
 

 

7 Application in Globo.com and Results 

To validate the proposed architecture, it was implemented in a real production 

scenario used for video recommendations on the Globo.com portal [18]. Globo.com 

is the Internet branch of Globo Group, which is the largest media group in Latin 

America, and the leader in the broadcasting media segment for Brazilian Internet 

audiences. As an Internet branch, Globo.com is responsible for supporting all 

companies in the group with their Internet initiatives. One of the most important of 

these is making available online all content produced for the Globo TV and PayTV 

channels. This means that Globo.com needs to produce more than 2000 new videos 

every day, and has more than 4 million videos available for its users. Moreover, this 

content is accessed by millions of unique users daily. 

The integration of the Globo.com video platform (globo.tv) with the pro- 

posed recommendation engine was carried out such that for every video viewed, a 

request was made using the platform’s REST interface stating that a particular user 

had watched a particular video, each identified by a UUID. 

A further point of integration with the recommendation system was developed 

so as to offer users additional content at the end of the exhibition of any given video, 

as depicted by Figure 21. The top portion of the screen shows the last scene of the 

video on the left, and the replay button on the right (depicted as a curved arrow). 

The bottom of the screen contains a strip of video recommendations captioned by a 

small description of its contents.  
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Figure 21 - Recommendations integrated in the player and presented at the end of the 

playback 

 

 
Figure 22 - Recommendations integrated in the web page 

 

In this integration, the platform was subjected to more than 15 million requests 

per day, with 500,000 different items and over 3 million unique users daily. On 

average, more than 1 billion similarity calculations were performed per day, since 

for each piece of feedback, 110 item:item pairs were computed by Layer II with their 

similarity calculated by Layer III. Figure 23 shows the requests made during a ten 

days period by the player to the feedback interface, indicating that a user plays a 

video. Note that the volume of requests changes constantly, and that there are some 

request spikes, in this case, associated with real-time coverage of Brazilian Soccer 

League on the Globo.com website. It is exactly because of such demand fluctuations 

that a cloud computing platform is being used. In the test scenario, one Elastic 

Compute Cloud (EC2) [51] instance can handle all the requests for an average day; 

however, to support these high demand spikes, it was necessary to use up to 4 front 
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end instances, which were managed automatically by the monitoring agents and auto 

scale. 

 
Figure 23 - User feedback requests for a 10 day period starting on Monday 

 

Once received, the feedback (user:item pairs) was stored in Queue I, and then 

processed by Layer II. The auto-scaling algorithm, developed for the monitoring 

agents, was configured to probe the queue size every minute, and to automatically 

start a new instance if the queue size was greater than 1000 pairs. Once started, the 

instances where only terminated when the queue was completely empty. One 

important optimization that could be made concerns the cost management of this 

instance start/stop, process. Since Amazon’s minimum charge is by the hour, it is 

not economical to terminate an instance with less than 1 hour of usage. This control 

could be implemented in the monitoring agents; however, for this test case, it was 

not used. With this configuration, 3 machines on average, were sufficient to store 

feedback and generate item:item pairs in Layer II. Figure 24 illustrates how the 

number of Layer II nodes changes (darker-dashed line - right axis) as the size of 

Queue I varies (lighter line - left axis) throughout a 5 days period. 
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Figure 24 - Variation in number of Layer II nodes according to Queue I size 

 

One important metric, which is directly associated with the real-time issue, is 

the time required to process the feedback and compute similarity pairs, since as the 

number of users and items grows, this time tends to increase, compromising how 

fast the similarity graph is updated. As shown in Figure 25, below, with distributed 

processing using automatic resource provisioning in the Cloud, the time required 

(dashed line – right axis) to process feedback and compute similarity pairs stabilizes 

at a constant value, around 23ms, although the number of unique users (continuous 

line – left axis) is increasing. 

 
Figure 25 - Processing Time in Layer II vs. Total Unique Users 
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Regarding Layer III, the same scaling approach was adopted. Figure 26 

illustrates how the number of Layer III nodes changes (dashed line – right axis) as 

the size of Queue II varies (continuous line – left axis) on average. 

 
Figure 26 - Variation in number of Layer III nodes according to Queue II size 

 

Note that the maximum number of Layer III nodes was limited to 25 nodes, 

because of project cost restrictions on Globo.com. However, this number could 

easily be changed in the agent configuration.  

One important architecture component is the Redis pool, where all the data are 

stored. Since Redis is single processed, it could become a bottleneck as the number 

of instances reading and writing data increases. In order to distribute this load, a 

Master-Slave configuration was used, balancing writes to the Master and reads from 

the Slave.  

