
2
Modeling and Classical Control Design

In this chapter, the problem of the modeling and classical control
design of the Tracked Mobile Robot is aimed. Using a kinematic model and
considering the slipping factor, two new theorems are introduced in order
to control the TMR using the Cartesian approach and Polar coordinates
approach. Additionally, some numerical simulations are presented in order to
validate the proposed controllers.

2.1
Description of a Tracked Mobile Robot

The main feature and advantage of the Tracked Mobile Robot is the large
contact area with the soil, giving it high mobility in unstructured environments,
although it comes with a complex kinematic model compared to others mobile
robots such as: unicycle, car-like Ackerman or skid steering. In this section,
firstly we introduce the model of the robot and its features and the main parts
of a TMR, next the kinematic model of the robot will be described.

LEFT

 TRACK

SUPPORTING

WHEELS

ROBOT

 CHASIS

RIGHT

 TRACK

ACTUATED

WHEELS

Figure 2.1: Tracked Mobile Robot.

The Tracked Mobile Robot used in this work is presented in Figure 2.1.
It has two independent tracks, actuated and non actuated wheels (supported
wheels). In the literature, there are other types such as of TMR: there is a one
with mobile arms generally used to climb stairs, a TMR with a manipulator to
perform task and a TMR with multiple tracks for applications such as pipeline
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inspection. The tracks are also named inner (left) and outer (right) with respect
to the ICR [65].

Tracks are supported by wheels mechanism that transmits the locomo-
tion. Generally in a simple track, one of them is actuated by a motor and the
others support the locomotion as can is illustrated in Figure 2.1.

2.2
Modeling

The process of modeling is in charge of motion prediction in a mobile
robot given a control input. The calculation of the kinematic model is necessary
to perform on board real-time computations for autonomous navigation. This
section will cover the kinematic model formulation of the Tracked Mobile
Robot.

2.2.1
Kinematic Modeling

Tracked Mobile Robots have similar locomotion to the skid-steering
mechanisms, increasing the probability of slippage, covering this aspect the
kinematic model formulation can be done using some ideas of the skid steering
and considering the slippage as a time-variant variable [63]. Two assumptions
are necessary (i) the robot performs locally planar motions, (ii) angular velocity
of the robot is relatively small.
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ICR

Figure 2.2: Tracked Mobile Robot Kinematic Model.

In Figure 2.2, the scheme for the Kinematic Model formulation is shown:
Let us define the following coordinates systems: Fr = [~xr ~yr] denotes the robot
frame with origin in the center of mass of the robot (Om), Fw = [~xw ~yw] the
world frame (or the inertial frame). Additionally, any configuration of position
and orientation for the robot can be expressed as q = [ x y θ ]T relative to the
inertial frame Fw.

In order to transform one point or configuration in the robot frame Fr
to the world frame Fw, it is necessary a rotation matrix such as:

Rr
w =


cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 , (2-1)

where θ is the orientation of the robot, with respect the inertial frame (Fw) as
can be seen in Figure 2.2.

The motion of the robot is guided by two components: linear and angular
velocity (see Figure 2.2): The linear velocity v is composed by the two velocities
on each axis of the frame Fw it means: v = [ vx vy ]T = [ ẋ ẏ ]T , the other
component is the angular velocity ω = θ̇.

According to the Figure 2.2, ICR is the Instantaneous Center of Rotation
(ICR), it is worth noting that the slipping occurs in the vy and because of this
the center of mass of the robot (Om) shifts by the distance d to a new center
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of mass O′. The angle α is between the line that connects the original center
of mass Om and I, and the perpendicular from I to the axis xr of the robot’s
frame Fr (See Figure 2.2).

In robot frame Fr a suitable kinematic model for a TMR is:


ẋr

ẏr

θ̇r

 =



r

2
r

2

−rd
b

rd

b

−r
b

r

b



φ̇L
φ̇R

 , (2-2)

where b is the distance between the two tracks; r is the radius of the actuated
wheels; φ̇L and φ̇R are the angular velocities on each track.

