XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: LOW-DIMENSIONAL REDUCED ORDER MODELS FOR THE NONLINEAR DYNAMIC ANALYSIS OF BEAMS AND PLANE FRAMES Autor: ELVIDIO GAVASSONI NETO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
PAULO BATISTA GONCALVES - ADVISOR
DEANE DE MESQUITA ROEHL - ADVISOR
Nº do Conteudo: 11327
Catalogação: 15/02/2008 Liberação: 15/02/2008 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=11327&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=11327&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.11327
Resumo:
Título: LOW-DIMENSIONAL REDUCED ORDER MODELS FOR THE NONLINEAR DYNAMIC ANALYSIS OF BEAMS AND PLANE FRAMES Autor: ELVIDIO GAVASSONI NETO
DEANE DE MESQUITA ROEHL - ADVISOR
Nº do Conteudo: 11327
Catalogação: 15/02/2008 Liberação: 15/02/2008 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=11327&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=11327&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.11327
Resumo:
One of the fundamental results in classical mechanics is
that linear systems
with n degrees of freedom have n orthogonal vibration
modes and n natural
frequencies which are independent of the vibration
amplitude. Any motion of the
system can be obtained as a linear combination of these
modes. This does not hold
for nonlinear systems in which case amplitude dependent
vibrations modes and
frequencies must be obtained. One way of obtaining these
informations for
arbitrary structures is to use a nonlinear finite element
software. However, this is a
cumbersome and time consuming procedure. A better approach
is to derive a
consistent low dimensional model from which the nonlinear
frequencies and mode
shapes can be derived. In this work a procedure for the
derivation of low
dimensional models for slender beams and portal frames is
proposed. The
differential equations of motion are derived from the
application of variational
techniques to a nonlinear energy functional. The linear
vibration modes are used
as a first approximation for the nonlinear modes. The
Galerkin and Ritz methods
are used in the model for the spatial reduction and the
harmonic balance method
for the reduction in time domain. This allows the analysis
of the free and forced
(damped or undamped) vibrations of the structure in non-
linear regime. However
nonlinear resonance curves usually presents limit points.
To obtain these curves, a
methodology for the solution of non-linear equations based
on an arc-length
procedure is derived. Based on the finite element methods
and using the basic
ideas of the perturbation theory, a correction for the
nonlinear vibration modes is
derived. The influence of boundary conditions, geometric,
and force parameters
on the beam response is analyzed. The behavior of L frames
is studied. For this
kind of frame, the influence of axial loading and
geometric parameters on the
response is studied. The results are compared with
analytical solutions found in
the literature.
Descrição | Arquivo |
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS | |
CHAPTER 1 | |
CHAPTER 2 | |
CHAPTER 3 | |
CHAPTER 4 | |
CHAPTER 5 | |
CHAPTER 6 | |
REFERENCES AND APPENDICES |