INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: APLICAÇÃO DOS MODOS DE VIBRAÇÃO NÃO LINEARES A MODELOS CONCEITUAIS DE ESTRUTURAS OFFSHORE
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): ELVIDIO GAVASSONI NETO

Colaborador(es):  PAULO BATISTA GONCALVES - Orientador
DEANE DE MESQUITA ROEHL - Coorientador
Número do Conteúdo: 21272
Catalogação:  08/03/2013 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=21272@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=21272@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.21272

Resumo:
Estruturas offshore têm demandado, em função do aumento da profundidade da lâminha de água e da severidade do ambiente, análises de vibração cada vez mais confiáveis. Em face de oscilações com grandes deslocamentos, torna-se imprescindível uma análise não linear dessas estruturas. Métodos numéricos como os elementos finitos constituem-se numa tarefa computacionalmente custosa, uma vez que os acoplamentos modais tornam necessários modelos com muitos graus de liberdade. Isso dificulta as análises paramétricas e prolonga os ciclos de projeto para estruturas offshore. Uma alternativa a esses problemas é o uso de modelos de ordem reduzida. Os modos normais não lineares têm-se mostrado uma ferramenta eficiente na derivação de modelos de ordem reduzida para análises de vibrações não lineares. Isso ocorre porque um número menor de modos não lineares, em relação aos modelos com modos lineares, é necessário para se obter o mesmo nível de precisão num modelo reduzido. Esse trabalho utiliza modelos de ordem reduzida, obtidos por meio de análise modal não linear, para o estudo de vibração de modelos simplificados de estruturas offshore. Três exemplos de aplicação são utilizados: pêndulo invertido, torre articulada e plataforma spar. Além dos métodos baseado no procedimento de Galerkin e o assintótico, um procedimento numérico alternativo é proposto para obtenção dos modos, podendo ser utilizado para construção dos modos essencialmente não lineares. As vibrações livres e forçadas são estudadas. A estabilidade das soluções é analisada utilizando-se a teoria de Floquet, diagramas de bifurcação e de Mathieu e seções de Poincaré. As seções de Poincaré são também utilizadas para identificar a multiplicidade dos modos não lineares e a existência de multimodos. Os resultados são comparados com a solução obtida da integração numérica do sistema original de equações, mostrando uma boa precisão dos modelos reduzidos.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS, APÊNDICE E ANEXOS  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui