

Juliana Kuhlmann Abrantes

Estudo do Escoamento e Transferência de Calor em um Jato Espiralado Incidente

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Luis Fernando Alzuguir Azevedo

Rio de Janeiro Abril de 2005

Juliana Kuhlmann Abrantes

Estudo do Escoamento e Transferência de Calor em um Jato Espiralado Incidente

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Luis Fernando Alzuguir Azevedo Orientador Pontifícia Universidade Católica do Rio de Janeiro

> Angela Ourivio Nieckele Pontifícia Universidade Católica do Rio de Janeiro

> Marcos Sebastião de Paula Gomes Pontifícia Universidade Católica do Rio de Janeiro

> > Aristeu da Silveira Neto Universidade Federal de Uberlândia

> > José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 11 de abril de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Juliana Kuhlmann Abrantes

Graduou-se em Engenharia Mecânica e Engenharia de Produção Mecânica na Pontifícia Universidade Católica do Rio de Janeiro (Rio de Janeiro, Brasil) em 2002.

Ficha Catalográfica

Abrantes, Juliana Kuhlmann

Estudo do escoamento e transferência de calor em um jato espiralado incidente / Juliana Kuhlmann Abrantes ; orientador: Luis Fernando Alzuguir Azevedo. – Rio de Janeiro : PUC-Rio, Departamento de Engenharia Mecânica, 2005.

134 f. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas

 Engenharia mecânica – Teses. 2. Jato espiralado. 3. Turbulência. 4. Velocimetria por imagem de partículas. 5. Velocimetria Laser-Doppler. 6. Número de Nusselt. I. Azevedo, Luiz Fernando Alzuguir. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

Agradecimentos

Ao meu orientador, Professor Luis Fernando A. Azevedo, pela dedicação, paciência e incentivo constante.

Aos professores e funcionários do Departamento de Engenharia Mecânica da PUC-Rio que contribuíram para a realização deste trabalho.

Agradeço também aos Professores membros da banca, pela participação, comentários e sugestões feitas ao trabalho apresentado.

Aos meus pais e a toda a minha família pelo apoio e carinho sempre manifestados.

A todos os amigos do Laboratório de Termociências da PUC-Rio, que contribuíram de diferentes maneiras para o sucesso deste trabalho.

Finalmente, agradeço ao Cnpq e à Faperj pelos auxílios concedidos.

Resumo

Abrantes, Juliana Kuhlmann. **Estudo do Escoamento e Transferência de Calor em um Jato Espiralado Incidente.** Rio de Janeiro, 2005. 134p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho é um estudo experimental das características de um escoamento de ar em forma de jato espiralado, incidindo ortogonalmente sobre uma placa. Os objetivos do estudo são: avaliar a influência da presença de uma componente circunferencial de velocidade na distribuição dos coeficientes locais de troca de calor, obter campos de velocidade instantâneos no plano axissimétrico assim como informações sobre as características da turbulência no escoamento. Durante os experimentos se investigou a influência da distância jato/placa e da intensidade do escoamento espiralado (número de Swirl). Como etapa preliminar, foi conduzido um experimento de jato livre, para validação das técnicas de medição de velocidade utilizadas. Os resultados foram comparados com os da literartura e uma boa concordância foi obtida. A distribuição espacial dos coeficientes de troca de calor foi avaliada impondo-se um fluxo de calor constante na placa e medindo a distribuição radial de temperatura através de diversos termopares. Coeficientes locais puderam então ser estimados. Os campos de velocidades radial e axial instantâneos foram adquiridos experimentalmente através da utilização da técnica de "Particle Image Velocimetry" (PIV) e perfis de velocidade tangencial (média e flutuações) foram obtidos a partir da técnica "Laser Doppler Velocimetry" (LDV). Os resultados mostraram que os padrões de escoamento mudam significativamente quando a componente circunferencial de velocidade é introduzida. Para o valor mais alto do Número de Swirl foram verificadas fortes reversões do escoamento na região de estagnação.

