Sherali and Lunday (2011) presented a di↵erent strategy

for generating non-dominated cuts through the use of small perturbation on

the right-hand-side of the SP to generate maximal non-dominated Benders

cuts. The authors also showed a strategy based on complimentary slackness

that simplifies the cut generation when compared with the traditional strategy

used by Magnanti and Wong (1981).

Saharidis and Ierapetritou (2010) proposed the generation of an addi-

tional valid Benders cut based on a maximum feasible subsystem whenever

a Benders feasibility cut is generated. These cuts were shown to significantly

accelerate the convergence for problems where the number of feasibility cuts

generated is greater than the number of optimality cuts. Fischetti et al. (2010)

presented an alternative scheme that combines the generation of Benders cuts

when both optimality and feasibility cuts are required. They formulate a sub-

problem where the generated cut acts as optimality and feasibility cuts. Rei

et al. (2007) investigate how local branching techniques can be used to ac-

celerate Benders algorithm. The authors also showed how Benders feasibility

cuts can be strengthened or replaced with local branching. Saharidis et al.

(2010) examined two applications of a scheduling problem, for which they

demonstrated the e↵ectiveness of generating covering cut bundles to enhance

Benders cuts.
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In this chapter, we present a framework for solving the two-stage

stochastic programming model for a supply chain investment planning prob-

lem applied to petroleum products based on stochastic Benders decomposition.

We also present the development of acceleration techniques tailored for the

proposed approach. The proposed techniques address two di↵erent aspects in

terms of algorithmic acceleration, since they aim at generating stronger cuts

for the Benders decomposition in the context of stochastic programming, and

they apply techniques for improving the quality of solutions obtained during

the algorithm execution.

4.1 Mathematical Model

In this section we present the mathematical model considered for the de-

velopment of the decomposition framework. We consider hereafter a simplified

version of the supply chain investment model presented in chapter 2. In this

case, we only consider discrete capacity expansion and arc projects.

(a) Nomenclature

The nomenclature used in this model is as follows:

Indexes and sets

i, j 2 N Locations

p 2 P Products

t 2 T Time periods

⇠ 2 ⌦ Scenarios

Subsets

B ✓ N Distribution bases

S ✓ N Suppliers

Parameters

A0
ij

Current arc capacity

A
ij

Additional arc capacity

C
ijt

Transportation cost

D⇠

jpt

Demand

H
jpt

Inventory cost

K
jp

Throughput capacity multiplier

L
jp

Security level multiplier

M0
jp

Current inventory capacity

M
jp

Additional inventory capacity

O
jpt

Supply

P ⇠ Scenario probability
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S
jpt

Shortfall cost

W
jpt

Inventory investment cost

Y
ijt

Arc investment cost

Variables

x⇠

ijpt

Product flow

v⇠
jpt

Inventory level

u⇠

jpt

Unmet demand

w
jpt

Inventory investment decision

y
ijt

Arc investment decision

Table 4.1: Model Notation

(b) Model Formulation

The mathematical model for the optimization of the aforementioned

problem can be stated as follows:

min
w,y2{0,1}

X

j,p,t

W
jpt

w
jpt

+
X

i,j,t

Y
ijt

y
ijt

+Q(w, y) (4.1)

s.t.:
X

t

w
jpt

 1 8j 2 B, p 2 P (4.2)

X

t

y
ijt

 1 8i, j 2 N (4.3)

where w
jpt

represents the capacity expansion investment decisions at location

j for product p and in period t and y
ijt

on arc connecting locations i and

j investment decisions in period t, Q(w, y) = E⌦[Q(w, y, ⇠)] represents the

expectation evaluated over all ⇠ 2 ⌦ possible realizations for the uncertain

parameters of the second-stage problem, given an investment decision (w, y).

Constraints 4.2 and 4.3 define that each investment can happens only once

along the time horizon considered.

The second-stage problem Q(w, y) can be stated as shown in equations

4.4 to 4.10.

min
x,v,u2R+

X

⇠

P ⇠

 
X

i,j,p,t

C
ijt

x⇠

ijpt

+
X

j,p,t

H
jpt

v⇠
jpt

+
X

j,p,t

S
jpt

u⇠

jpt

!
(4.4)

s.t.:
X

i

x⇠

ijpt

+ v⇠
jpt�1 + u⇠

jpt

=
X

i

x⇠

jipt

+ v⇠
jpt

+D⇠

jpt

8j 2 B, p 2 P , t 2 T , ⇠ 2 ⌦

(4.5)
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X

j

x⇠

ijpt

 O
ipt

8i 2 S, p 2 P , t 2 T , ⇠ 2 ⌦ (4.6)

X

p

x⇠

ijpt

 A0
ij

+ A
ij

X

t

0t

y
ijt

0 8i, j 2 N , t 2 T , ⇠ 2 ⌦ (4.7)

v⇠
jpt

 M0
jp

+M
jp

X

t

0t

w
jpt

0 8j 2 B, p 2 P , t 2 T , ⇠ 2 ⌦ (4.8)

v⇠
jpt

� L
jp

 
M0

jp

+M
jp

X

t

0t

w
jpt

0

!
8j 2 B, p 2 P , t 2 T , ⇠ 2 ⌦ (4.9)

X

i

x⇠

ijpt

 K
jp

 
M0

jp

+M
jp

X

t

0t

w
jpt

0

!
8j 2 B, p 2 P , t 2 T , ⇠ 2 ⌦ (4.10)

The objective function 4.4 represents freight costs between nodes, inventory

costs, and cost of shortfall. Equation 4.5 comprises the material balance in

distribution bases. Constraint 4.6 limits the supply availability at sources.

Constraint 4.7 defines the arc capacities and the possibility of its expansion

through the investment decisions. In a similar way, constraint 4.8 defines the

storage capacities together with its expansion possibility. Constraint 4.9 defines

minimum inventory levels, according to safety requirements. Constraint 4.10

sets the throughput limit for bases, defined by the product of the available

storage capacity with the throughput capacity multiplier.

4.2 Stochastic Benders Decomposition

To illustrate the following technique, let us assume that we have our

problem written in the following compact notation:

v = min
x

cx+Q(x) (4.11)

s.t.:

Ax  b (4.12)

x 2 {0, 1}n (4.13)

where Q is given by

Q(x) = min
y

X

⇠

P ⇠qy⇠ (4.14)

s.t.:

Tx+Wy⇠  h⇠ 8⇠ 2 ⌦ (4.15)

y � 0 (4.16)
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where c is a n-dimensional vector, q is a p-dimensional vector, A is a m ⇥ n

matrix, b is a m-dimensional vector, T and W are matrices of size q ⇥ n and

q⇥p, respectively, and h is m-dimensional vector. In our context, cx represents

the investment costs (i.e., first-stage costs), while
P

⇠

P ⇠qy⇠ represents the

costs with freight, inventory, and shortfall. (i.e., second-stage costs). The set

of constraints Ax  b represents constraints 4.2 and 4.3, while Tx+Wy⇠  h⇠

represents constraints 4.5 to 4.10.

The model proposed in section 4.1 can be defined as an optimization

model with first-stage integer variables and second-stage continuous variables.

Such characteristics allow us to consider a scenario-wise decomposition frame-

work based on Benders decomposition (Benders, 1962) applied to stochastic op-

timization, given the particular diagonal structure of that problem, where the

first-stage variables arise as complicating in a sense that they are the only ele-

ments providing connection between each scenario subproblem (Van Slyke and

Wets, 1969). Moreover, the model has complete recourse (Birge and Louveaux,

1997), that is, for any feasible first-stage solution, the second stage problem

is always feasible. Note that this fact is convenient since it precludes the gen-

eration of feasibility cuts in order to ensure feasibility in the context of the

stochastic Benders decomposition.

We start by noting that the MP can be equivalently reformulated as

follows:

v = min
x

cTx+M (4.17)

s.t.:

Ax  b (4.18)

M � Q(x) = E⌦[Q(x, ⇠)] (4.19)

x 2 {0, 1}n (4.20)

This formulation allows one to distinguish an important issue. Inequality 4.19

cannot be used computationally as a constraint since it is not defined explicitly,

but only implicitly by a number of optimization problems. The main idea of

the proposed decomposition method is to relax this constraint and replace it

by a number of cuts, which may be gradually added following an iterative

solving process. These cuts, defined as supporting hyperplanes of the second-

stage objective function, might eventually provide a good estimation for the

value of Q(x) in a finite number of iterations. In order to define the form of

these cuts, let us first state the dual formulation of the second-stage problem,

which represents the SP in our context, given a first-stage solution x and a

DBD
PUC-Rio - Certificação Digital Nº 0913452/CA



Chapter 4. Scenario decomposition framework for continuous second-stage

problem: stochastic Benders decomposition 48

fixed scenario ⇠:

Q(x, ⇠) = max
⇡

⇡⇠T (h⇠ � Tx) (4.21)

s.t.:

W T⇡⇠  q (4.22)

⇡⇠ � 0 (4.23)

Let ⇧ denote the set of all extreme points of the polyhedron defined by the

feasible space of the Dual Slave Problem (DSP) given by 4.22 and 4.23, k an

element from ⇧, ⇡ denote the dual variables associated with constraint 4.15,

and M the objective function value. Also, letting M⇤ be the optimal value,

we must have M⇤ � M (k), 8k 2 ⇧. Therefore, our DSP can be restated as

Q(x) = min
M�0{M : M � M (k), 8k 2 ⇧}, where

M (k) =
X

⇠

P ⇠⇡⇠T

(k)(h
⇠ � Tx) = ⇡T

(k)(h� Tx) (4.24)

Using the above representation for the DSP that is based on the extreme

points k 2 ⇧ of its polyhedron, we can now replace equation 4.19 with the new

reformulation 4.24 for E⌦[Q(x, ⇠)] in the MP, providing the following:

v = min
x

cx+M (4.25)

s.t.:

Ax  b (4.26)

M � ⇡T

(k)(h� Tx) 8k 2 ⇧ (4.27)

x 2 {0, 1}n (4.28)

This reformulation has the drawback of comprising a very large number of

constraints of type 4.27. Moreover, at the optimal solution, not all of the con-

straints in 4.27 will be active. Therefore, in the iterative Benders decomposition

algorithm, one works with a relaxed version of MP by considering only a sub-

set of 4.27 at each iteration. We denote this subset by ⇧0 which includes the

constraints 4.27 generated via solving the DSP in the previous iterations. This

relaxed formulation of the MP (RMP) considering only the subset ⇧0 of cuts

4.27 provides a lower bound to the optimal solution of the MP.

At a given iteration of the stochastic Benders decomposition, a RMP(k)

is solved first to obtain the values of (w(k), y(k)). Then, these values are used

to solve DSP(k) to obtain the values of dual variables ⇡(k) (i.e., an extreme

point k 2 ⇧ of the dual polyhedron) and a new cut of the form 4.23 to include
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into ⇧0. Note that when the DSP(k) is solved for given (x(k)), an upper bound

for MP can be easily calculated by adding DSP(k)’s objective value and the

total fixed cost component for the RMP(k) (i.e., the objective value of RMP(k)

excluding M (k)).

4.3 Accelerating Benders Decomposition

In this section we present the techniques that we have developed for

speeding-up the decomposition framework presented in the previous section.

Figure 4.1 gives a schematic representation of the proposed algorithm, which

is comprised by a combination of the traditional Benders decomposition

framework and additional acceleration techniques that will be described in the

following sections. The steps that represent acceleration ideas are represented

in Figure 4.1 inside dashed boxes. The algorithm starts at an initialization

Figure 4.1: Schematic representation of the proposed stochastic Benders de-
composition

step, where initial values for the parameters are set. The algorithm then

proceeds with the iterative solution of the Master Problem (MP), followed

by the procedure that seeks to improve the solution from it. The algorithm

then proceeds to the solution of the DSP using either the solution from the MP
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or the solution obtained in upper bounding improving procedure, depending

on which is the best in terms of the value of the upper bound. This iterative

procedure continues until the solution from the DSP and the MP are close

enough, as measured by some stoping criteria. If the criteria are not fulfilled

yet, the procedure iterates solving an auxiliary DSP to derive the strong cuts

that are added in the sequence to the MP and, which is solved again in a new

iteration. Notice that, even though the algorithm follows a classical iterative

framework, it has particular features that di↵er from traditional approaches.

(a) Multi cut framework

Recall that in the stochastic Benders decomposition presented in the

previous section, a single optimality cut is added at each iteration. This cut

aims at approximating the value of the second-stage function at the current

solution. However, instead of using only a single cut at each iteration, one can

add multiple cuts to approximate the individual second-stage cost function

corresponding to each one of the |⌦| scenarios. In this case, the RMP can be

reformulated as follows:

min
x

cTx+
X

⇠

P ⇠M ⇠ (4.29)

s.t.:

Ax  b (4.30)

M ⇠ � ⇡⇠T

(k)(h
⇠ � Tx) 8⇠ 2 ⌦, k 2 ⇧ (4.31)

x 2 {0, 1}n (4.32)

Birge and Louveaux (1988) showed that the use of such a framework may

greatly speed-up convergence. The main idea behind this multi cut framework

is to generate an outer linearization for all functions Q(x, ⇠), replacing the

outer linearization of Q(x). The multi cut approach relies on the idea that

using independent outer approximations of all functions Q(x, ⇠) provide more

information to the MP than the single cut on Q(x), and therefore, fewer

iterations are needed to reach the optimal solution.

