Título: | THE USE OF SUPPORT VECTOR REGRESSION (SVR) IN ESTIMATING THE BRAZILIAN TERM STRUCTURE OF INTEREST RATES | ||||||||||||||||||||||||||||||||||||||||||||
Autor: |
MARINA SEQUEIROS DIAS |
||||||||||||||||||||||||||||||||||||||||||||
Colaborador(es): |
HELIO CORTES VIEIRA LOPES - Orientador LUCIANO VEREDA OLIVEIRA - Coorientador |
||||||||||||||||||||||||||||||||||||||||||||
Catalogação: | 28/JUN/2007 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=10095&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=10095&idi=2 |
||||||||||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.10095 | ||||||||||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||||||||||
In this dissertation a new method for the prediction of
the Brazilian
Term Structure of Interest Rates - Brazilian ETTJ - known
as Support
Vector Regression is investigated. This is compared with
the traditional
methods used in this set up, such as VAR models (Vector
Autoregressive)
and ECM (Error Correction Models). Besides the interest
rates, some
macroeconomic variables are also used, as it was suggested
in a work from
Evans and Marshall(1998) and verified for brazilian
economy in a work from
Fukuda, Vereda and Lopes (2006), the inclusion of
macroeconomic variables
can improve the prediction of the interest rates in long
term forecasts. The
experiment show some improvements in using SVR in the long
term in
relation to the traditional methods mentioned, acting like
a realy good
predictor of the direction of the interest rates along the
short and long
term forecasts. To make these assertions, we make use of
some tests like the
root mean squared error, mean absolute error, directional
symmetry and
weighted directional symmetry, Correct Up trend and Corret
Down trend
besides Theil U test, which uses the root mean squared
error to verify if
there is some significant improvement between two models.
As there is not
a structured way to choose the free parameters of SVR, a
function in the R
software was used in order to make a grid search over a
supplied parameter
ranges. The analysis of the results demonstrate that SVR
is a promising
technique to prediction of interest rates, suggestions are
also made in order
to get better the choices of the free SVR parameters once
they are powerful
means of regularization and adaptation to the noise in the
data.
|
|||||||||||||||||||||||||||||||||||||||||||||
|