Now, using the transformation in equation (2-2), the kinematic model of
Tracked Mobile Robot in the Inertial frame Fw is given by:

ẋ

ẏ

θ̇

 =


cos θ d sin θ
sin θ −d cos θ

0 1


v
ω

 , (2-3)

where d is the slippage coefficient for the TMR, and v is the linear velocity
and ω is the angular velocity.

Equation (2-3) can be rewritten as q̇ = G(q)V , V can be expressed in
terms of the individual velocity of each track φ̇L and φ̇R:

V =
v
ω

 =


rφ̇L + rφ̇R

2

−rφ̇L + rφ̇R
b

 . (2-4)

By defining u = [ φ̇L φ̇R ]T as the real control input on each track, and
can be used to control V based on the relationship V = T u:

V = r


1
2

1
2

−1
b

1
b


φ̇L
φ̇R

 . (2-5)

The relationship u = T−1 V from equation (2-5) is given by:

ωL
ωR

 = T−1

v
ω

 = 1
rb2


1 − b2

1 b

2


v
ω

 . (2-6)
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Since transformation T is always non-singular, it can be observed that
equation (2-2) is the kinematic model of the Tracked Mobile Robot.

Notice that velocity of slipping ẏ = −ω d (see equations (2-2) and (2-4)),
is not integrable, so the non-holonomic constraint [63] can be obtained as:

[
sin θ − cos θ d

] 
ẋ

ẏ

θ̇

 = Aq̇ = 0 . (2-7)

In order to define the slipping coefficient we used the relationship [63]:

d = kω2 . (2-8)

This equation is based on the soil parameter (k) and the angular velocity (ω)
that affects the centrifugal forces.

Figure 2.3: Regulation task.

2.3
Regulation Control

Regulation is the process of moving a Tracked Mobile Robot from current
configuration q = [ x y θ ]T to a desired configuration qd = [ xd yd θd ]T. This
task can be seen in Figure 2.3, in which the TMR is going from current frame
Fr = [ ~xr ~yr ]T to the desired frame Fd = [ ~xd ~yd ]T, additionally in this figure
the inertial frame Fw = [ ~xw ~yw ]T can be observed as a reference.
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2.3.1
Cartesian Coordinates based Controller

In this section, the formulation process of a new theorem in order to
control the TMR in regulation task is described. This initial approach to deal
with the regulation control design, is addressing the problem partially, where
the regulation task consists of driving the TMR to a desired configuration
qd = [ xd yd θd ]T without considering the final orientation θd, this approach is
called Cartesian regulation [2].

This approach can be useful for a number of practical tasks, such as
surveillance in agricultural fields in which the TMR has to visit a sequence of
well-known Cartesian positions (or checkpoints) repetitively in order to patrol
the crop area, to perceive the characteristics of the environment using its on-
board sensors. In the surveillance task, the final orientation of the TMR is not
a strict requirement.

2.3.1.1
Control Design

In order to design a suitable controller to perform the regulation task,
the key idea is to define the goal or the desired Cartesian configuration as
qdc = [ xd yd ]T as it can be seen in Figure 2.3. Now, the control strategy
consists in moving the mobile robot from a initial configuration qc=[ x y ]T to
the desired configuration qdc in finite time. Here, without loss of generality, we
assume that the goal qdc can be defined such as:

qdc =[ 0 0 ]T . (2-9)

Then, the control objective is simply described as:

qc → qdc , ec = qdc − qc → 0 , (2-10)

where ec∈R3 is the Cartesian error given by:

ec =
 ex

ey

 = −
 x

y

 . (2-11)

Given the desired configuration qdc and the error ec, it is possible propose a
Theorem that ensures that the error goes to zero, as well the TMR reaches the
desired configuration qdc .