Palavras-chave

Jato Espiralado; Turbulência; Velocimetria por Imagem de Partículas; Velocimetria Laser-Doppler; Número de Nusselt

Abstract

Abrantes, Juliana Kuhlmann. **Study of Flow and Heat Transfer Characteristics in a Swirling Impinging Jet.** Rio de Janeiro, 2005. 134p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The present work is an experimental study of the characteristics of a swirling impinging air jet. The goals of the study are: to evaluate the influence of the presence of a circumferential velocity component in the distribution of the local heat transfer coefficients, to obtain instantaneous velocity fields in the axisymmetric plane, as well as information about the turbulence characteristics in the flow. During the experiments, the influence of the impingement distance and swirl intensity were investigated. As a preliminary validation of the velocity measurement tecniques, an experimental investigation of an axisymmetric free jet was conducted. The results were compared with literature showing good agreement. The spatial distribution of heat transfer coefficients was evaluated by imposing a constant heat flux condition to the plate and measuring temperature of several points along the radial distance of the plate with thermocouples. Local coefficients could then be estimated. Instantaneous axial and radial velocity fields were obtained with "Particle Image Velocimetry" (PIV) and tangential velocity profiles (mean and fluctuations) obtained by using "Laser Doppler Velocimetry" (LDV). The results showed that the flow patterns change significantly when the tangential component is added. For the highest value of Swirl number, strong recirculation zones were observed in the stagnation region.

Keywords

Swirling Jet; Turbulence; Particle Image Velocimetry; Laser-Doppler Velocimetry; Nusselt Number.

Sumário

1 Introdução	17
2 Revisão Bibliográfica	20
3 Descrição dos Experimentos	25
3.1. Câmara de Testes	28
3.2. Seções Geradora e Reguladora de Escoamento Espiralado	28
3.3. Placa e Suporte	32
3.4. Outros Componentes	37
4 Técnicas de Medição do Escoamento	44
4.1. Velocimetria por Imagem de Partículas - PIV	44
4.2. Velocimetria Laser-Doppler – LDV	57
5 Caracterização dos Parâmetros do Experimento	61
5.1. Determinação do Número de Swirl	61
5.2. Determinação do Número de Reynolds	62
6 Procedimento Experimental	63
6.1. Medição com PIV	63
6.2. Medição com LDV	65
6.3. Medidas de Transferência de Calor	66
7 Tratamento dos Dados	68
7.1. Coeficientes de Troca de Calor	68
7.2. Campo de Velocidades	69
8 Resultados para Jato Livre: Validação da Técnica LDV	73

9 Resultados e Discussão	87
9.1. Visão Geral da Estrutura do Escoamento	88
9.2. Efeitos da Estrutura do Escoamento na Transferência de Calor	105
9.3. Apresentação de Perfis de Velocidade e Quantidades Turbulenta	as 108
10 Conclusões	128
Referências Bibliográficas	130

Lista de Figuras

1.1	Representação esquemática de um jato incidindo	
	sobre uma superfície plana	18
2.1	Visualização da superfície atingida pelo jato espiralado [1]	22
2.2	Visualização da região de estagnação do jato espiralado [1]	23
2.3	Padrão de escoamento esperado para a região de estagnação	
	do jato espiralado	23
3.1	Visão geral da seção de testes	26
3.2	Seção de testes em experimento de medição de	
	velocidade com LDV	27
3.3	Seção de testes preparada para experimento de	
	transferência de calor	27
3.4	Detalhe da seção geradora de escoamento espiralado	29
3.5	Montagem da seção geradora de escoamento espiralado	29
3.6	Montagem da seção geradora com cilindro externo	30
3.7	Montagem completa utilizada para a geração do jato espiralado	31
3.8	Acoplamento dos tubos de cobre	31
3.9	Luva centralizadora para os tubos de cobre	32
3.10	Detalhe da placa de vidro durante medição com a técnica	
	"Laser Doppler Velocimetry" (LDV)	33
3.11	Suporte da placa de vidro utilizada nos experimentos	
	de medição do escoamento	33
3.12	Vista esquemática da placa aquecedora utilizada	
	nos experimentos de transferência de calor	35
3.13	Vista superior da placa aquecedora	36
3.14	Vista lateral da placa aquecedora	36
3.15	Furação na placa de celeron para posicionamento	
	dos termopares	37
3.16	Suporte da placa utilizada nos experimentos de	
	transferência de calor	37

3.17	Processo de centralização para os experimentos	
	de transferência de calor	39
3.18	Gerador de Partículas Traçadoras [17]	41
3.19	Detalhe do bocal "Laskin"	41
3.20	Distribuição do tamanho das partículas geradas	42
4.1	Diagrama de sincronismo utilizado na aquisição	
	de imagens com PIV	49
4.2	Regiões base e de busca para correlação cruzada	50
4.3	Posição do pico de correlação máximo	51
4.4	Mapa típico do coeficiente de correlação, R, para	
	correlação cruzada	52
4.5	Função Densidade de Probabilidade do deslocamento de	
	partículas – Efeito de " <i>peak-locking</i> " [4]	55
4.6	Movimento das franjas em um sistema LDV	
	com "frequency shift"	59
4.7	Deslocamento de freqüência para a medição	
	de reversões no escoamento	59
6.1	Típica imagem das partículas em um experimento	
	com PIV para um jato incidente	65
8.1	Variação da velocidade média axial na linha	
	de centro de um jato livre, Re=21000	78
8.2	Perfil de velocidade média na saída do tubo, Re=21000	79
8.3	Perfil médio de velocidade axial para jato livre, Re=21000	80
8.4	Parcela axial de Energia Cinética Turbulenta	
	no jato livre, Re=21000	81
8.5	Parcela radial de Energia Cinética Turbulenta	
	no jato livre, Re=21000	82
8.6	Parcela azimutal de Energia Cinética Turbulenta	
	no jato livre, Re=21000	82
8.7	Tensão cisalhante turbulenta no jato livre, Re=21000	83
8.8	Tensão cisalhante turbulenta: comparação entre dados	
	experimentais diretos e perfil calculado pela equação (8-13)	84
9.1	Campo Médio de Velocidade, Re=21000, H/d=2, S=0	89

9.2	Campos Instantâneos de Velocidade, freqüência	
	de amostragem = 15Hz, Re=21000, H/d=2, S=0	90
9.3	Campo Médio de Velocidade, Re=21000, H/d=2, S=0.3	91
9.4	Campos Instantâneos de Velocidade, freqüência	
	de amostragem = 15Hz, Re=21000, H/d=2, S=0.3	92
9.5	Campo Médio de Velocidade, Re=21000, H/d=2, S=0.5	93
9.6	Campos Instantâneos de Velocidade, freqüência	
	de amostragem = 15Hz, Re=21000, H/d=2, S=0.5	94
9.7	Contornos de Magnitude de Velocidade Média [m/s]	
	com Linhas de Corrente, Re=21000, H/d=2, S=0	95
9.8	Contornos de Magnitude de Velocidade Média [m/s]	
	com Linhas de Corrente, Re=21000, H/d=2, S=0.3	96
9.9	Contornos de Magnitude de Velocidade Média [m/s]	
	com Linhas de Corrente, Re=21000, H/d=2, S=0.5	97
9.10	Contornos de Magnitude de Velocidade Média, $\sqrt{\overline{U}^2 + \overline{V}^2}$, [m/s],	
	Re=21000, H/d=2, S=0	98
9.11	Contornos de Velocidade Axial Turbulenta r.m.s <i>u</i> ' [m/s]	
	Re=21000, H/d=2, S=0	98
9.12	Contornos de Velocidade Radial Turbulenta r.m.s v' [m/s]	
	Re=21000, H/d=2, S=0	99
9.13	Contornos de Magnitude de Velocidade Média,	
	$\sqrt{\overline{U}^2 + \overline{V}^2}$, [m/s], Re=21000, H/d=2, S=0.3	99
9.14	Contornos de Velocidade Axial Turbulenta r.m.s., u' [m/s]	
	Re=21000, H/d=2, S=0.3	100
9.15	Contornos de Velocidade Radial Turbulenta r.m.s., v'[m/s]	
	Re=21000, H/d=2, S=0.3	100
9.16	Contornos de Magnitude de Velocidade Média,	
	$\sqrt{\overline{U}^2 + \overline{v}^2}$, [m/s], Re=21000, H/d=2, S=0.5	101
9.17	Contornos de Velocidade Axial Turbulenta, u ' [m/s]	
	Re=21000, H/d=2, S=0.5	101
9.18	Contornos de Velocidade Radial Turbulenta, v' [m/s]	
	Re=21000, H/d=2, S=0.5	102
9.19	Contornos de Magnitude de Velocidade Média,	