(b) Generating stronger cuts

Magnanti and Wong (1981) proposed a seminal methodology to accel-

erate convergence of Benders decomposition by strengthening the generated

cuts. They observed that in certain cases where the SP presents degeneracy,

one might generate di↵erent cuts for the same optimal solution (x(k)), each
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one of di↵erent strength in terms of e�ciently approximating the second-stage

cost function. To circumvent this di�culty, the authors proposed a methodo-

logy for identifying the strongest possible cut, which they referred to as the

Pareto-optimal cut. Figure 4.2 illustrates this fact, showing distinct possib-

ilities for cut generation, provided a solution x(k), where c?(x(k)) represents

the strongest cut in this context. Similarly to what we did in section 4.2, let

Figure 4.2: Geometric illustration of cut strength

⇧ = {⇡ 2 Rq|W T⇡  q} be the set of feasible solutions for DSP. In addition,

let M � ⇡T (h� Tx) represent a Benders cut, and ⇧
alt

be the set of alternative

optimal solutions for the DSP given a MP solution x. Then, we say that the

Benders cut generated by ⇡⇤ dominates all others (i.e., is Pareto-optimal) if:

⇡⇤T (h� Tx)  ⇡T (h� Tx) 8⇡ 2 ⇧
alt

(4.33)

Magnanti and Wong (1981) showed how one can generate Pareto-optimal cuts

based on the notion of core points. A core point is defined as a point x̂ in the

relative interior of Conv(X), where Conv(·) denotes the convex hull (Wolsey,

1998). They proved that if a cut is selected such that it attains the maximum

value at a core point amongst the set of all alternative cuts, then this cut is

not dominated by other cuts at any feasible solution - a Pareto-optimal cut.

In order to generate these cuts, they suggest selecting some core point x̂,

and after solving SP for x (which we denote hereafter as SP(x)), they generate

the Benders cut by subsequently solving a secondary subproblem, which can
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be stated as follows:

max{⇡T (h� T x̂) | ⇡ 2 ⇧
alt

} (4.34)

where ⇧
alt

= {⇡ 2 ⇧ | ⇡T (h � Tx) = f(SP (x))} is the set of alternative

optimal solutions of 4.34 and f(·) the objective function value.

Nevertheless, there are certain implementation issues related to Magnanti

and Wong’s cut generation procedure. First, the dependency of the subproblem

4.34 to the DSP might jeopardize the algorithm e�ciency, especially in the

cases where the DSP might turn out to be di�cult to solve. Moreover, since

Magnanti and Wong’s procedure requires a new core point at each major

iteration (recall that the core points rely inside the convex hull of the MP,

whose feasible region is changing at each major iteration), it might be the

case that it is not easy to obtain new core points at each iteration. To address

this drawback, researchers often approximate core points (Santoso et al., 2005;

Papadakos, 2009), arbitrarily define then by fixing components of the core

point vector (Mercier et al., 2005) or use alternative points derived from a

given problem structure (Papadakos, 2008). In addition to that, it is important

to note that this strategy does not always yield a net computational advantage

since the trade-o↵ between the reduction in the number of iterations required

compared to the increase in the number of linear programs solved to generate

each cut might not pay-o↵ (Mercier and Soumis, 2007).

In this chapter we propose an alternative way of generating nondomin-

ated cuts based on the definition of maximal cuts. Following the ideas of Sher-

ali and Lunday (2011) for generating maximal nondominated Benders cuts, we

show an alternative for strengthening the Benders Cuts while circumventing

the aforementioned drawbacks.

First, we start by highlighting the standard definition of maximal,

typically used in cutting plane theory from integer programming literature

(Wolsey, 1998). Let us rewrite the Benders cut generated from a selected

⇡ 2 ⇧
alt

as:

M � ⇡Th+
nX

j=1

(�⇡TT
j

)x
j

(4.35)

Then, we say that a Benders cut is maximal for a given ⇡ if, for every ⇡0 2 ⇧
alt

