Maxwell Para Simples Indexação

Título
[pt] O USO DE MÁQUINA DE SUPORTE VETORIAL PARA REGRESSÃO (SVR) NA ESTIMAÇÃO DA ESTRUTURA A TERMO DA TAXA DE JUROS DO BRASIL

Título
[en] THE USE OF SUPPORT VECTOR REGRESSION (SVR) IN ESTIMATING THE BRAZILIAN TERM STRUCTURE OF INTEREST RATES

Autor
[pt] MARINA SEQUEIROS DIAS

Vocabulário
[pt] SERIE TEMPORAL

Vocabulário
[pt] MODELOS DE PREVISAO

Vocabulário
[pt] TAXA DE JUROS

Vocabulário
[en] TIME SERIE

Vocabulário
[en] FORECASTING MODELS

Vocabulário
[en] INTEREST RATE

Resumo
[pt] Nessa dissertação um novo método para previsão da Estrutura a Termo da Taxa de Juros Brasileira - ETTJ brasileira - conhecido como Máquina de Suporte Vetorial para Regressão é investigado, comparando-o com os métodos tradicionais, tais como modelos VAR (Vetor Auto- regressivo) e ECM (Modelos de Correção de Erros). Utiliza-se além dos retornos de títulos de renda fixa, algumas variáveis macro-econômicas, que conforme sugerido no artigo de Evans e Marshall (1998) e verificado para economia brasileira no artigo de Fukuda, Vereda e Lopes (2006) melhoram a previsão dos retornos de títulos de renda fixa no longo prazo. O experimento mostra uma melhora considerável do SVR sobre os modelos tradicionais mencionados no longo prazo, atuando ainda como ótimo indicador da direção das taxas em praticamente todos os horizontes de previsão. Para tal avaliação, foram utilizados os critérios de raiz do erro quadrado médio, erro absoluto médio, simetria direcional e simetria direcional ponderada, correta tendência para cima e correta tendência para baixo além do teste U de Theil, que faz uso da raiz do erro quadrado médio para verificar se ocorre uma melhora significativa de um modelo sobre outro. Uma vez que não existe uma maneira estruturada para escolha dos parâmetros livres do SVR, a escolha dos mesmos foi feita através de uma função do software R, que faz uma pesquisa em um domínio retangular fornecido pelo usuário. A análise dos resultados mostra que SVR é uma técnica promissora para previsão dos retornos de títulos de renda fixa, sugerindo-se ainda melhorar as escolhas dos parâmetros livres do SVR uma vez que os mesmos são meios poderosos de regularização e adaptação do ruído aos dados.

Resumo
[en] In this dissertation a new method for the prediction of the Brazilian Term Structure of Interest Rates - Brazilian ETTJ - known as Support Vector Regression is investigated. This is compared with the traditional methods used in this set up, such as VAR models (Vector Autoregressive) and ECM (Error Correction Models). Besides the interest rates, some macroeconomic variables are also used, as it was suggested in a work from Evans and Marshall(1998) and verified for brazilian economy in a work from Fukuda, Vereda and Lopes (2006), the inclusion of macroeconomic variables can improve the prediction of the interest rates in long term forecasts. The experiment show some improvements in using SVR in the long term in relation to the traditional methods mentioned, acting like a realy good predictor of the direction of the interest rates along the short and long term forecasts. To make these assertions, we make use of some tests like the root mean squared error, mean absolute error, directional symmetry and weighted directional symmetry, Correct Up trend and Corret Down trend besides Theil U test, which uses the root mean squared error to verify if there is some significant improvement between two models. As there is not a structured way to choose the free parameters of SVR, a function in the R software was used in order to make a grid search over a supplied parameter ranges. The analysis of the results demonstrate that SVR is a promising technique to prediction of interest rates, suggestions are also made in order to get better the choices of the free SVR parameters once they are powerful means of regularization and adaptation to the noise in the data.

Orientador(es)
HELIO CORTES VIEIRA LOPES

Coorientador(es)
LUCIANO VEREDA OLIVEIRA

Banca
CRISTIANO AUGUSTO COELHO FERNANDES

Banca
HELIO CORTES VIEIRA LOPES

Banca
MARCO ANTONIO GRIVET MATTOSO MAIA

Banca
LUCIANO VEREDA OLIVEIRA

Catalogação
2007-06-28

Apresentação
2007-02-27

Tipo
[pt] TEXTO

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Idioma(s)
PORTUGUÊS

Referência [pt]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10095@1

Referência [en]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10095@2

Referência DOI
https://doi.org/10.17771/PUCRio.acad.10095


Arquivos do conteúdo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF
CAPÍTULO 1 PDF
CAPÍTULO 2 PDF
CAPÍTULO 3 PDF
CAPÍTULO 4 PDF
CAPÍTULO 5 PDF
CAPÍTULO 6 PDF
CAPÍTULO 7 PDF
REFERÊNCIAS BIBLIOGRÁFICAS PDF