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A
Stability Analysis

In this section, the proof of stability and convergence analysis of the proposed
controllers will be discussed by using the Lyapunov stability theory [2].
Consider the system described by the following ordinary differential equation
ẋ = f(x), where x∈Rn is the error state. By setting f(x)=0 the equilibrium
state is given by x = 0. A continuous scalar function V (x) of the system
state, with continuous first time-derivative, is called a Lyapunov function if
the following properties hold:

(1) V (x)>0 , ∀x 6= 0 ,

(2) V (x)=0 , x = 0 .

(3) V̇ (x)<0 , ∀x 6= 0 ,

(4) V (x)→∞ , ||x|| → 0 .

(A-1)

From the Lyapunov stability paradigm we must select a proper Lyapunov
candidate function V (x) in order to analyze the stability of the error system.
The existence of such a function ensures the global asymptotic stability
property of the equilibrium point x=0.

A.1
Proof of Theorem 2.1

In order to proof the theorem and consequently the stability of the
controller proposed in (2-12), the Lyapunov stability theory is used, in which
it is necessary to find a Lyapunov candidate function which satisfies the first
condition in (A-1), and that its time derivative is always negative definite or
semidefinite negative. Considering the following Lyapunov candidate function:

2V (ex, ey) =
(
e2
x + e2

y

)
. (A-2)

Now in order to proof that the Lyapunov function V follows the second
condition in (A-1) we compute its time derivative as follows:

V̇ (ex, ey) = (exėx + eyėy) . (A-3)
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Taking into consideration the kinematic model of the TMR (2-3) and the error
position in (2-11), we substitute the time derivatives ėx and ėy, as follows:

V̇ (ex, ey) = ex (v cos θ + dω sin θ) + ey (v sin θ − dω cos θ) .

Rewritting the above equation, we obtain:

V̇ (ex, ey) = v (ex cos θ + ey sin θ) + dω (ex sin θ − ey cos θ) .

Replacing the slippage factor d from (2-8) yields:

V̇ (ex, ey) = v (ex cos θ + ey sin θ) + kω3 (ex sin θ − ey cos θ) .

Finally, considering the control laws defined in (2-12), we have:

V̇ (ex, ey) = −k1 (ex cos θ + ey sin θ)2 − kk3
2 (ex sin θ − ey cos θ)4 . (A-4)

Now, we can observe that the time-derivative of V obtained in (A-4) is negative
semi-definite at the origin, V̇ ≤ 0. However, V̇ does not satisfy the condition
3 defined in (A-1). This indicates that V tends to a limit value, V ∈L∞, and
also that the position error (ex, ey) is bounded in norm, that is, ex, ey ∈ L∞
It is straightforward to verify that V̈ is also bounded, V̈ ∈L∞, and thus V̇ is
uniformly continuous. Indeed, we can show that V̈ depends on the combination
of bounded trigonometric functions and double-angle formulae. Then, the
Barbalat’s lemma implies that V̇ tends to zero. Hence, as a consequence, we
conclude that:

lim
t→∞

(ex cos θ + ey sin θ) = 0 , lim
t→∞

(ex sin θ − ey cos θ) = 0 , (A-5)

that is, the projection of the Cartesian error vector (ex, ey) on the sagittal axis
of the TMR tends to vanish. Therefore, the Cartesian error tends to zero when
the TMR is moved from any initial configuration to any desired configuration.

A.2
Proof of Theorem 2.2

In this section the proof of the Theorem 2.2 is performed, as a first step
the linearization of the system (2-19) is determined. In order to linearize the
system next considerations are assumed:

cosα = 1, sinα = α

cos β = 1, sin β = β

ρβ = 0, αβ = 0
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Now, it is necessary redefine the kinematic model in equation 2-19, taking
account the control laws defined in equation 2-20, starting with ρ̇:

ρ̇ = kρρ cosα− (kαα + kββ) d sinα

= kρρ− (kαα + kββ) dα ,

reducing:
ρ̇ = kρρ (A-6)

Next we find, α̇:

α̇ = − (kαα + kββ)− kρρ sinα
ρ

− d (kαα + kββ) cosα
ρ

= − (kαα + kββ)− kρα−
d (kαα + kββ)

ρ
,

simplifying:

α̇ = −α (kα − kρ)− kββ (A-7)

Finally we find β̇:

β̇ = kρρ sinα
ρ

+ d (kαα + kββ) cosα
ρ

= kρα + d (kαα + kββ)
ρ

,

reducing:

β̇ = kρα (A-8)

Now, we can establish a linear system in the form of state space representation
as ẋ = Ax as follows:

ρ̇

α̇

β̇

 =


−kρ 0 0

0 −(kα − kρ) −kβ
0 kρ 0



ρ

α

β

 . (A-9)

Thus, in order to analyze the internal stability of the system, we need to
find the eigenvalues λ for the matrix A and ensure that the real part of all
eigenvalues is negative, Re{λi(A)} < 0 for i = 1, 2, 3. Next, the characteristic
polynomial ∆(λ) = det(λI − A) is given by:

∆(λ) = (λ+ kρ) [λ2 + λ(kα − kρ)− kρkβ ] . (A-10)

Analyzing the characteristic polynomial ∆(λ) and finding its roots, we obtain:
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λ1 = −kρ , λ2 = kβ , λ3 = −(kα − kρ) . (A-11)
Now, in order to satisfy the conditions for stability established by the Routh-
Hurwitz criteria we have:

kρ > 0 , kβ < 0 , kα − kρ > 0 , (A-12)

which are the same condition defined by the Theorem 2.2.

A.3
Proof of Theorem 3.10

In order to proof the theorem, the Lyapunov stability theory is used,
considering the next Lyapunov Function candidate:

V = 1
2
(
z2

1 + z2
2

)
, (A-13)

Deriving V respect time along to the trajectory system 3-20

V̇ = z1u1 + z2u2 , (A-14)

Substituting (3-26) into (A-14):

V̇ = −z2
1 − αz1z2sgn(σ)− z2

2 + αz1z2sgn(σ)

= −
(
z2

1 + z2
2

)
= −2V ≤ 0

(A-15)

From (A-15) can be concluded that the states z1 and z2 converge to
(0, 0, z3). Then it is necessary to warranty the sliding condition σσ̇, first we
find σ̇:

σ̇ = 2ż3 − ż1z2 − z1ż2

= 2 (z2v1 + dv1)− z1v2 − z2v1

= z2v1 − z1v2 + dv1

= −z2z1 − αz2
2sgn(σ) + z2z1 − αz2

1sgn(σ) + dv1

= −α
(
z2

1 + z2
2

)
sgn(σ) + dv1

(A-16)

Then we calculate the sliding condition σ̇σ as follows:

σ̇σ = −αV σsgn(σ) + σv1

= −αV σsgn(σ) + σα (−z1 − αz2sgn(σ))

= −αV σsgn(σ)− σdz1 − αz2ασsgn(σ)

= −αV σsgn(σ)− αz2ασsgn(σ)− σdz1

(A-17)
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Since from (A-15) we can affirm that limt→∞ z1 = 0 and limt→∞ z2 = 0, is it
possible to ensure that σ̇σ = −αV σsgn(σ) < −β|σ|, for β > 0 that is σ = 0
guaranteeing the convergence of z3 to zero , since 2z3 = z1z2.

From (A-15), (A-16) and (A-17) and V is a positive definite function, it
is well known that absolute value of σ decrease and converge to zero in finite
time if V (0) = |σ(0)| and V̇ = σ̇sign(σ), then:∫ ∞

0
V̇ (τ)dτ >

∫ ∞
0

σ̇(τ)sign(σ(τ))dτ (A-18)

Substituting (A-16) in (A-18), implies:

V (0) < 2α
∫ ∞

0
V (τ)dτ

As is known V (0) > |σ(0)|, we have:

2α
∫ ∞

0
V (τ)dτ > |σ(0)| (A-19)

Then, according (A-17) and if equation (A-19) is satisfied, all the trajectories
of the system converge to a slides surface σ = 0 and consequently z1z2 = 2z3

guaranteeing the convergence of z3 to zero.
Finally, substituting the solution of the equation (A-18)

V (t) = V (0)e−2t = 1
2(z1(0)2 + z2(0)2)e−2t

in equation (A-19) and integrating with respect to time, obtaining a condition
for the system be stabilized, that is:

α

2
(
z1(0)2 + z2(0)2

)
> |σ(0)| (A-20)

It is good to remark if the condition (A-20) were an inequality, σ
converges to zero in finite time (asymptotic stability). Then, we conclude that
σ → 0 the initial conditions have to satisfied the equation (A-17), guaranteeing
the local stability of the origin.

Remark 2 If the initial condition is not in the region Υ, can be used any
control law to drive the states to the region defined by equation (3-24). Using a
constant control law [v1 v2]T = [c1 c2]T the states drives to the region Υ. Then
a global feedback control law can be:

[v1 u2]T =

[c1 c2]T , [z1 z2 z3]T 6∈ Υ
(3-26) , [z1 z2 z3]T ∈ Υ.

(A-21)
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B
Chained Form for Unicycle Case

In this appendix, we present the formulation of the chained form system
for the Unicycle Mobile robot, this mobile robot is widely used as its trans-
formation into chain system but it is a lack of information about how the
authors find out the transformation, this appendix will explain step by step
the generation of the chained form system for this model.

In order to start the transformation is necessary define its Kinematic
Model are were defined in equation (B-1).

q̇ = g1v + g2ω

q̇ =


ẋ

ẏ

θ̇

 =


cos θ
sin θ

0

 v +


0
0
1

ω ,
(B-1)

Remark 3 It is worth to remark that the assignment of g1 and g2 plays an
important rule in the chained form system, because they have effects in the
chained form system making it non-viable or viable.