Theorem 2.1 (Cartesian Controller for Tracked Mobile Robots)
Consider the kinematic model for the Tracked Mobile Robot (2-3) and the
assumptions mentioned in section 2.2.1. Assume the desired configuration qdc
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is norm-bounded. The following Cartesian control laws:

v = k1 (ex cos θ + ey sin θ) and

ω = k2 (ex sin θ − ey cos θ) ,
(2-12)

ensure the stabilization of the Cartesian error (ex, ey) to zero, where k1>0 and
k2 > 0 are control gains, v ∈R is the linear velocity and ω ∈R is the angular
velocity.

In this theorem is verified that the Cartesian controller for a unicycle model
defined in [2] can be applied to TMR. Additionally, Theorem 2.1 defines a
Cartesian controller, that is able to control the two coordinates x and y,
ensuring that the error in those coordinates will go to zero. This approach
can be used when a TMR has to reach different goal point without regarding
the orientation, in task such as monitoring, surveillance, surveying.
Proof. For proof, please see the Appendix A.1. � .

2.3.1.2
Verification

In this section, different tests will be presented to verify the performance
of the Cartesian controller, the soil parameter k will be vary, then the controller
gains k1 and k2, different initial positions will be used and finally the kinematic
model will have some uncertainties.

Table 2.1: Initial configurations for TMR.

Initial
Configuration

x(m) y (m) θ (rad)

C1 1.5 1.5 π
2

C2 -1.5 1.5 π
2

C3 -1.5 -1.5 π
2

C4 1.5 -1.5 π
2

As was previously explained, regulation task is driving the robot from any
configuration qc to qdc =

[
0 0

]T
. Then, in order to verify the regulation task,

the controller parameters are modified and show the behavior of the TMR,
then the different initial configurations are used for the initial configuration of
the robot as are shown in Table 2.1.

First Test Theorem 2.1 shows the control law for regulation of the
Tracked Mobile Robot using Cartesian approach, this controller drives the
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TMR to any configuration in the inertial frame, the kinematic model (2-3)
has a factor to indicate the slippage d (2-8), in this test it will be studied the
behavior of the controller in front of the variation of the value of k.

Table 2.2: Different configurations on slippage gain of the TMR

Configuration k

C1 0.01
C2 0.1
C3 0.5
C4 1.0

In this simulation, the parameter k in equation (2-8) will vary according
to the Table 2.2 and the robot will go from the same initial configuration
q0 =

[
1.5 1.5 π

2

]T
.

0 10 20 30 40 50

0

0.5

1

1.5

0 10 20 30 40 50

-1.5

-1

-0.5

0

0 10 20 30 40 50

0

0.5

1

1.5

0 10 20 30 40 50

-1.5

-1

-0.5

0

0 10 20 30 40 50

-2

-1

0

1

0 10 20 30 40 50

-1

0

1

2

Figure 2.4: Simulation results: (a) robot position in the x-axis over time; (b)
robot position in the y-axis over time. Legend: C1 (−), C2 (−.), C3 (−−), C4
(. .).

As a result of the simulation, in Figure 2.4 can be observed the position
and error of the different coordinates of the TMR q = [ x y θ ]T. It can be seen
that there are no major changes in the results of the final robot position.
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Figure 2.5: Simulation results: (a) robot trajectories in the xy plane; (b) robot
orientation θ over time; (c) linear velocity v over time; (d) angular velocity ω
over time. Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

In Figure 2.5, it is observed that there are different results in the variation
of the parameters: in the 2.5 (a) can be seen the trajectories generated for the
robot, can be seen as the parameter k is bigger the cureve trajectory is more
noticeable . The Figure 2.5 (b) shows the behavior of the slip parameter it can
be seen the variation of the parameter k influence directly, in Figure 2.5 (c),
(d) it is shown the control inputs, they converge to zero.

As a conclusion can be observed that the variation of the parameter k
has influence in the trajectory and the slip parameter, having major resistance
to reach the goal, describing a curve trajectory as the factor k is bigger. In the
other figures can be seen that there is no major variation.

