Título: | CONTROL STRATEGIES APPLIED TO GROUND VEHICLES HANDLING PROBLEM IN PRE-DEFINED CLOSED TRAJECTORIES | |||||||
Autor: |
FERNANDO HEY |
|||||||
Colaborador(es): |
MARCO ANTONIO MEGGIOLARO - Orientador MAURO SPERANZA NETO - Coorientador |
|||||||
Catalogação: | 09/OUT/2008 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12328&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=12328&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.12328 | |||||||
Resumo: | ||||||||
The use of classic and modern linear control tools (root
locus and output regulation) is presented to determine the
parameters of controllers used to follow a pre-defined
closed path, in a way to approach the vehicle behavior and
human actions when driving a car. The car is represented by
linear models (transfer functions, state-space matrix), but
the relation between the car and the closed path
is non linear. It is verified how the project of a linear
controller deals with the non linear characteristics of the
closed loop. The concepts and tools of linear control
are applied to some kinds of paths in different vehicle
conditions (speed, steering angle limits, etc), and the
results of simulations show the characteristics of the car,
like accelerations, stability and position on the track.
It`s also presented a little introduction to the problem of
determine an optimal trajectory to run a corner,
given the initial and final velocities and initial and
final positions. In this case a very simple model is
considered and the solution is based on open paths analysis.
|
||||||||