In the case of chained system for Unicycle model there are two possible choices:

1. g1 = [cos θ sin θ 0]T and g2 = [0 0 1]T

2. g1 = [0 0 1]T and g2 = [cos θ sin θ 0]T

For the first choice we have verified that the chained system formulation
is non-viable, because in the formulation of the Step I it is showed that
the generating distributions (∆1,∆2,∆3) are not involutive. Now it is clear
according the equation B-1 the second choice is chosen, next we will continue
with the formulation.

Step I: Defining the distributions distributions:

∆0 = span {g1 , g2 , adg1g2}

∆1 = span {g2 , adg1g2}

∆2 = span {g2}

,
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Finding adg1g2:

adg1g2 = [ g1, g2 ] = ∂g2

∂q
g1(q)− ∂g1

∂q
g2(q)

[ g1, g2 ] =


0 0 − sin θ
0 0 cos θ
0 0 0




0
0
1

 −


0 0 0
0 0 0
0 0 0




cos θ
sin θ

0

 =


− sin θ
cos θ

0


,

Now, building the span distribution:

∆1 = span




0
0
1

 ,


cos θ
sin θ

0

 ,

− sin θ
cos θ

0




∆2 = span




cos θ
sin θ

0

 ,

− sin θ
cos θ

0




∆3 = span




cos θ
sin θ

0


 ,

It is important to check that the distribution is involutive, it is clear that the
∆1 and ∆3 are involutive, now we have to verify with ∆2. For this objective
we need to check if [adg1 , g2] ∈ ∆2, finding [adg1 , g2]:

[ g2, [adg1 , g2] ] =


0 0 − cos θ
0 0 − sin θ
0 0 0




cos θ
sin θ

0

 −


0 0 − sin θ
0 0 cos θ
0 0 0



− sin θ
cos θ

0

 =


0
0
0

 ,

The result vector is in ∆2.
Step II: The functions h1 and h2 are required:

• The function h1 is chosen as h1 = θ , now the dh1 is computed:

dh1 = ∂h1

∂q
=
[
0 0 1

]
,

Now we verify each condition :

– Condition dh1 ·∆1 = 0 for ∆1 = {g2}
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[
0 0 1

] 
cos θ
sin θ

0

 = 0 ,

– Condition dh1 ·∆1 = 0 for ∆1 = {adg1g2}

[
0 0 1

] 
− sin θ
cos θ

0

 = 0 ,

– Condition dh1 · g1 = 1 is verified:

[
0 0 1

] 
0
0
1

 = 1 ,

• The function h2 is chosen as: h2 = x sin θ − y cos θ, now finding dh2:

dh2 = ∂h2

∂q
=
[
sin θ − cos θ (x cos θ + y sin θ)

]
We verify that the condition dh2 ·∆2 = 0 :

[
sin θ − cos θ (x cos θ + y sin θ)

] 
cos θ
sin θ

0

 = 0 ,

Step III: Mapping φ : x→ z by a transformation given by:

z1 = h1 v1 := u1

z2 = Lg1h2 v2 :=
(
L2
g1h2

)
u1 + (Lg2Lg1h2) u2

z3 = h2

,

Having the function h1 we can see that z1 = h1 = θ, next we will calculate
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z2 = Lg1h2 as follows:

z2 = Lg1h2 = ∂h2

∂q
· g1

=
[
sin θ − cos θ (x cos θ + y sin θ)

] 
0
0
1


= x cos θ + y sin θ ,

Having the expression for h2 , we have z3 = h2 = x cos θ− y cos θ, now we look
for the expression v2 =

(
L2
g1h2

)
:

(Lg1 (Lg1h2)) = (Lg1 (x cos θ + y sin θ))

=
[
cos θ sin θ (−x sin θ + y cos θ)

] 
0
0
1


= −x sin θ + y cos θ ,

And we find the other part for the expression of v2:

(Lg2 (Lg1h2)) = (Lg2 (x cos θ + y sin θ))

=
[
cos θ sin θ (−x sin θ + y cos θ)

] 
cos θ
sin θ

0


= 1 ,

The final expression for the mapping is :

z1 = θ v1 = ω

z2 = x cos θ + y cos θ v2 = (−x sin θ + y sin θ)ω + v

z3 = x sin θ − y cos θ

, (B-2)

In order to find the chained form, we derive the states z1, z2, z3 in function of
the time (taking into consideration the kinematic model in equation ) B-1:

ż1 = ω

ż2 = (−x sin θ + y sin θ)ω + v

ż3 = ω(x cos θ + y cos θ)

, (B-3)
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This yields to the chained form system:

ż1 = v1

ż2 = v2

ż3 = z2v1

, (B-4)

It is also clear to see that there is a transformation among the input signal
control in the chained system and the input control in the Kinematic model,

v1 = ω

v2 = (−z3)ω + v
(B-5)

Then going to the matrix form:

v = Tu =
0 1

1 −z3

v
ω

 (B-6)

As can be seen we can express the input controls for the unicycle u in function
of T and v as follows:

u = T−1vv
ω

 =
0 1

1 −z3

−1 v1

v2

 (B-7)
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