Second Test Theorem 2.1 shows the controller the Tracked Mobile
Robot in Cartesian approach, it has two different control gains k1 and k2,
that are going to be vary in the test.
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Table 2.3: Different parameters on gain controllers of Cartesian Controller

Configuration k1 k2

C1 0.5 0.5
C2 0.5 1.0
C3 1.0 1.5
C4 1.5 1.5

In this simulation, the parameters in the control law (2-12) k1 and k2

will vary according to the Table 2.3 and the robot will go from the same initial
configuration q0 =

[
1.5 1.5 π

2

]T
.
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Figure 2.6: Simulation results: (a) robot position in the x-axis over time; (b)
robot position in the y-axis over time. Legend: C1 (−), C2 (−.), C3 (−−), C4
(. .).

Figure 2.6, it can be observed the position and error of the different
coordinates of the TMR q = [ x y θ ]T. Notice that as minor the parameters
are, the robot reaches the desired configuration taking more time. On the other
hand, when the parameters of the controller are bigger, the robot coordinates
will reach the desired configuration faster 2.6 (a) , (b) . It can be remark that
the final orientation is not the objective of this controller.
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Figure 2.7: Simulation results: (a) robot trajectories in the xy plane; (b) robot
orientation θ over time; (c) linear velocity v over time; (d) angular velocity ω
over time. Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

In Figure 2.7, it is observed that there are different results in the variation
of the parameters: in the 2.7 (a) can be seen the trajectories generated for the
robot, the robot will reach the desired configuration but describing different
trajectories. The Figure 2.7 (b) shows the behavior of the slip parameter it can
be seen that there is no significant variation, in Figure 2.7 (c), (d) it is shown
the control inputs, they converge to zero.

As a conclusion we can observe that increasing the parameters will cause
that the trajectory be curved, but in the other parameters such as velocities
and slip factor there is a no relevant variation.

Third Test In the third test, four different initial configurations of the
Tracked Mobile Robot are considered, according the to the Table 2.1. The
controller parameters used were k1 = 0.5 and k2 = 0.5
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Figure 2.8: Simulation results: (a) robot position in the x-axis over time; (b)
robot position in the y-axis over time. Legend: C1 (−), C2 (−.), C3 (−−), C4
(. .).

Figure 2.8 shows the behavior of the position and error of the different
coordinates of the TMR q = [ x y θ ]T, it can be observed that the coordinates
reach the desired configuration and the error is close to zero.
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Figure 2.9: Simulation results: (a) robot trajectories in the xy plane; (b) robot
orientation θ over time; (c) linear velocity v over time; (d) angular velocity ω
over time. Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

In Figure 2.9 (a) the robot trajectories can be observed: the robot
reaches the desired configuration, although, at the end of the trajectory the
configuration it follows a little circular trajectory. Figure 2.9 (b) shows the
slip parameter as the robot describes a curved trajectory the slip parameter
increments. In Figure 2.7(c) (d) is shown the control inputs, the linear velocity
converges to zero as was mentioned in Theorem 2.1.

As a conclusion, can be observed that the robot reaches the desired
configuration starting at any quadrant, additionally the coordinates x and
y are reached, about the orientation can be said that the controller is not
capable to control it.

2.3.2
Polar Coordinates based controller

This section describes a polar coordinates approach for the control design
of Tracked Mobile Robot, as the formulation of a theorem that ensures the
stabilization (regulation) of the TMR to the origin based on the existing
approach [70] using the kinematic model described in equation (2-3).

A transformation to polar coordinates approach is applied in the kine-
matic model in equation (2-3), then a controller is proposed and, finally, a
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linearization is applied in order to obtain the stability analysis.

2.3.2.1
Control Design

As it was mentioned before, the regulation problem consists of going from
a determined configuration q to a desired configuration qd. Now defining the
desired qd = [ xd yd θd ]T, the problem reduces to going from q = [ x y θ ]T to
the goal.

