INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: GERAÇÃO DE ATRIBUTOS GUIADA POR ENTROPIA PARA APRENDIZADO DE ESTRUTURAS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): ERALDO LUIS REZENDE FERNANDES

Colaborador(es):  RUY LUIZ MILIDIU - Orientador
Número do Conteúdo: 23812
Catalogação:  17/12/2014 Idioma(s):  INGLÊS - ESTADOS UNIDOS

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23812@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=23812@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.23812

Resumo:
Aprendizado de estruturas consiste em aprender um mapeamento de variáveis de entrada para saídas estruturadas a partir de exemplos de pares entrada-saída. Vários problemas importantes podem ser modelados desta maneira. O processamento de linguagem natural provê diversas tarefas que podem ser formuladas e solucionadas através do aprendizado de estruturas. Por exemplo, parsing de dependência envolve o reconhecimento de uma árvore implícita em uma frase. Geração de atributos é uma sub-tarefa importante do aprendizado de estruturas. Geralmente, esta sub-tarefa é realizada por um especialista que constrói gabaritos de atributos complexos e discriminativos através da combinação dos atributos básicos disponíveis na entrada. Esta é uma forma limitada e cara para geração de atributos e é reconhecida como um gargalo de modelagem. Neste trabalho, propomos um método automático para geração de atributos para problemas de aprendizado de estruturas. Este método é guiado por entropia já que é baseado na entropia condicional de variáveis locais de saída dados os atributos básicos. Comparamos experimentalmente o método proposto com dois métodos alternativos para geração de atributos: geração manual e métodos de kernel polinomial. Nossos resultados mostram que o método de geração de atributos guiado por entropia é superior aos dois métodos alternativos em diferentes aspectos. Nosso método é muito mais barato do que o método manual e computacionalmente mais rápido que o método baseado em kernel. Adicionalmente, ele permite o controle do seu poder de generalização mais facilmente do que métodos de kernel. Nós avaliamos nosso método em nove datasets envolvendo cinco tarefas de linguística computacional e quatro idiomas. Os sistemas desenvolvidos apresentam resultados comparáveis aos melhores sistemas atualmente e, particularmente para etiquetagem morfossintática, identificação de sintagmas, extração de citações e resolução de coreferência, obtêm os melhores resultados conhecidos para diferentes idiomas como Árabe, Chinês, Inglês e Português. Adicionalmente, nosso sistema de resolução de coreferência obteve o primeiro lugar na competição Conference on Computational Natural Language Learning 2012 Shared Task. O sistema vencedor foi determinado pela média de desempenho em três idiomas: Árabe, Chinês e Inglês. Nosso sistema obteve o melhor desempenho nos três idiomas avaliados. Nosso método de geração de atributos estende naturalmente o framework de aprendizado de estruturas e não está restrito a tarefas de processamento de linguagem natural.

Descrição Arquivo
CAPA, AGRADECIMENTOS, ABSTRACT, RESUMO, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
CAPÍTULO 7  PDF
CAPÍTULO 8  PDF
CAPÍTULO 9  PDF
CAPÍTULO 10  PDF
CAPÍTULO 11  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui