Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: STUDY OF FLOW AND HEAT TRANSFER CHARACTERISTICS IN A SWIRLING IMPINGING JET
Autor: JULIANA KUHLMANN ABRANTES
Colaborador(es): LUIS FERNANDO ALZUGUIR AZEVEDO - Orientador
Catalogação: 26/OUT/2005 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7352&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=7352&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.7352
Resumo:
The present work is an experimental study of the characteristics of a swirling impinging air jet. The goals of the study are: to evaluate the influence of the presence of a circumferential velocity component in the distribution of the local heat transfer coefficients, to obtain instantaneous velocity fields in the axisymmetric plane, as well as information about the turbulence characteristics in the flow. During the experiments, the influence of the impingement distance and swirl intensity were investigated. As a preliminary validation of the velocity measurement tecniques, an experimental investigation of an axisymmetric free jet was conducted. The results were compared with literature showing good agreement. The spatial distribution of heat transfer coefficients was evaluated by imposing a constant heat flux condition to the plate and measuring temperature of several points along the radial distance of the plate with thermocouples. Local coefficients could then be estimated. Instantaneous axial and radial velocity fields were obtained with Particle Image Velocimetry (PIV) and tangential velocity profiles (mean and fluctuations) obtained by using Laser Doppler Velocimetry (LDV). The results showed that the flow patterns change significantly when the tangential component is added. For the highest value of Swirl number, strong recirculation zones were observed in the stagnation region.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
CHAPTER 8 PDF    
CHAPTER 9 PDF    
CHAPTER 10 PDF    
REFERENCES AND APPENDICES PDF