2 Modelo matemático

Neste capítulo são mostradas as hipóteses e as simplificações do problema físico motivador. A formulação matemática para solução do problema simplificado é apresentada, assim como as condições de contorno e os parâmetros adimensionais obtidos. Também é apresentada a equação constitutiva utilizada para modelar os fluidos não newtonianos.

2.1. Descrição da configuração estudada

O problema do escoamento em um espaço anular parcialmente obstruído por um leito de cascalhos móvel foi investigado utilizando a simplificação de um leito rígido e fixo. Dada a simplificação do problema, a geometria estudada consistiu em um espaço anular cilíndrico horizontal com a possibilidade de vários níveis de obstrução formados por uma placa horizontal situada na parte inferior do anular, conforme ilustrado na Figura 7. O comprimento dos cilindros é considerado suficientemente longo de modo que os efeitos das extremidades não sejam relevantes no escoamento, conforme descrito por Cole (1976).

Figura 7 - Seção transversal do anular estudado. (a) Espaço anular livre; (b) Espaço anular parcialmente obstruído.

A presença da placa de obstrução promove uma assimetria na configuração do anular concêntrico. Para um escoamento com condições de contorno e propriedades do fluido tais que não acarretem a existência de vórtices de Taylor, o escoamento ainda pode ser obtido numericamente utilizando uma geometria bidimensional no plano *r*- θ , conforme a Figura 7(b), caso consideremos os tubos infinitamente longos. A partir do momento em que os vórtices de Taylor se fazem presentes no escoamento, o campo de velocidade torna-se tridimensional. Nessa situação, as condições de contorno no plano *r*- θ nas extremidades axiais da geometria podem alterar as características dos vórtices. A geometria tridimensional do problema e o sistema de coordenas cilíndricas é ilustrado na Figura 8. Nessa figura é possível visualizar a presença da placa de obstrução na parte inferior da geometria que causa a assimetria do problema estudado.

Figura 8 - Geometria estudada e sistema de coordenadas cilíndricas.

2.2. Equações

As equações de governo do problema respeitam as hipóteses de regime permanente, fluido newtoniano generalizado e fluido incompressível. A aceleração da gravidade age ortogonalmente à placa de obstrução horizontal. De forma clássica, as equações de governo do problema são as equações de continuidade e quantidade de movimento linear em coordenadas cilíndricas. Para as equações de quantidade de movimento linear, o tensor tensão cisalhante foi considerado conforme a eq. (4).

$$\boldsymbol{\tau} = 2\eta(\dot{\gamma})\mathbf{D} \qquad \dot{\gamma} = \sqrt{2tr(\mathbf{D}^2)} \qquad \mathbf{e} \qquad \mathbf{D} = \frac{1}{2} \left[\nabla v + (\nabla v)^T \right]$$
(4)

em que η é a viscosidade do fluido newtoniano generalizado, que é função de $\dot{\gamma}$ para fluidos não newtonianos e igual μ para fluidos newtonianos, **D** é o tensor taxa de deformação, $\dot{\gamma}$ é o escalar taxa de deformação e τ é o tensor tensão.

As equações de governo são adimensionalizadas usando-se as seguintes variáveis:

$$v_z^* = \frac{v_z}{\Omega r_i} \qquad v_r^* = \frac{v_r}{\Omega r_i} \qquad v_\theta^* = \frac{v_\theta}{\Omega r_i} \qquad P^* = \frac{P}{\rho(\Omega r_i)^2} \qquad r^* = \frac{r}{r_e - r_i} \tag{5}$$

$$\eta^* = \frac{\eta}{\eta_{ref}} \qquad \qquad \eta_{ref} = \eta(\dot{\gamma}_{ref}) \qquad \qquad \dot{\gamma}_{ref} = \frac{\Omega r_i}{r_e - r_i} \qquad (6)$$

em que v_z é a velocidade axial, v_r é a velocidade radial, v_{θ} é a velocidade tangencial, r é a coordenada radial do problema, r_i é o raio do cilindro interno, r_e o raio do cilindro externo, P é a pressão, ρ é a massa específica do fluido presente no espaço anular, Ω é a freqüência angular do cilindro interno, $\dot{\gamma}_{ref}$ é a taxa de cisalhamento característica e η_{ref} é a viscosidade para a taxa de cisalhamento de característica.

As equações na forma adimensional podem ser escritas como mostrado a seguir. Nessas equações o termo gravitacional foi incorporado à pressão através de $P = p + \rho rgsen(\theta)$.

Equação da continuidade

$$\frac{1}{r^*}\frac{\partial}{\partial r^*}\left(r^*v_r^*\right) + \frac{1}{r^*}\frac{\partial v_\theta^*}{\partial \theta} + \frac{\partial v_z^*}{\partial z^*} = 0$$
(7)

Componente axial da equação de quantidade de movimento linear

$$v_{r}^{*} \frac{\partial v_{z}^{*}}{\partial r^{*}} + \frac{v_{\theta}^{*}}{r^{*}} \frac{\partial v_{z}^{*}}{\partial \theta} + v_{z}^{*} \frac{\partial v_{z}^{*}}{\partial z^{*}} = -\frac{\partial P^{*}}{\partial z^{*}} + \frac{1}{\operatorname{Re}} \left\{ \frac{\partial}{\partial z^{*}} \left[2\eta^{*} \frac{\partial v_{z}^{*}}{\partial z^{*}} \right] + \frac{1}{r^{*}} \frac{\partial}{\partial r^{*}} \left[r^{*} \eta^{*} \left(\frac{\partial v_{z}^{*}}{\partial r^{*}} + \frac{\partial v_{r}^{*}}{\partial z^{*}} \right) \right] + \frac{1}{r^{*}} \frac{\partial}{\partial \theta} \left[\eta^{*} \left(\frac{\partial v_{\theta}^{*}}{\partial z^{*}} + \frac{\partial v_{z}^{*}}{\partial \theta} \right) \right] \right\}$$

$$(8)$$

Componente radial da equação de quantidade de movimento linear

$$v_{r}^{*} \frac{\partial v_{r}^{*}}{\partial r^{*}} + \frac{v_{\theta}^{*}}{r^{*}} \frac{\partial v_{r}^{*}}{\partial \theta} + \frac{v_{\theta}^{*}}{r^{*}} + v_{z}^{*} \frac{\partial v_{r}^{*}}{\partial z^{*}} = -\frac{\partial P^{*}}{\partial r^{*}} + \frac{1}{Re} \left\{ \frac{1}{r^{*}} \frac{\partial}{\partial r^{*}} \left[2r^{*} \eta^{*} \frac{\partial v_{r}^{*}}{\partial r^{*}} \right] + \frac{1}{r^{*}} \frac{\partial}{\partial \theta} \left[r^{*} \eta^{*} \frac{\partial}{\partial r^{*}} \left(\frac{v_{\theta}^{*}}{r^{*}} \right) + \frac{1}{r^{*}} \frac{\partial v_{r}^{*}}{\partial \theta} \right] + \frac{1}{r^{*}} \left[2\eta^{*} \frac{1}{r^{*}} \frac{\partial v_{\theta}^{*}}{\partial \theta} + \frac{v_{r}^{*}}{r^{*}} \right] + \frac{\partial}{\partial z^{*}} \left[\eta^{*} \left(\frac{\partial v_{z}^{*}}{\partial r^{*}} + \frac{\partial v_{r}^{*}}{\partial z^{*}} \right) \right] \right\}$$

