Título: | A CLOUD BASED REAL-TIME COLLABORATIVE FILTERING ARCHITECTURE FOR SHORT-LIVED VIDEO RECOMMENDATIONS | |||||||
Autor: |
RAFAEL SILVA PEREIRA |
|||||||
Colaborador(es): |
HELIO CORTES VIEIRA LOPES - Orientador |
|||||||
Catalogação: | 16/JAN/2017 | Língua(s): | ENGLISH - UNITED STATES |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28711&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28711&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.28711 | |||||||
Resumo: | ||||||||
This dissertation argues that the combination of collaborative filtering techniques, particularly for item-item recommendations, with emergent cloud computing technology can drastically improve algorithm efficiency, particularly in situations where the number of items and users scales up to several million objects. It introduces a real-time item-item recommendation architecture, which rationalizes the use of resources by exploring on-demand computing. The proposed architecture provides a real-time solution for computing online item similarity, without having to resort to either model simplification or the use of input data sampling. This dissertation also presents a new adaptive model for implicit user feedback for short videos, and describes how this architecture was used in a large scale implementation of a video recommendation system in use by the largest media group in Latin America, presenting results from a real life case study to show that it is possible to greatly reduce recommendation times (and overall financial costs) by using dynamic resource provisioning in the Cloud. It discusses the implementation in detail, in particular the design of cloud based features. Finally, it also presents potential research opportunities that arise from this paradigm shift.
|
||||||||