Now, without loss of generality, the qd is defined such as:

qd =


0
0
0

 . (2-13)

Then, Cartesian error is defined as :

ep = q − qd ,

ep = −


x

y

θ

 . (2-14)

A transformation from Cartesian coordinates q = [ x y θ ]T to polar coordi-
nates p = [ ρ α β ]T is given by [70]:

ρ =
√
x2 + y2 ,

α = −θ − atan2(y, x) ,

β = θ − α.

(2-15)
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Figure 2.10: Polar Coordinates Definition.

These polar coordinates mentioned in equation (2-15), can be observed
in the Figure 2.10, in which the inertial, robot Fr and desired frame Fd are
showed. There are also the distance ρ is shown, and the angles α and β.

It is necessary to define a new Kinematic model based on the definitions
of polar coordinates, it means find the vector of ṗ = [ ρ̇ α̇ β̇ ]T. Firstly, we find
ρ̇ deriving with respect to time using the equation (2-15):

ρ̇ = 1
ρ

(xẋ+ yẏ) .

Now, replacing the kinematic model described in the equation (2-3) in the
above equation:

ρ̇ = 1
ρ

(x (v cos θ + dω sin θ) + y (v sin θ − dω cos θ)) ,

= 1
ρ

(v (x cos θ + y sin θ) + ωd (x sin θ − y cos θ)) .

From the polar coordinates definition in (2-15) and Figure 2.10, it is known
that x = ρ cos(θ + α) and y = ρ sin(θ + α), then:

ρ̇ = v

ρ
(ρ cos(θ + α) cos θ + ρ sin(θ + α) sin θ) +

ωd

ρ
(ρ cos(θ + α) sin θ − ρ sin(θ + α) cos θ) ,

finally ρ̇ is:
ρ̇ = v cosα− dω sinα . (2-16)
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Now, finding α̇ using the kinematic model in equation (2-3) and the polar
coordinates definition (2-15):

α̇ = −ω +

d

dt

(
y

x

)
1 +

(
y

x

)2

= −ω +
ẏx− yẋ
x2

x2 + y2

x2

= −ω + ẏx− yẋ
ρ2

= −ω + x (v sin θ − dω cos θ)− y (v cos θ + dω sin θ)
ρ2

= −ω + ρ cos(θ + α) (v sin θ − dω cos θ)− ρ sin(θ + α) (v cos θ + dω sin θ)
ρ2

= −ω + v

ρ
[cos(θ + α) sin θ − sin(θ + α) cos θ]−

ωd

ρ
[cos(θ + α) cos θ + sin(θ + α) sin θ]

,

Finally α̇ is:
α̇ = −ω − v sinα

ρ
− dω cosα

ρ
. (2-17)

In order to complete the new kinematic model it is necessary to compute β̇ :

β̇ = −θ̇ − α̇

= −ω + ω + v sinα
ρ

+ dω cosα
ρ

,

And, finally β̇ is found:

β̇ = v sinα
ρ

+ dω cosα
ρ

, (2-18)

Now, joining the equations (2-16), (2-17) and (2-18):
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
ρ̇

α̇

β̇

 =



cosα −d sinα

−1
ρ

sinα −1− d

ω
cosα

1
ρ

sinα d

ρ
cosα



v
ω

 , (2-19)

The equation (2-19) represents the Kinematic Model based on Polar coordi-
nates. This new system is the objective of the controller to be designed in this
section.

Theorem 2.2 (Controller based on Polar Coordinates)
Considering the kinematic modeling for the Tracked Mobile Robot (2-3), the
coordinates transformation (2-15) and only small values for α. Assume the
desired configuration qd∈R3 is norm-bounded. The following control laws:

v = kρρ and

ω = kαα + kββ ,
(2-20)

ensure the stabilization of the posture error eq in equation (2-14) to zero, where
v∈R is the linear velocity and ω∈R is the angular velocity, kρ, kα, kβ are the
control gains that follow the next conditions in order to guarantee the stability:
kρ>0 , kβ<0 and kα − kρ> 0 .