,

we have that ⇡Th � ⇡0Th and �⇡TT
j

� �⇡0TT
j

. It is not di�cult to see

that a Pareto-optimal or nondominated cut generated in the way proposed by

Magnanti and Wong (1981) can be also considered maximal, provided that the

core point x̂ is positive.
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Sherali and Lunday (2011) show that the aforementioned concept of

maximal cuts can be used to derive an alternative way of generating cuts

that would accelerate Benders decomposition. To achieve such a goal, we must

first view the process of generating maximal cuts as one of determining a

Pareto-optimal solution to the multiple objective problem defined as:

max{⇡Th,�⇡TT1, . . . ,�⇡TT
n

| ⇡ 2 ⇧
alt

} (4.36)

We can obtain a solution for this problem by selecting a positive weight

vector (PWV) and then maximizing the positive weighted sum of the multiple

functions in 4.36 (Steuer, 1989). By doing this, we end up by having to solve

the following problem:

max{⇡Th+
nX

j=1

�⇡TT
j

x̂ | ⇡ 2 ⇧
alt

} (4.37)

which is exactly the problem defined in 4.35. Therefore, if we define x̂ as a

positive core point solution, then the resulting cut would be both maximal as

well as nondominated.

Seeking to obtain an e�cient framework to derive these cuts, we can

combine in the same problem both the step where we solve DSP(x) to obtain

⇧
alt

and the subsequent step of solving 4.34. Toward this end, we must first

note that we are essentially considering a priority multiple objective program,

where we want to first maximize DSP(x) (i.e., maximize ⇡T (h � Tx) subject

to ⇡ 2 ⇧) and next, considering all alternative solutions to this problem,

choose the one which maximizes ⇡T (h�T x̂). Again, one might notice that the

approach of Magnanti and Wong (1981) to generate nondominated cuts using

the core point x̂ can be interpreted in the same way.

Sherali and Soyster (1983) showed that such a multiple objective program

can be equivalently solved by the following combined weighted sum problem:

max{⇡T (h� Tx) + µ[⇡T (h� T x̂)] | ⇡ 2 ⇧} (4.38)

where µ is a suitably small weight. Although Sherali and Soyster (1983) showed

that it is always possible to derive µ such that it would render 4.38 equivalent

to the multi-objective problem 4.37, the derivation of such a weight is not

typically a practically convenient task except in some particular cases.

In order to circumvent this drawback, we propose an alternative way of

dealing with the weight µ in order to obtain what we call as dynamically up-

dated near-maximal Benders cuts. The main reasoning behind the following

DBD
PUC-Rio - Certificação Digital Nº 0913452/CA



Chapter 4. Scenario decomposition framework for continuous second-stage

problem: stochastic Benders decomposition 54

ideas are rather experimental than theoretical. What we observe from our nu-

merical experiments is that the solutions obtained in the early iterations yield

poor descriptions of the second-stage cost curve, which is exactly what we are

trying to approximate through the use of Benders cuts in the stochastic pro-

gramming context. Moreover, we observe that by applying the aforementioned

ideas of generating maximal cuts, we can consider 4.38 as an auxiliary problem

to simulate the existence of more dense first-stage solutions in the early itera-

tions in order to speed-up the convergence. As for the algorithmic procedure,

we can then iteratively adjust the weight µ in order to favor solutions that are

more focused on improving the original DSP (x) objective value ⇡T (h � Tx)

rather than 4.34.

One important characteristic of such a framework for updating the weight

µ is that it does not prevent convergence if a proper sequence {µ(k)}k=1,...,1 is

selected. In order to keep the original convergence properties of the traditional

Benders decomposition, it follows that one might select a sequence of µ(k), k =

1, . . . ,1 such that the following properties hold:

1.
P1

k=1 µ(k) ! 1

2. µ(k) ! 0 as k ! 1

By selecting such a divergent series, its is not di�cult to see that convergence

is guaranteed since:

lim
µ!0

⇡T (h� Tx) + µ[⇡T (h� T x̂)] = ⇡T (h� Tx) (4.39)

allowing us to rely on the results from Benders (1962) (or from Van Slyke and

Wets (1969) for the stochastic version, or even from Birge and Louveaux (1988)

for the multi cut framework), which guarantees convergence for the algorithm.

(c) Additional acceleration ideas

Combined with the strengthening of the cuts generated at each major

iteration of the proposed algorithm, we also use additional acceleration ideas

in order to improve computational e�ciency.

Upper bound improving

In our implementation of the stochastic Benders decomposition, we ob-

served that there is a strong relationship between the quality of the incumbent

solutions (x) obtained during the execution and the convergence rate of the

algorithm. This issue is related with the fact that, especially in the early it-

erations, the incumbent solutions obtained may be quite far from the optimal
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solution, leading the algorithm to explore inferior parts of the feasible region.

