Título: | KERNEL BASED SHEPARD`S INTERPOLATION METHOD | ||||||||||||||||||||||||||||||||||||
Autor: |
JOANA BECKER PAULO |
||||||||||||||||||||||||||||||||||||
Colaborador(es): |
HELIO CORTES VIEIRA LOPES - Orientador |
||||||||||||||||||||||||||||||||||||
Catalogação: | 01/JUN/2010 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=15709&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=15709&idi=2 |
||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.15709 | ||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||
Several real problem in computational modeling require function approximations.
In some cases, the function to be evaluated in the computer is very
complex, so it would be nice if this function could be substituted by a simpler
and efficient one. To do so, the function f is sampled in a set of N
pontos {x1, x2, . . . , xN}, where x(i) (is an element of) R(n), and then an estimate for the value of f in any other point is done by an interpolation method. An interpolation
method is any procedure that takes a set of constraints and determines
a nice function that satisfies such conditions. The Shepard interpolation
method originally calculates the estimate of F(x) for some x (is an element of) R(n) as a
weighted mean of the N sampled values of f. The weight for each sample
xi is a function of the negative powers of the euclidian distances between
the point x and xi. Kernels K : R(n) ×R(n) (IN) R are functions that correspond
to an inner product on some Hilbert space F that contains the image of
the points x and z by a function phi (the empty set) : R(n) (IN) F, i.e. k(x, z) =< phi (the empty set) (x), phi (the empty set) (z) >. In practice, the kernels represent implicitly the mapping phi (the empty set), i.e. it is more suitable to defines which kernel to use instead of which function phi (the empty set). This work proposes a simple modification on the Shepard interpolation method that is: to substitute the euclidian distance between the points x and xi by a distance between the image of these two point by phi (the empty set) in the Hilbert space F, which can be computed directly with the kernel k. Several tests show that such simple modification has better results when compared to the original
method.
|
|||||||||||||||||||||||||||||||||||||
|