	$\sqrt{\overline{U}^2 + \overline{V}^2}$ [m/s], Re=21000, H/d=6, S=0	102
9.20	Contornos de Velocidade Axial Turbulenta r.m.s., u' [m/s]	
	Re=21000, H/d=6, S=0	103
9.21	Contornos de Velocidade Radial Turbulenta r.m.s., v' [m/s]	
	Re=21000, H/d=6, S=0	103
9.22	Contornos de Magnitude de Velocidade Média, $\sqrt{\overline{\upsilon}^2+\overline{arphi}^2}$, [m/s]	
	Re=21000, H/d=6, S=0.3	103
9.23	Contornos de Velocidade Axial Turbulenta r.m.s., u ' [m/s]	
	Re=21000, H/d=6, S=0.3	104
9.24	Contornos de Velocidade Radial Turbulenta r.m.s., v ' [m/s]	
	Re=21000, H/d=6, S=0.3	104
9.25	Contornos de Magnitude de Velocidade Média, $\sqrt{\overline{U}^2+\overline{V}^2}$, [m/s],	
	Re=21000, H/d=6, S=0.5	104
9.26	Contornos de Velocidade Axial Turbulenta r.m.s., u ' [m/s]	
	Re=21000, H/d=6, S=0.5	105
9.27	Contornos de Velocidade Radial Turbulenta r.m.s., v ' [m/s]	
	Re=21000, H/d=6, S=0.5	105
9.28	Distribuição Radial do Número de Nusselt local Nu	
	Re=21000, H/d=2	106
9.29	Distribuição Radial do Número de Nusselt local Nu	
	Re=21000, H/d=6	107
9.30	Esquema ilustrativo do sistema de coordenadas	
	utilizado para o jato incidente	109
9.31	Perfis de Velocidade Radial Média	
	Re=21000, H/d=2, S=0	110
9.32	Perfis de Velocidade Radial Turbulenta r.m.s.	
	Re=21000, H/d=2, S=0	111
9.33	Perfis de Velocidade Axial Turbulenta r.m.s.	
	Re=21000, H/d=2, S=0	112
9.34	Perfis de Tensão Cisalhante Turbulenta	
	Re=21000, H/d=2, S=0	113
9.35	Variação radial das velocidades turbulentas r.m.s.	
	perto da parede, (y = 0.01d), Re=21000, H/d=2, S=0	114

9.36	Perfis de Velocidade Radial Média	
	Re=21000, H/d=2, S=0.3	114
9.37	Perfis de Velocidade Radial Turbulenta r.m.s.	
	Re=21000, H/d=2, S=0.3	115
9.38	Perfis de Velocidade Axial Turbulenta r.m.s.	
	Re=21000, H/d=2, S=0.3	115
9.39	Variação radial das velocidades turbulentas r.m.s.	
	perto da parede, (y = 0.01d), Re=21000, H/d=2, S=0.3	116
9.40	Perfis de Velocidade Radial Média	
	Re=21000, H/d=2, S=0.5	117
9.41	Perfis de Velocidade Tangencial Média	
	Re=21000, H/d=2, S=0.5	117
9.42	Perfis de Velocidade Radial Turbulenta r.m.s	
	Re=21000, H/d=2, S=0.5	118
9.43	Perfis de Velocidade Axial Turbulenta r.m.s.	
	Re=21000, H/d=2, S=0.5	118
9.44	Perfis de Velocidade Tangencial Turbulenta r.m.s.	
	Re=21000, H/d=2, S=0.5	119
9.45	Variação Radial das velocidades turbulentas r.m.s.	
	perto da parede (y=0.02d), Re=21000, H/d=2, S=0.5	119
9.46	Variação Radial de Energia Cinética Turbulenta k	
	perto da parede (y=0.02d), Re=21000, H/d=2, S=0.5	120
9.47	Perfis de Velocidade Radial Média	
	Re=21000, H/d=6, S=0	121
9.48	Perfis de Velocidade Radial Turbulenta r.m.s.	
	Re=21000, H/d=6, S=0	121
9.49	Perfis de Velocidade Axial Turbulenta r.m.s.	
	Re=21000, H/d=6, S=0	122
9.50	Perfis de Tensão Cisalhante Turbulenta	
	Re=21000, H/d=6, S=0	122
9.51	Variação Radial das Velocidades Turbulentas r.m.s.	
	perto da parede, (y = 0.01d), Re=21000, H/d=6, S=0	123
9.52	Perfis de Velocidade Radial Média	