However, if a good solution (x) is made available through the use of some heur-

istic, we can use it in place of the incumbent solution and proceed from there.

Our algorithm makes use of a particular heuristic in order to try to generate

these good solutions during the algorithm execution.

The heuristic relies on facts observed during our computational experi-

ments. We observed that, after the optimality gap becomes reasonably small,

the bounds exhibit a tailing o↵ behavior as the iterations progress. This e↵ect

is mainly due to the fact that, in these iterations, all the incumbent solu-

tion tend to present identical or very similar selection of projects (in terms of

location and product for locations and origin and destination for arcs), only

changing timing decisions. Because the timing decisions have relatively small

influence on the objective value, the upper bound changes very little. In or-

der to avoid this behavior, this heuristic is applied after a certain number of

iterations with no improvement on the upper bound. The heuristic consists of

three main steps:

1. Fix the current project selection to those in the current incumbent

solution.

2. Randomly sample a subset of the scenario set ⌦ and solve the equivalent

deterministic to determine whether these investments should be selected

indeed, and if so, when. Notice that by doing this, we are both reducing

the size of the second-stage problem (since it is a subset of ⌦), as well

as the size of the first-stage problem (since we are only considering

investments decided in terms of location and product for tankage projects

and origin and destination for arc projects, hence considering fewer

integer variables).

3. Evaluate the obtained solution to check if it provides an improved upper

bound. If so, use this solution to update the incumbent solution and the

correspondent upper bound as the incumbent upper bound.

Trust-region

As pointed out by Ruszczyński (1997), the initial iterations of decompos-

ition methods based on cutting planes tend to present an unstable behavior.

This e↵ect is mainly due to the fact that the solutions tend to oscillate between

di↵erent sections of the feasible region, what may lead to slow convergence.

In the continuous case, this e↵ect can be e↵ectively controlled by the use

of two di↵erent approaches. The first consists of adding a regularizing term in
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the Master Problem objective function that penalizes the l2-distance between

the current solution and the previous one (Ruszczyński, 1997). The second

focuses on constraining the l1 distance of the MP variables from the previous

solution within a trust region (Linderoth and Wright, 2003). These extensions

prevent the MP solution from moving far from the previous iterate. One point

that must be highlighted is that both the penalty magnitude and the size of the

trust region must be controlled during the execution of the algorithm based on

its progress. Using a proper control is imperative when using these techniques

in order to avoid losing convergence properties.

In our problem, the first-stage variables are binary vectors. In this case,

using a l2 regularizing term would render a mixed-integer quadratic MP, which

would become much more complex in terms of solution methodology. Moreover,

a l1 trust-region would be useless in our case. Since feasible MP solutions

are extreme points of the unit hypercube, a trust region of size greater or

equal than one would include all its vertices (i.e., all possible binary feasible

solutions), while a trust-region with size less than one would include only the

previous solution.

Santoso et al. (2005) show how one can deal with this drawback by using

the Hamming distances between the binary solution vector as a measuring

unit for the trust region. Let (x(k)) be the MP solution at iteration k and let

X = {j = 1, . . . , n | x(k)
j

= 1}. Then, we impose the following constraint in the

MP to be solved in iteration k + 1:

X

j2X

(1� x
j

) +
X

j /2X

x
j

 �(k+1) (4.40)

where �(k+1) < n represents the trust-region size in iteration k + 1. Unfortu-

nately, convergence cannot be guaranteed if a non-redundant trust region is

used throughout the algorithm execution. Hence, since the algorithm tends to

have the oscillating e↵ect that we are willing to avoid mostly in the beginning

of the execution, we dynamically adjust the size as the algorithm converges.

When the algorithm reaches a su�ciently small optimality gap, we remove 4.40

from the MP in order to ensure convergence.

(d) Algorithm statement

We can summarize the proposed algorithm as follows:

Step 1 : Initialization:

1.1) Set UB = 1; LB = �1; k = 1

Step 2 : Solve Master Problem:
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2.1) If LB
k

> LB, then LB = LB
K

and (x(k)) = (x(k)).