$$(9)$$

Componente azimutal da equação de quantidade de movimento linear

$$v_{r}^{*} \frac{\partial v_{\theta}^{*}}{\partial r^{*}} + \frac{v_{\theta}^{*}}{r^{*}} \frac{\partial v_{\theta}^{*}}{\partial \theta} + \frac{v_{r}^{*} v_{\theta}^{*}}{r^{*}} + v_{z}^{*} \frac{\partial v_{\theta}^{*}}{\partial z^{*}} = -\frac{1}{r^{*}} \frac{\partial P^{*}}{\partial \theta} + \frac{1}{\mathrm{Re}} \left\{ \frac{1}{r^{*}} \frac{\partial}{\partial r^{*}} \left[r^{*2} \eta^{*} \left(r^{*} \frac{\partial}{\partial r^{*}} \left(\frac{v_{\theta}^{*}}{r^{*}} \right) + \frac{1}{r^{*}} \frac{\partial v_{r}^{*}}{\partial \theta} \right) \right] + \frac{1}{r^{*}} \frac{\partial}{\partial \theta} \left[2 \eta^{*} \left(\frac{1}{r^{*}} \frac{\partial v_{\theta}^{*}}{\partial \theta^{*}} + \frac{v_{r}^{*}}{r^{*}} \right) \right] + \frac{\partial}{\partial z^{*}} \left[\eta^{*} \left(\frac{\partial v_{\theta}^{*}}{\partial z^{*}} + \frac{1}{r^{*}} \frac{\partial v_{z}^{*}}{\partial \theta^{*}} \right) \right] \right\}$$
(10)

2.3. Equação constitutiva

A equação constitutiva utilizada para modelar a viscosidade do fluido não newtoniano foi a de Ostwald que é dada pela eq. (11).

$$\eta(\dot{\gamma}) = k\dot{\gamma}^{n-1} \tag{11}$$

em que *k* é o índice de consistência, $\dot{\gamma}$ é a taxa de cisalhamento, η é a viscosidade e *n* é o índice de comportamento. Para um fluido newtoniano, temse *k* = μ e *n* = 1.

2.4. Condições de contorno

O problema modelado foi considerado como sendo um escoamento entre cilindros infinitamente longos, embora matematicamente deva-se estipular alguma condição de contorno nas extremidades axiais. Essas condições de contorno estipuladas matematicamente nas extremidades axiais afetam o escoamento e devem ser bem escolhidas. Três tipos de condições de contorno foram estipulados. As condições de contorno axiais foram:

- *Tipo A:* Simetria axial na metade do domínio e domínio estendido na extremidade;
- *Tipo B:* Simetria axial na metade do domínio e condição de não deslizamento na parede da extremidade;
- *Tipo C:* Condição de não deslizamento nas duas paredes das extremidades axiais (domínio computacional completo).

Os tipos de condições de contorno estipuladas são apresentadas matematicamente a seguir.

2.4.1. Condição tipo A

A condição do tipo A estabelece uma simetria na metade axial do anular e uma extensão do domínio. Na parede axial estendida do domínio é considerada a hipótese de não deslizamento. As condições de contorno dimensionais aplicadas à geometria do problema estudado livre de obstrução parcial para o caso citado são descritas matematicamente como:

$$r = r_e: \qquad \qquad v_\theta = v_r = v_z = 0. \tag{12}$$

$$z = +(L/2 + L_E)$$
: $v_{\theta} = v_r = v_z = 0$. (13)

$$z = 0: \qquad \qquad \frac{\partial v_{\theta}}{\partial z} = \frac{\partial v_r}{\partial z} = v_z = 0.$$
(14)

Se
$$0 \le z \le L/2$$
,
 $r = r_i$: $v_{\theta} = \Omega r_i$ e $v_r = v_z = 0$. (15)
Se $L/2 < z \le (L/2 + L_E)$,
 $r = r_i$: $v_{\theta} = v_r = v_z = 0$ (16)

Esse tipo de condição de contorno, em princípio, possibilita a obtenção de uma solução mais próxima de uma geometria com escoamento entre cilindros infinitos. Essa extensão de domínio foi proposta por Coronado-Matutti et al. (2004) visando impedir uma imposição no tamanho dos vórtices. Assim, é possível um acondicionamento natural de número de vórtices para o domínio estipulado. Uma representação esquemática das condições de contorno na geometria testada é ilustrada na Figura 9. O índice 1 mostrado na figura indica condição de simetria e o índice 2 a hipótese de não deslizamento na parede.

Figura 9 - Geometria do tipo A: simetria na metade axial do anular e domínio estendido na extremidade.