	Re=21000, H/d=6, S=0.3	123
9.53	Perfis de Velocidade Radial Turbulenta r.m.s.	
	Re=21000, H/d=6, S=0.3	124
9.54	Perfis de Velocidade Axial Turbulenta r.m.s.	
	Re=21000, H/d=6, S=0.3	124
9.55	Variação Radial das Velocidades Turbulentas r.m.s.	
	perto da parede (y=0.02d), Re=21000, H/d=6, S=0.3	125
9.56	Perfis de Velocidade Radial Média	
	Re=21000, H/d=6, S=0.5	125
9.57	Perfis de Velocidade Radial Turbulenta r.m.s.	
	Re=21000, H/d=6, S=0.5	126
9.58	Perfis de Velocidade Axial Turbulenta r.m.s.	
	Re=21000, H/d=6, S=0.5	126
9.59	Variação Radial das Velocidades Turbulentas r.m.s.	
	perto da parede (y=0.02d), Re=21000, H/d=6, S=0.5	127

Lista de Símbolos

- A_S Área superficial da placa [m²]
- *b* Largura da folha de aço inoxidável [mm]
- d Diâmetro do tubo do jato [mm]
- *d*_{diff} Diâmetro limitado por difração [μm]
- d_f Espaçamento entre as franjas óticas do volume de medição
- *d_m* Diâmetro médio do volume de medição com LDV [µm]
- *d_p* Diâmetro das partículas traçadoras [µm]
- d_{τ} Diâmetro das partículas traçadoras na imagem [µm]
- *f*_{sh} Desvio de freqüência utilizado na técnica LDV [Hz]
- G_{φ} Fluxo de quantidade de movimento angular [kg.m²/s²]
- G_x Fluxo de quantidade de movimento axial [kg.m/s²]
- h(r) Coeficiente local de troca de calor na placa [W/m²K]
- H Distância jato-placa [mm]
- I Corrente Elétrica [A]
- k Condutividade térmica do ar [W/m.K]
- L Comprimento da folha de aço inoxidável [mm]
- M_0 Fluxo de quantidade de movimento linear por unidade de Massa [m⁴/s²]
- N Número de ciclos no sinal em medição com LDV
- Nu(r) Número de Nusselt local
- Nustag Número de Nusselt no ponto de estagnação
- *q*" Fluxo de calor por unidade de área [W/m²]
- Q Vazão volumétrica [m³/h]
- r Coordenada radial
- R Raio do tubo do jato [mm]
- Re Número de Reynolds
- S Número de Swirl
- *T(r)* Temperatura local na superfície da placa [K]
- U Velocidade Axial [m/s]

- \overline{U} Velocidade axial média [m/s]
- *U_j* Velocidade Média de saída no tubo [m/s]
- *u* Flutuação de velocidade axial [m/s]
- *u'* Velocidade axial r.m.s., $\sqrt{\frac{1}{u}}$ [m/s]
- V Velocidade Radial [m/s]
- \overline{V} Velocidade radial média [m/s]
- v Flutuação de velocidade radial [m/s]
- v' Velocidade radial r.m.s., $\sqrt{\frac{1}{\nu}}$ [m/s]
- W Velocidade Tangencial [m/s]
- W Velocidade tangencial média [m/s]
- w Flutuação de velocidade tangencial [m/s]
- *w'* Velocidade tangencial r.m.s., $\sqrt{\frac{-2}{w}}$ [m/s]
- x Coordenada vertical (axial) a partir da saída do jato
- y Coordenada vertical (axial) a partir da superfície da placa

Símbolos Gregos

- θ Coordenada circunferencial
- μ Viscosidade dinâmica do ar [kg/m.s]