PUC-RIo- CertificagaoDigital N° 1713256/CA

4
Human Robot Interface

This chapter covers the development of the Human Robot Interface, as
the involvedtools on its elaboration. The Human Robot Interface runs under
the Android Operating System, it uses also the Robot Operating System as

an Interface between the robot and HRI.

4.1
Fundamental Concepts

In this section, the basic concepts are introduced in order to obtain better

understanding of the Human Robot Interface and its operation.

4.1.1
Robot Operating System

The Robot Operating System (ROS) is a framework for programming
Robot software, contains tools, libraries and some standards for the purpose
of simplifying the task of programming a robot [74]. It has the following main
features: [75].

e Pecer to Peer Communication.

e Multilanguage: ROS has the ability to be programmed in several types of
programming languages such as C ++, Python, Java, Perl, JavaScript.

e Tools based: It also has various tools that allow the visualization and
treatment of the sensory information and interaction with the actuators
of the robots.

e Lightweight: ROS can be installed from a simple computer to a embedded

computers.

e Free Software: Tools, packages and ROS are under free software license.

Both the sensory information and the commands for the Robot actuators

are handled by topics, which are channels where the information travels.

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

PUC-RIo- CertificagaoDigital N° 1713256/CA

Chapter 4. Human Robot Interface 86

ROS Master |

4) request data (args)

TG | ket

XML/RPC: foo: 1234 5) reply data
ROSRPC: foo: 3456

Listener

TCP

Figure 4.1: Communication scheme for ROS [74]

According to the Figure 4.1, there is a ROS Master which is the one that
handles the information, every time that a process needs to get information
from a topic, the ROS Master will take care of to locate the topic. There are
two nodes (which are the fundamental unit of processing in ROS).

The Talker node will be responsible for making sensory information
available (or publishing according to the ROS environment) and the Listener
node will be in charge of requesting the information (or subscribing to ROS
terminology).

In order to understand how the architecture of ROS works, and how
topics and nodes interacts with sensory information works, the example of
the camera will be used. Using the Figure 4.1, the node Talker would be in
charge of loading the camera’s controllers and publishing its information in a
topic such as “foo”. However, if the requirements of our software need to see
the sensory information, we will need a node (Listener) to “subscribe” to the

“foo” topic and obtain the sensory information and present it in some way.

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

PUC-RIo- CertificagaoDigital N° 1713256/CA

Chapter 4. Human Robot Interface 87

Figure 4.2: ROS Architecture

4.1.2
ROS Architecture

The architecture of ROS has 3 different levels whose components are

shown in Figure 4.2, next each level is explained:

1. FileSystem Level:

They are the resources of the ROS at the level of physical storage (hard
disk of the computer), it contains all the types of files that ROS generates,
generally the XML format is used for each file:

(a) Packages
It is the smallest unit of software organization in the ROS, for
example, if we talk about a particular robot and its software in
ROS, the robot will have a package, which can be downloaded from

various internet repositories.

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

PUC-RIo- CertificagaoDigital N° 1713256/CA

Chapter 4.

(b)

Human Robot Interface 88

Manifest

It contains information about each package, such as the author,
email, people in charge of maintenance, organization to which he

belongs, etc.

Stacks

They are collections of several packages, which provide functional-
ity, for example, when it comes to using the Computational Vision

software, the packet collection (Stack) called Vision Openco is used.

StackManifest Contains Metadata about stack in the same way as

the Manifest of a package.

Message Type
Description of messages, is saved mypackage/msg/MyMessage Type.msg,

defines the data structures for messages sent in ROS. ROS contains
primitive message types, however, when the application that we
are developing requires, then is necessary to create new types of

messages.

Service Types

Description of Services, it is saved mypackage/srv/MyService Type.sro,
it defines the data structures for requests and the answers in the
services of ROS. When we need an immediate information without
needing to use Topics, Services for the request/response communi-

cation is used.

2. Computation and Graph Level

It defines the communication between ROS processes, it contains the

programs generated by the ROS user.

(a)

()

Nodes
Processes where computation is done, the ROS is made to be
modular, each module can make a part of a whole, for example, the

node (module or program) in charge of managing the movement of
the wheels of a Mobile Robot.

Master
As detailed in the Figure 4.1 provides the name registry and

communicates to all the rest of the level Computation and Graph
Level.

Parameter Server

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

PUC-RIo- CertificagaoDigital N° 1713256/CA

Chapter 4.