Step 3 : Solve Dual Slave Problems:

3.1) Solve each subproblem Q(x, ⇠), ⇠ = 1, . . . ,⌦ and combine then to

obtain UB = E⌦[Q(x, ⇠)]

Step 4 : If the limit for the number of successive iterations without improvement

on LB is reached, then execute the upper bound improving procedure

4.1) Apply the proposed heuristic for generating an alternative first-stage

solution (x(k))
alt

;

4.2) Evaluate (x(k))
alt

so that UB
alt

= Q(x)(k). If (x(k))
alt

is better than

(x(k)) (i.e, UB
alt

< UB, then make (x(k)) = (x(k))
alt

Step 5 : If UB �LB < ✏ or any other criteria, such as time elapsed or number

of iterations are met, stop and return (x(k)) and UB. Otherwise, set k = k+1

and proceed.

Step 6 Cut generation:

6.1) Update parameter µ(k);

6.2) Solve the auxiliary Dual Slave Problem 4.38 to obtain ⇡(k);

6.3). Generate strong cut as 4.35 and add it to the Master Problem;

Step 7 : Update the trust-region constraint 4.40 in the Master Problem. Return

to Step 2.

4.4 Numerical Experiments

This section describes the computational experiments performed to eval-

uate the proposed algorithm under di↵erent considerations. All experiments

described in this section were executed in an Intel Xeon 2.4GHz CPU with

4GB RAM and implemented in AIMMS 3.12. The mixed-integer and linear

programming models within the decomposition framework were solved with

CPLEX 12.3.

In order to assess the e�ciency of the proposed framework, we consider

an instance which consists of the realistic case study of a large-scale investment

planning problem described in section 3.3. We compare the results with three

di↵erent techniques. The first technique used (for now on referred as Algorithm

1 ) generates nondominated Benders cuts according to Magnanti and Wong

(1981), with the approximation and core point updating technique as proposed

by Papadakos (2008), i.e., we initialize a core point approximation x̂ with

a feasible solution to the MP and then update the approximation at each

successive iteration by setting x̂ = �x̂ + (1 � �)x. We adopt � = 0.5, as

prescribed by Papadakos (2008). The author states that, based on empirical

observation, such a value for � usually yields better results in terms of
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algorithmic convergence. The second technique (Algorithm 2 ) used consists

of generating maximal nondominated Benders cut as proposed by Sherali and

Lunday (2011). The authors show that one can use the following expression to

calculate µ that yields a near-optimal maximal Benders cut:

µ =
✏0
M✓

(4.41)

where ✏0 is a prespecified tolerance on the absolute optimality gap, M is

the penalty for recourse unfeasibility (that is equivalent to the cost of unmet

demand in our case), and ✓ = ✏0 +max{0,max{ĥ
i

}}�min{0,min{ĥ
i

}}, with
ĥ = h� T x̂. We used a fixed value for the weight µ, as shown by the authors

in their calculations. This parameter was empirically derived, since it is not

practically convenient to base the selection of ✏0 on the optimal solution. Note

that by doing that, we are in e↵ect implicitly dictating a particular choice of

✏0. Finally, Algorithm 3 use the dynamically updated near maximal Benders

cuts we have proposed in section 4.3(b) as the cut generation strategy. In this

case we update the weight according to the following divergent series:

µt+1 =
g

h|B|µ
t (4.42)

where g and h are prespecified parameters, and |B| represents the current size
of the set of generated cuts. In both experiments we use g = 2, h = 1, and

µ0 is given by 4.41. We use ✏0 as an empirically fixed value. In all cases, the

algorithms were developed considering the multi-cut version. All experiments

in this example were solved up to 2% optimality gap.

In order to assess the e�ciency of the proposed approach, we performed

two di↵erent experiments. The first experiment seeks to illustrate the e↵ects

of using the acceleration techniques ”Upper bounding improving” and ”Trust

regions” in a random sample composed by 200 scenarios. Table 4.2 summarizes

the performance of these techniques compared them individually and in

combination with the case where none of such acceleration techniques are used

(column ”Without”). Note that in Table 4.2 the bounds are not reported at

their last iteration since we are using arbitrary increments in the number of

iterations.
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# Iter.
Without UB Imp. TR UB Imp. + TR

UB %gap UB %gap UB %gap UB %gap

1 1732310.5 99.2 1732310.5 99.2 1732310.5 99.2 1732310.5 99.2

5 481802.2 46.3 481802.2 46.4 481802.2 46.4 481802.2 46.3

10 418213.5 7.3 416152.5 10.1 416152.5 3.4 418213.5 7.3

15 412056.4 3.7 408188.4 2.5 411950.4 2.8 408188.4 2.4

20 412056.4 2.7 - - 411950.4 2.3 - -

25 412056.4 2.3 - - - - - -

30 412056.4 2.1 - - - - - -

CPU Time(s) 1151.2 617.7 619.0 446.3

Table 4.2: Summary of CPU times(s) - experiment 1

Table 4.2 allows us to observe the e↵ect of the acceleration techniques

”Upper bound improving” and ”Trust regions” separately (indicated as ”UB

Imp.” and ”TR”, respectively) and compare it with the case where none

of these acceleration techniques are used (indicated as ”No Acc.”). From

the results we can conclude that both techniques improve convergence of

the proposed algorithm, reducing the total CPU time required to reach the

convergence criterion by approximately 46% in both cases. Moreover, when we

combine both techniques, the reduction in the solution times is even larger,

yielding improvement on the solution time of over 61%.