Quando a placa de obstrução está presente, a condição de não deslizamento sobre a placa é escrita como:

$$r = \left[\frac{h - r_e}{\cos(180 - \theta)}\right]: \qquad v_\theta = v_r = v_z = 0, \text{ para } \alpha \le \theta \le \alpha + \varphi \qquad (17)$$

em que

$$\alpha = sen^{-1} \left(\frac{h - r_e}{r_e} \right) \mathbf{e} \ \varphi = \cos^{-1} \left(\frac{r_e - h}{r_e} \right). \tag{18}$$

Os ângulos α e ϕ são ilustrados na Figura 10, assim como a coordenada radial da superfície da placa horizontal.

Figura 10 – Representação esquemática dos ângulos α e ϕ para determinação da condição de contorno sobre a placa horizontal.

Adimensionalizando as condições de contorno de velocidade por Ωr_i e as respectivas coordenadas pela folga do anular livre de obstrução, isto é: $d = r_e - r_i$, tem-se:

$$r^* = r/d = r_e/d$$
: $v_\theta^* = v_r^* = v_z^* = 0$. (19)

$$z^* = z/d = +(L/2 + L_E)/d$$
: $v^*_{\theta} = v^*_r = v^*_z = 0$. (20)

$$z^* = z/d = 0: \qquad \qquad \frac{\partial v_{\theta}^*}{\partial z^*} = \frac{\partial v_r^*}{\partial z^*} = v_z^* = 0.$$
(21)

$$r^{*} = r/d = \left[\frac{r_{e} - h}{\cos(180 - \theta)}\right] / d: \quad v_{\theta}^{*} = v_{r}^{*} = v_{z}^{*} = 0.$$
(22)

Se $0 \le z \le L/(2d)$,

$$r^* = r/d = r_i/d$$
: $v^*_{\theta} = \Omega r_i/\Omega r_i = 1 \text{ e } v^*_r = v^*_z = 0.$ (23)

Se
$$L/2 < z \le (L/2 + L_E)$$
,
 $r^* = r/d = r_i/d$: $v_{\theta}^* = v_r^* = v_z^* = 0$. (24)

2.4.2. Condição tipo B

A condição do tipo B, conforme mencionado anteriormente, corresponde a uma geometria com simetria na metade axial do anular e hipótese de não deslizamento na parede da extremidade axial. As condições de contorno dimensionais aplicadas à geometria do problema estudado sem obstrução parcial, dadas as características acima são:

$$r = r_i: \qquad \qquad v_\theta = \Omega r_i \ \mathbf{e} \ v_r = v_z = 0. \tag{25}$$

$$r = r_e: \qquad \qquad v_\theta = v_r = v_z = 0. \tag{26}$$

$$z = +L/2$$
: $v_{\theta} = v_r = v_z = 0$. (27)

$$z = 0: \qquad \qquad \frac{\partial v_{\theta}}{\partial z} = \frac{\partial v_r}{\partial z} = v_z = 0.$$
(28)

Esse tipo de condição de contorno assim como a tipo C, em princípio, estabelece as condições de contorno presentes na montagem experimental do problema estudado. Uma representação esquemática das condições de contorno na geometria testada é ilustrada na Figura 11. Os índices mostrados na figura indicam as mesmas condições de contorno mencionadas na seção anterior.

Figura 11 - Geometria do tipo B: simetria na metade axial do anular e condição de não deslizamento na parede da extremidade.

Após as simplificações estabelecidas para o problema estudado com a presença da placa de obstrução parcial do espaço anular, acrescenta-se a seguinte condição de contorno:

$$r = \left[\frac{h - r_e}{\cos(180 - \theta)}\right]: \qquad v_\theta = v_r = v_z = 0, \text{ para } \alpha \le \theta \le \alpha + \varphi$$
(29)

em que

$$\alpha = sen^{-1} \left(\frac{h - r_e}{r_e} \right) e \varphi = \cos^{-1} \left(\frac{r_e - h}{r_e} \right).$$
(30)