These two control laws presented in the Theorem 2.2 are able to stabilize the
system in equation (2-19) to the origin from any point, regarding the final
orientation.
Proof. For proof, please see the Appendix A.2. �

2.3.2.2
Verification

This section will present the numerical simulations for the polar coordi-
nates controller. Four types of tests were performed as the previous controller.
In the first test, the soil parameter is vary, the second test perform a variation
on the gain controllers. The third test is performed varying the initial config-
urations according to the Table 2.1 and finally the fourth test increments to
the kinematic model radio uncertainties.

First Test In the first test, the soil parameter k is varied according to
the Table 2.2, in order to verify the behavior of the Polar Coordinate in front
of different types of terrains.
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Figure 2.11: Simulation results: (a), (b) robot position and error in the x-axis
over time; (c) (d) robot position and error in the y-axis over time; (e) (f) robot
position and error in the θ-axis over time. Legend: C1 (−), C2 (−.), C3 (−−),
C4 (. .).

In Figure 2.11, the results for the numerical simulations varying the gain
of the terrain are shown. The different coordinates of the robot in real world
q = [ x y θ ]T and its respective error. It can be observed that as smaller is the
parameter k the robot has less movement in the axis y and y which should be
a factor of the slippage, it means that if the robot is moving more it has more
slippage because of the factor k. Can be shown that all the coordinates go to
zero, including the errors.
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Figure 2.12: Simulation results: (a) polar coordinate ρ ; (b) polar coordinate
α ; (b) polar coordinate β Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

In Figure 2.12, the polar coordinates during the time are shown.It can
be observed that all the coordinates are going to zero. The ρ coordinate shows
the robot has more displacement in the axis x and y. In addition can be shown
that the coordinates α and β, coordinates related to the orientation, take more
time to converge.
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Figure 2.13: Simulation results: (a) robot trajectories in the xy plane; (b)
parameter of slip d over time; (c) linear velocity v over time; (d) angular
velocity ω over time. Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

Finally, in Figure 2.13 (a) is shown the different trajectories for the same
goal and the same initial configuration, it can be noted that as the parameter
k describes a more curved trajectory because of the slippage, Figure 2.13 (b)
shows the slipping parameter which has more value as the parameter k is
greater. In Figure 2.13 (c)(d) the linear v and angular velocity are shown, as
can be note the parameter k are greater they control input are bigger.

Table 2.4: Different configurations of gains of Polar Coordinates Controller

Configuration kρ kα kβ

C1 0.150 0.400 -0.075
C2 0.300 0.800 -0.150
C3 0.450 1.200 -0.225
C4 0.600 1.600 -0.300

Second Test In the second test, the parameters in the controller are
varied following the Table 2.4, these parameters will influence in the behavior
of the robot.
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Figure 2.14: Simulation results: (a), (b) robot position and error in the x-axis
over time; (c) (d) robot position and error in the y-axis over time; (e) (f) robot
position and error in the θ-axis over time. Legend: C1 (−), C2 (−.), C3 (−−),
C4 (. .).

In Figure 2.14, the results for the numerical simulations varying the
gain controllers are shown, the different coordinates of the robot in real world
q = [ x y θ ]T and its respective error. It can be observed that minor are the
parameters the robot takes more time to reach the origin desired value.
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Figure 2.15: Simulation results: (a) polar coordinate ρ ; (b) polar coordinate
α ; (b) polar coordinate β Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

In Figure 2.15, the polar coordinates during the time are shown. β
coordinate takes more time to converge than the other polar coordinates, as
effect of the increasing the controller gains.
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Figure 2.16: Simulation results: (a) robot trajectories in the xy plane; (b)
parameter of slip d over time; (c) linear velocity v over time; (d) angular
velocity ω over time. Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

Finally, in Figure 2.16 (a) is shown the different trajectories for the same
goal and the same initial configuration, it can be noted that as the parameters
are greater the robot describes a more curved trajectory, Figure 2.16 (b) shows
the slipping parameter which has not mayor variation. In Figure 2.16 (c)(d)
the linear and angular velocity is shown, as can be note the parameter are
greater they control input are bigger.