Human Robot Interface 89

It allows data to be stored in a data center, is a part of the master,

and contains global variables.

Messages

They establish the communication between nodes, it is a data
structure of typed fields, it contains primitive data (integer, floating
point, boolean). Messages can include arbitrarily nested structures

and arrays

Topics

When a node is sending data, it is publishing in a topic, when it is
receiving data it is subscribed to a topic, they are like communica-
tion buses in which the messages travel.

Services

A node offers a service under a name and a client uses that service
by sending request messages and waiting for a response.

Bags

Format to save and retrieve messages. For example, when data from

an experiment is collected and is required to reproduce the data

again in the laboratory, these files are used.

3. Community Level

(a)

Distributions

They are collections of Stacks which are placed in repositories, each
of these distributions are released every year, additionally they
are versions of ROS. Currently (2019) the distribution is Melodic

Morenia.

Repositories

Different institutions can develop packages or stacks and launch
their own versions for their own robots, this software under the
Free Software policy is shared in open repositories so that the whole

community can use it.

Ros-Wiki

It is a web page where the great part of the ROS documentation
is located, it contains tutorials, anyone can contribute with this
documentation.

Mailing List

ROS has an official list of stacks developers where possible bugs are

written, next versions, job announcements, etc.

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

PUC-RIo- CertificagaoDigital N° 1713256/CA

Chapter 4. Human Robot Interface 90

I f
' ROBOT | | TABLET |
| Run ROS | I Run Android [
Publish Sensor ! Wait Sensor I
Information ! i Information |
; Wait motor command : : Send Commands :

Show Intrude Alert

Sensor
S; rlsor Data
ata
—>| | SERVER !

Actuator) Run ROS : Actuator
Commands i RunRosjava | Commands
| Subscribe Topics I
| Publishin Topics
| Navigation Task 0

Figure 4.3: System Overview

4.1.3
RosJava

Rosjava provides a client library for ROS communication in java and has
the access of all the tools from ROS. Rosjava implements native messages for
the ROS and implements a tool to build custom messages as services.

In this work the core communication system is build in java, then,
as a consequence, it becomes a requirement of using the same language
programming as interface between the Robot and the interface (see Figure
4.3).

4.2
System Overview

In the elaboration of the MUI, we use Robot Operating System (ROS)
[75] as a robotic framework, this is embedded in the robot and facilitates the

communication with the other components in the system.

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

PUC-RIo- CertificagaoDigital N° 1713256/CA

Chapter 4. Human Robot Interface 91

In order to communicate the robot and the smartphone interface, we used
the communication scheme showed in [54], which includes a wireless network
where each component (tablet, server, robot) are connected.

Different components were used as we can see in Figure 4.3, First on the
left hand we have the robot that is provided by sensors and actuator, that is
published in ROS. Next, this sensor information is sent to a server that plays
the role of central of surveillance monitoring, it receives the sensor information,
and finally, the server sends to the Android Client (Tablet) on the right side.

4.3
Server

The server, as was mentioned in the previous section plays the role of
central of surveillance monitoring, so the server will run ROS and Rosjava
which is a ROS client library for Java programming language, it allows an effi-
cient communication with ROS without losing the main features of Java such
as object-oriented, distributed, multi-threaded. The server performs different

tasks: Publish Sensor Information, Receive Commands and Navigation.

4.3.1
Publish Sensor Information

As was mention before, ROS is being used. In this framework exists a
concept Topic which always contains sensor information or waits for actuators
commands, they are like pipes were always information is running. In order
to communicate the topics with RosJava, we can use nodes (programs), there
are two forms to program a node: first, the node that consumes information
called the subscriber and the node that puts information into a topic called
the publisher.

Then, the sensor information arrives at the server, and this information
is published as a ROS topic, so every sensor information has its corresponding
topic.

Now, having the Sensor Information available, it should be transmitted
to the smartphone interface. This process is made by using the Rosjava library
first, it obtains the information making a subscriber node, the next step is to
send this information to the interface for this objective, we send it using the
SocketClient library of Java. Is good to remark that the Interface will perform

a SocketServer that will wait for the connection of this node.

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

PUC-RIo- CertificagaoDigital N° 1713256/CA

Chapter 4. Human Robot Interface 92

4.3.2
Receive Commands

As we can see in the Figure 4.3, the interface (Tablet) will send commands
to the robot, so the server must be prepared to perform these commands.