Adimensionalizando as condições de contorno de velocidade por Ωr_i e as respectivas coordenadas pela folga do anular livre de obstrução, isto é: $d = r_e - r_i$, tem-se:

$$r^* = r/d = r_i/d$$
: $v^*_{\theta} = \Omega r_i/\Omega r_i = 1 \text{ e } v^*_r = v^*_z = 0.$ (31)

$$r^* = r/d = r_e/d$$
: $v_\theta^* = v_r^* = v_z^* = 0$. (32)

$$z^* = z/d = + L/(2d)$$
: $v^*_{\theta} = v^*_r = v^*_z = 0$. (32)

$$z^* = z/d = 0: \qquad \qquad \frac{\partial v^*_{\theta}}{\partial z^*} = \frac{\partial v^*_r}{\partial z^*} = v^*_z = 0.$$
(33)

$$r^* = r/d = \left[\frac{r_e - h}{\cos(180 - \theta)}\right] / d: \quad v^*_\theta = v^*_r = v^*_z = 0.$$
(34)

2.4.3. Condição tipo C

A condição do tipo C estabelece a hipótese de não deslizamento nas duas paredes das extremidades axiais. As condições de contorno dimensionais aplicadas à geometria do problema estudado livre de obstrução parcial para o caso citado são:

$$r = r_i: \qquad \qquad v_\theta = \Omega r_i \ \mathbf{e} \ v_r = v_z = 0. \tag{35}$$

$$r = r_e: \qquad \qquad v_\theta = v_r = v_z = 0. \tag{36}$$

$$z = +L/2$$
: $v_{\theta} = v_r = v_z = 0$. (37)

$$z = -L/2$$
: $v_{\theta} = v_r = v_z = 0$. (38)

Esse tipo de condição de contorno especificada agrupa as condições de contorno presentes na montagem experimental do problema estudado. Uma representação esquemática das condições de contorno na geometria testada é ilustrada na Figura 12. Os índices mostrados na figura indicam as mesmas condições de contorno mencionadas na Seção 2.4.1.

Figura 12 - Geometria do tipo C: condição de não deslizamento nas duas paredes da extremidade.

2 Modelo matemático

Após as simplificações estabelecidas para o problema estudado com a presença da placa de obstrução parcial do espaço anular, acrescenta-se a seguinte condição de contorno:

$$r = \left[\frac{h - r_e}{\cos(180 - \theta)}\right]: \qquad v_\theta = v_r = v_z = 0, \text{ para } \alpha \le \theta \le \alpha + \varphi$$
(39)

em que

$$\alpha = sen^{-1} \left(\frac{h - r_e}{r_e} \right) \mathbf{e} \ \varphi = \cos^{-1} \left(\frac{r_e - h}{r_e} \right). \tag{40}$$

Adimensionalizando as condições de contorno de velocidade por Ωr_i e as respectivas coordenadas pela folga do anular livre de obstrução, isto é: $d = r_e - r_i$, tem-se:

$$r^* = r/d = r_i/d$$
: $v^*_{\theta} = \Omega r_i/\Omega r_i = 1 \ e \ v^*_r = v^*_z = 0$. (41)

$$r^* = r/d = r_e/d$$
: $v_\theta^* = v_r^* = v_z^* = 0$. (42)

$$z^* = z/d = + L/(2d)$$
: $v^*_{\theta} = v^*_r = v^*_z = 0$. (43)

$$z^* = z/d = -L/(2d)$$
: $v^*_{\theta} = v^*_r = v^*_z = 0$. (44)

$$r^* = r/d = \left\lfloor \frac{r_e - h}{\cos(180 - \theta)} \right\rfloor / d : \quad v^*_{\theta} = v^*_{r} = v^*_{z} = 0.$$
(45)

2.5. Parâmetros adimensionais

Após a adimensionalização das equações de conservação de massa, quantidade de movimento linear e das condições de contorno, verifica-se que os parâmetros adimensionais relevantes ao problema são:

- i. Número de Reynolds rotacional;
- ii. Razão de raios;
- iii. Razão de aspecto;
- iv. Obstrução parcial.

Uma explicação mais detalhada de cada parâmetro adimensional é feita a seguir.

i. Número de Reynolds rotacional (Re):

O número de Reynolds rotacional, dado pela eq. (46), aparece da adimensionalização da equação de conservação da quantidade de movimento linear. Esse adimensional utiliza uma viscosidade característica que é obtida a partir de uma taxa de cisalhamento característica. Essa taxa de cisalhamento característica possibilita um tratamento equivalente para fluidos newtonianos e não newtonianos.

$$\operatorname{Re} = \frac{\rho \Omega r_i d}{\eta(\dot{\gamma}_{ref})} \tag{46}$$

ii. Razão de Raios (ξ):

A razão de raios aparece como um parâmetro adimensional a partir da manipulação matemática das coordenadas adimensionais *r** para os raios dos cilindros interno e externo. A razão de raios estabelece a geometria inicial do problema e é dada pela eq. (47). Esse adimensional é um parâmetro importante na transição de escoamento, pois o número de Taylor crítico é fortemente influenciado por esse parâmetro.

 $\xi = \frac{r_i}{r_e} \tag{47}$

iii. Razão de aspecto (Γ):

A razão de aspecto aparece como parâmetro adimensional a partir da adimensionalização das coordenadas nas paredes dos cilindros. A razão de aspecto utilizada no problema é dada pela Eq. (48) e estabelece a razão entre o comprimento do tubo (L) e a folga do anular (d). A razão de aspecto nesse tipo de problema deve ser suficientemente alta para que os efeitos das extremidades não sejam perceptíveis.

$$\Gamma = \frac{L}{d} \tag{48}$$

iv. Obstrução do anular (χ):

O parâmetro adimensional de obstrução do anular aparece a partir da manipulação matemática da adimensionalização da coordenada radial na parede da placa plana horizontal quando $\theta = 180^{\circ}$. A altura de obstrução parcial, h, é uma variável importante no problema estudado e é responsável pela obstrução do espaço anular. A medida dessa obstrução (χ) é dada pela razão entre a altura do leito de cascalho e a folga no espaço anular, $d = r_e - r_i$, conforme pode ser observado na eq. (49).

$$\chi = \frac{h}{d} \tag{49}$$

2.6. Modelagem computacional

O problema proposto foi resolvido matematicamente via um método numérico. A discretização do domínio foi limitada à capacidade computacional existente no Laboratório de Computação Avançada da PUC durante o período de realização desse trabalho.

2.6.1. Método numérico

As equações de conservação do problema proposto foram resolvidas numericamente através de discretização pelo método dos volumes finitos descrito por Patankar (1980) com a utilização do software comercial Fluent 6.2. Todas as simulações realizadas foram em regime permanente.

O esquema power-law foi utilizado na discretização das equações de quantidade de movimento. O fator de sub-relaxação utilizado para a pressão foi de 0,3 enquanto que da quantidade de movimento linear variou de 0,5 a 0,6 dependendo da geometria. O acoplamento pressão-velocidade foi resolvido utilizando o algoritmo SIMPLE. O resultado algébrico do sistema linear foi resolvido através do método de Gauss-Seidel. Com a discretização, a equação de conservação para uma variável geral ϕ em uma célula central P pode ser escrita conforme a eq (50).

$$a_p \phi_p = \sum_{nb} a_{nb} \phi_{nb} + b_{nb} \tag{50}$$

em que a_p é o coeficiente central e a_{nb} são os coeficientes vizinhos à célula central e b é a contribuição da parte constante S_C do termo de fonte dado por S = $S_C + S_p \phi$. O coeficiente a_p é dado pela eq. (51).

$$a_p = \sum_{nb} a_{nb} + S_p \tag{51}$$

O resíduo do método numérico, R^{ϕ} , é calculado pelo desbalanceamento da eq. (50) para todos os nós da malha, conforme pode ser observado na eq (52).

$$R^{\phi} = \sum_{N} \left| \sum_{nb} a_{nb} \phi_{nb} + b_{nb} - a_{p} \phi_{p} \right|$$
(52)

em que N é o número total de nós da malha.

O resíduo proposto pelo software Fluent é adimensionalizado conforme a eq. (53), visto que é uma forma de cálculo geral para todos os tipos de escoamento.

$$R^{\phi} = \frac{\sum_{N} \left| \sum_{nb} a_{nb} \phi_{nb} + b_{nb} - a_{p} \phi_{p} \right|}{\sum_{N} a_{p} \phi_{p}}$$
(53)

Para a equação de conservação de massa, o resíduo é calculado pela eq. (54).

$$R^{c} = \sum_{N} \left| Taxa \ de \ cria \xi \tilde{a} o \ de \ massa \ na \ c \acute{e} lula \ P \right|$$
(54)

O resíduo adimensionalizado fornecido pelo Fluent é dado pela eq. (55).

$$Rc = \frac{R_{c.it}}{R_{c.5}} \tag{55}$$

em que $R_{c.it}$ é o resíduo da iteração e $R_{c.5}$ é o maior resíduo das cinco primeiras iterações.

O resíduo computacional adimensionalizado configurado para os três componentes de velocidade e para a equação de continuidade foi de 1,0 x 10⁻⁶.

2.6.2. Malha de discretização

O domínio computacional no espaço anular livre de obstrução parcial foi discretizado com uma malha bidimensional no plano *r-z* utilizando a condição do tipo A. Essa malha continha 40 células na coordenada radial e 800 na coordenada axial, espaçadas uniformemente. A malha foi construída no software comercial GAMBIT utilizando elementos estruturados.

A malha construída para discretizar o domínio computacional do espaço anular das geometrias tridimensionais foi uniforme e gerada com elementos octogonais estruturados, utilizando o mesmo software que gerou a malha bidimensional. A malha selecionada foi composta de $1,72 \times 10^6$ volumes, sendo 160 divisões distribuídas azimutalmente, 25 radialmente e 400 axialmente. Para os casos de domínio estendido, condição tipo A, mais 30 células foram inseridas na região estendida ao longo da coordenada axial. No plano *r*- θ o número de células distribuídas radial e tangencialmente foi igual ao do domínio original sem extensão. A Figura 13 mostra o domínio estendido da geometria tridimensional anular com o número de nós em cada coordenada no domínio principal.

A seleção da malha com 1,72 x 10⁶ volumes ocorreu após um teste de malha em que foram comparados os perfis de velocidade axial passando pelo olho de um dos vórtices de Taylor, e a largura dos vórtices. O teste foi realizado com três malhas propostas. As malhas criadas foram concebidas por um número de nós na coordenada azimutal, número de nós na coordenada radial; e número de nós na coordenada axial, respectivamente, conforme a relação a baixo:

Malha I:	160 x 50 x 200: 1,84 x 10 ⁶ volumes;
Malha II:	160 x 25 x 300: 1,32 x 10^6 volumes;
Malha III:	160 x 25 x 400: 1,72 x 10 ⁶ volumes;

Figura 13 – Geometria utilizada na discretização do problema e o número de nós nos eixos principais.

Embora a Malha I possua a maior quantidade de nós, a distribuição dos pontos axialmente ficou comprometida, fazendo com que as características geométricas dos vórtices fossem alteradas em relação à malha III. O mesmo fato acorreu com a malha II. A malha que apresentou o melhor resultado quanto à característica geométrica dos vórtices foi a malha III. A quantidade de nós estabelecida na malha I e na malha III esteve no limite computacional de discretização, dada a alocação de memória RAM dos computadores disponíveis. Essas malhas apresentaram um elevado tempo computacional para atingir a convergência. O tempo para cada simulação inicial, ao utilizar a malha III e um caso newtoniano, foi da ordem de uma semana ao utilizar um Pentium IV com 2,4GHz e 2,0GB de memória RAM. Para os casos não newtonianos, o tempo computacional foi maior ainda. Para as simulações que aproveitavam uma solução convergida para um número de Reynolds diferente, o tempo computacional foi reduzido à metade, caso o regime de escoamento fosse o mesmo.

Os resultados dos testes de malha estão no Apêndice A para consulta e verificação das diferentes larguras de vórtices para cada malha.