For the second experiment, we developed a set consisting of 100 independ-

ent scenario samples of 10 di↵erent sizes varying from 20 to 200 scenarios, as

can be seem in Table 4.3. Notice that in this case, we are solving the problem

for 1000 di↵erent demand instances, since the samples are independent. Our

objective by doing that is to assess the e�ciency of the proposed approach

independent of particularities of a given scenario sample.
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Scenarios
Algorithm 1 Algorithm 2 Algorithm 3 CPLEX

Avg. St. Dev. Avg. St. Dev. Avg. St. Dev. Avg. St. Dev.

20 56.5 19.2 55.5 15.0 22.3 2.2 9.6 0.6

40 104.7 37.7 102.1 31.3 43.2 2.7 33.7 3.3

60 162.4 66.5 140.7 52.0 64.0 4.5 51.5 5.0

80 219.5 78.6 221.5 111.8 83.7 5.8 104.0 20.9

100 287.2 124.3 272.5 139.2 109.1 12.7 185.6 34.5

120 369.6 150.5 313.9 152.4 128.3 9.2 287.8 46.3

140 387.6 163.3 381.8 170.9 151.2 10.8 473.0 122.3

160 483.8 208.8 372.3 135.8 176.7 11.6 601.1 140.8

180 612.7 270.3 477.1 189.4 203.8 13.9 734.9 165.6

200 631.4 252.7 521.8 196.1 230.1 12.2 927.6 161.0

Table 4.3: Summary of CPU times(s) - experiment 2

Table 4.3 presents the statistical data retrieved from the experiments

carried out in the second experiment, showing the average time solution (Avg.

column) and the standard deviation (Std. Dev. column) in CPU seconds. As

can be seen in Table 4.3, the CPLEX times are smaller in the experiments

when a small number of scenarios is considered. As the number of scenarios

increases, the decomposition frameworks outperform the use of CPLEX. We

also highlight the performance of our algorithm (Algorithm 3 ) in the case

study under consideration. As we can be observe from the experimental results,

the proposed algorithm performed better than the other cutting generation

strategy in all experiments. In addition, for cases where more than 80 scenarios

where considered, Algorithm 3 reached the best average solution times among

all solution procedures, including CPLEX.

Another remarkable feature that can be observed in Table 4.3 is related to

the standard deviation of the solution times. The results suggest that Algorithm

3 attains the smaller deviation in terms of CPU seconds regarding the time

the algorithm takes to reach a 2% gap suboptimal solution. The observation

of this fact lead us to the conclusion that the performance of our Algorithm 3

is less a↵ected by particular characteristics of the scenario sample itself since

it seems to be more robust in terms of solution time variation.

4.5 Conclusions

In this chapter we have presented the development of acceleration tech-

niques for the stochastic Benders decomposition to solve the investment plan-

ning problem applied to the petroleum products supply chain. We have pro-
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posed a new methodology for generating dynamically updated near-maximal

Benders cuts, and compared it with acceleration techniques proposed by

Papadakos (2008) and Sherali and Lunday (2011) for the stochastic Bend-

ers algorithm. Moreover, we have proposed the application of two additional

acceleration techniques to further improve the convergence of the algorithm,

especially in cases where convergence is di�cult due to the computational

complexity of the problem at hand.

We conducted a numerical example to assess the e�ciency of the pro-

posed framework. Since we are dealing with uncertainty through the use of a

sampling framework, we choose to generate a large number of instances (100

samples of 10 di↵erent sizes) by repeatedly sampling a first order autoregressive

model. As our computational results suggest, our algorithm performed faster

for this particular problem considered under a sampling framework. The ex-

perimental results show that, for a larger number of scenarios, the proposed

algorithm can perform 4.5 times faster on average than solving the full-space

equivalent deterministic problem. Moreover, our algorithm also presented bet-

ter results when compared to other acceleration approaches considered.
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