Third Test The third test, as were made in the Cartesian controller, is
about varying the initial configuration for the robot, according to the Table
2.1.
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Figure 2.17: Simulation results: (a), (b) robot position and error in the x-axis
over time; (c) (d) robot position and error in the y-axis over time; (e) (f) robot
position and error in the θ-axis over time. Legend: C1 (−), C2 (−.), C3 (−−),
C4 (. .).

In Figure 2.17, the variation in the coordinates and its errors are shown.
It can be observed that the convergence to zero has similar rates for every
initial configuration in the different quadrants.
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Figure 2.18: Simulation results: (a) polar coordinate ρ ; (b) polar coordinate
α ; (b) polar coordinate β Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

Now, in Figure 2.18, the behavior of the polar coordinates are shown. It
can be observed that the polar coordinate for the distance ρ is the fastest to
converge.
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Figure 2.19: Simulation results: (a) robot trajectories in the xy plane; (b)
parameter of slip d over time; (c) linear velocity v over time; (d) angular
velocity ω over time. Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

Figure 2.19 (a) shows the different trajectories described by the robot
in all the initial configurations the TMR reaches the desired configuration at
the origin. Figure 2.19 (b) is the slipping parameter converging to zero, it can
be observed that the robot has more curved trajectory the slipping parameter
is greater because it depends of the angular velocity. Finally, Figure 2.19 (c)
(d) shows the linear and angular velocity, it can be seen that the velocities
converge to zero.

Fourth Test In the fourth test, uncertainties in the radio are increased,
varying the equation (2-5) as follows:

φ̇L
φ̇R

 = 1
r∗b2


1 − b2

1 b

2


v
ω

 , (2-21)

where r∗ is the uncertain radio.
This test also working varying the initial configuration for the robot,

according to the Table 2.1.
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Figure 2.20: Simulation results: (a), (b) robot position and error in the x-axis
over time; (c) (d) robot position and error in the y-axis over time; (e) (f) robot
position and error in the θ-axis over time. Legend: C1 (−), C2 (−.), C3 (−−),
C4 (. .).

In Figure 2.20, the variation in the coordinates and its errors are shown.
It can be observed that in the configuration C4 are troubles to reach the desired
position because of the radio uncertainty.
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Figure 2.21: Simulation results: (a) polar coordinate ρ ; (b) polar coordinate
α ; (b) polar coordinate β Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

Now, in Figure 2.21, the behavior of the polar coordinates are shown, it
can be seen that all the polar coordinates have troubles to reach zero, mainly
the α and β coordinates the unstable.

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA



Chapter 2. Modeling and Classical Control Design 67

-1 0 1

-1

0

1

2

0 20 40

0

0.5

1

0 20 40

0

0.2

0.4

0.6

0.8

0 20 40

-3

-2

-1

0

1

Figure 2.22: Simulation results: (a) robot trajectories in the xy plane; (b)
parameter of slip d over time; (c) linear velocity v over time; (d) angular
velocity ω over time. Legend: C1 (−), C2 (−.), C3 (−−), C4 (. .).

Figure 2.22 (a) shows the different trajectories described by the robot
in all the initial configurations, it has some problems to reach the desired
configuration in C4. Figure 2.22 (b) is the slipping parameter, can be observed
that the configuration C4 has troubles to stabilize the d factor. Finally, Figure
2.22 (c) (d) shows the linear and angular velocity, it can be observed the
problems to stabilize in configuration C4.

As a conclusion it can be mentioned that the controller can stabilize
to the origin ensuring the convergence for all the coordinates, including the
orientation, but when some disturbance are included the controller can not
ensure the stabilization.
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