In the process of moving the surveillance robot, the first step should be
to program a node publisher, this node will send the received commands (from
the mobile interface) to the robot, the next step is to receive the commands
from the interface to make it In this task we execute a SocketServer from the
Java Socket Library, this socket will wait for a connection from the interface

and will publish the commands received in the corresponding topic.

4.4
Tablet

The tablet is the interface of Smartphone compatible with Android, it is
built with Android Studio IDE because it also allows the use of Java features.

In this interface used to teleoperate the robot, according to the review
of the state of the art, it was observed that some interfaces present the
sensor information and the separate teleoperation interface [47] or only have a
teleoperation interface (only to move motors) [53].

Given this in our teleoperation interface, it will have different functions,
such as receiving information from the sensor and send commands to the robot,

performs two different modes, autonomous and manual.

CONTROL MODULE SENSOR MODULE

Control Type Odometry
@® Autonomous X y Angle
O Manual

Camera

SECURITY MODULE COMUNICATION MODULE
Current Gate Status Baudrate Bandwidth
Destiny Ip Server

Last State

Figure 4.4: Tablet Interface

For this the interface will implement buttons for robot movement, as

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

PUC-RIo- CertificagaoDigital N° 1713256/CA

Chapter 4. Human Robot Interface 93

shown in the Figure 4.4, also will show the sensory information such as camera,

odometry and communication status.

4.4.1
Receive Sensor Information

As we mentioned in section 4.3.1 the server sends sensor information
and suppose that there is a server waiting for communication, this server is
implemented here. In this subsection we will describe how the user can make
a subscriber node but in the Android Platform.

The server is using the same mechanism that section 4.3.2 but we add
another one which is a Multi-threaded feature from Android. This SocketServer
waits for a connection from the server and when it happens, it will show in
different ways as can be seen in Figure 4.4.

Here the sensor information is shown such as Encoders information, line
sensor, camera. Also will show the perception of the Navigation algorithm

whether there is an intruder or not.

4.4.2
Send Commands

Now, as mentioned previously there will be a SocketServer waiting for
commands, now the client that will send these commands is implemented here.
Similar to the previous subsection, we will describe how to implement a node
publisher, but on the Android platform.

The Client that sends commands to the server will be implemented
using the Java SocketClient library, will connect to the server and will publish
information on the actuator’s topics.

Both processes that receive and send information work with the Java
Sockets library, using this library we send a Java object that contains infor-

mation and commands from the sensor.

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

PUC-RIo- CertificagaoDigital N° 1713256/CA

Chapter 4. Human Robot Interface 94

kamayoq_cam

/kamayoq_cam /kamayoq_cam/image_raw

kamayog

7 /kamayog/statusNetwork

/kamayog/ultrasoundFront

Pad

_ /kamayoq/listenerSensor

/kamayog/ultrasoundLeft

-

/serial_node

» /kamayog/ultrasoundRight

/kamayogq/serverActuator

motors

N
b| /motors/subR

/motors/subL

-

Figure 4.5: Nodes in HRI

4.5
Nodes in the HRI

As was mentioned before Robot Operating System (ROS) works with
nodes, to make the teleoperation platform we use several nodes which were
programmed and can be appreciated in Figure 4.5. In this Figure also can
be seen rectangles and ellipses connected with arrows. An ellipse is a node,
a large rectangle is a namespace and a small rectangle is a topic. About
connections, a connection that leaves a node to a topic indicates that the
topic is a publisher that is to say information to the topic for example, a topic
that sends information to the actuators (engines), a connection that leaves a
topic to a node indicates that the topic is a subscriber, it means, a topic that
publishes information, for example sensory information such as the camera.

Next the main nodes used in teleoperation are explained:

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

PUC-RIo- CertificagaoDigital N° 1713256/CA

Chapter 4. Human Robot Interface 95

45.1
serverActuator

This node is the receiver of commands of the human robot interface, that
is, it receives commands from the Tablet and executes them in the robot. That
is the reason that Figure 4.5 shows that the node is directly connected to the

topics of the engines.

4.5.2
listenerSensor

The function of this node is sending the sensory information to the Tablet,
as can be seen in Figure 4.5, to this node comes the information of all topics

of sensory information (for example camera and ultrasound).

DBD
PUC-Rio - Certificação Digital Nº 1713256/CA

