Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SECONDARY FLOW IN PARTIALLY-OBSTRUCTED ANNULAR SPACE WITH INNER CYLINDER ROTATION
Autor: BRUNO VENTURINI LOUREIRO
Colaborador(es): PAULO ROBERTO DE SOUZA MENDES - Orientador
LUIS FERNANDO ALZUGUIR AZEVEDO - Coorientador
Catalogação: 25/ABR/2005 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=6375&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=6375&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.6375
Resumo:
The flow inside a horizontal annulus due to the inner cylinder rotation is studied. The bottom of the annular space is partially blocked by a plate parallel to the axis of rotation, thereby destroying the circumferential symmetry of the annular space geometry. This flow configuration is found in the drilling process of horizontal petroleum wells, where a bed of cuttings is deposited at the bottom part of the annulus. The velocity field for this flow was obtained both numerically and experimentally. In the numerical work, the equations which govern the threedimensional, laminar flow of Newtonian and non-Newtonian liquids were solved via a finite-volume technique. In the experimental research, the instantaneous and time-averaged flow fields over two-dimensional meridional sections of the annular space were measured employing the particle image velocimetry (PIV) technique, both for Newtonian and power-law liquids. Attention was focused on the determination of the onset of secondary flow in the form of distorted Taylor vortices. The results showed that the critical rotational Reynolds number is directly influenced by the degree of obstruction of the flow. The influence of the obstruction is more perceptible in Newtonian than non- Newtonian liquids. The larger is the obstruction, the larger is the critical Taylor number. The height of the obstruction also controls the width of the vortices. The calculated steady state axial velocity profiles agreed well with the corresponding measurements. Transition values of the rotational Reynolds number are also well predicted by the computations. However, the measured and predicted values for the vortex size do not agree as well. Transverse flow maps revealed a complex interaction between the Taylor vortices and the zones of recirculating flow, for moderate to high degrees of flow obstruction.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
REFERENCES AND APPENDICES PDF