Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MODELING AND CONTROL DESIGN OF A TRACKED MOBILE ROBOT FOR SURVEILLANCE TASKS
Autor: PERCY WILIANSON LOVON RAMOS
Colaborador(es): ANTONIO CANDEA LEITE - Orientador
Catalogação: 29/JUN/2020 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48810&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48810&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.48810
Resumo:
In recent years, the latest advances in robotics and its applications have been used to reduce the workload and manpower requirements, improving the environment, health and safety (EHS) conditions, particularly in agricultural production and farming systems. Autonomous robots are part of such technological innovation and Tracked Mobile Robots (TMRs), in particular, have being widely used on agricultural fields around the world, since their tracks provide a large contact area on the wet soils and irregular terrains avoiding the robot to get stuck. In this work, we address the modeling and control design of tracked mobile robots (TMRs) able to perform surveillance tasks in agricultural fields. The proposed methodology considers that the kinematic models of the TMRs are both uncertain due to the inherent slippage between the tracks and the terrain. To deal with the modeling uncertainties and external disturbances, we use the sliding mode control (SMC) approach. A Mobile User Interface (MUI) based on Android operating system. is developed to control the TMR manually or autonomously. By using the MUI the human operator can visualize the information captured from external and internal sensors. Numerical simulations in MATLAB are carried out to verify the performance of the controller as well as validate the robot kinematic model under different configurations.
Descrição: Arquivo:   
COVER, DEDICATION, THANKS, RESUMO, ABSTRACT, SUMARY, LISTS, EPIGRAPH PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
BIBLIOGRAPHY AND APPENDICES PDF