This Master-Slave configuration is native on Redis, and one master can have 

multiple slaves. Redis replication is non-blocking on the master side, this means that 

the master will continue to serve queries when one or more slaves perform the first 

synchronization. Replication is also non blocking on the slave side: while the slave 

is performing the first synchronization it can reply to queries using the old version 

of the data set. For synchronization, the master starts a background saving, and 

collects all new commands received that will modify the dataset. When the 
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background saving is complete, the master transfers the database file to the slave, 

which saves it on disk, and then loads it into memory. Then, the master will send to 

the slave all accumulated commands and all new commands received from clients 

that will modify the dataset. This is done as a stream of commands and is in the same 

format of the Redis protocol itself. 

On our implementation, the three Redis roles were isolated on different 

processes, one for each role, to avoid competition between the different layers. In 

this scenario, each Redis instance has a different resource usage profile. The Hits 

Redis, which stores Queue I, can be fully stored in memory, without disk persistence, 

since it should has very fast queue IO, but, this queue must be kept empty most of 

the time. Its memory footprint is also very low, since only user:item pairs are stored, 

and, the number of elements in the queue is limited. 

The Persistence Redis, which stores the items sets and Queue II, has a 

completely different requirement. Since all information on user feedback is stored 

in this instance, it must store the data to disk, in order to recover the recommendation 

input data in case of Redis process failure. However, it should also have high IO 

rates, and thus, this data should be available in memory. As a result, the memory 

footprint is much higher than that of the Hits Redis, since it stores the information 

for all user feedback. 

Finally, the Similarity Redis, which stores the similarity relations, has the 

same needs as the Persistence Redis, however, with a smaller memory requirement. 

One important observation about Redis data persistence on disk is that it 

increases server disk IO, which could slow down the operations due to IO delays, 

and reduce the read and write throughput. In order to avoid this overhead with disk 

IO, one dedicated Slave was set up to perform data persistence. This Slave did not 

receive requests from other server instances, and its only responsibility was to dump 

data to disk. All other Redis servers were configured to use only memory as storage. 

As a result, in the Globo.com case, the Persistence Redis required 25 GB of memory 

to maintain all the data in memory, while the Similarity Redis used 20 GB. Figure 

27 illustrates how the Redis instances are configured in the Persistence Redis Pool.  
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Figure 27 - Persistence Redis pool configuration 

 

Basically, there are two master Redis instances that receive write commands 

from workers. Using Redis client, it is possible to distribute keys in several Redis 

instances using a sharding schema, where keys are uniformly distributed across 

instances to parcel out the load across several processes and machines. Each master 

Redis has two slaves, one dedicated for worker read operations and one dedicated 

for data persistence. Using this configuration, it is possible to scale read operations 

just by adding more read slaves. Furthermore, the data persistence IO operations are 

isolated in one dedicated slave, avoiding concurrency with read and write operations 

that are critical for real time similarity computation. 

Besides the performance evaluation regarding scalability and usage of 

computational resources, another important aspect that was evaluated was the 

performance in terms of the quality of the produced recommendations, using the 

user conversion rate as metric, i.e. once displayed the recommendation, how many 

users actually clicked the recommended content. This is the key metric of efficiency 

of a recommendation system "who watched this video also watched these” [57].  

For evaluation, a scale of five levels of feedback was chosen, using the 

adaptive implicit feedback model described previously. In addition, one type of 

binary feedback was tested, associated with the video. Tests were conducted for 30 

days. The results can be seen in Figure 28. 
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Figure 28 - Conversion rate comparison 

 

As one can see, the generated recommendations from the proposed adaptive 

implicit feedback model obtained a higher conversion rate compared with the 

conversion rates when the binary feedback was used. Considering the average of 30 

days, the conversion of the proposed model was 4.3% higher than the binary 

feedback associated with the video start. Using an offline collaborative filtering 

approach, with a daily batch processing and binary feedback, the conversion rate 

was 14% in average. 

Besides the scalability concerns, it is also important to analyze whether the 

proposed architecture is economically feasible. This cost analysis was carried out on 

the architecture deployed using the AWS Cloud platform. 

For all tests performed, the EC2 large instance type was used to instantiate 

worker nodes, i.e., all servers used in layers I, II, and III. For the Redis pool, which 

is the data repository, EC2 Quadruple Extra Large instances were used, since these 

servers have high memory requirements.  

Furthermore, two ELB load balancers should be created to balance the load of 

the FE server and Redis pool. Amazon AWS also charges for data traffic, however, 

the data transfer costs are not significant compared to instance costs. 
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Lastly, the total cost per month is approximately $9,000, with the details given 

below: 

 

Table 2 - Total monthly cost for Globo.com recommendations deployment 

 

This is the average cost per month to run the proposed real-time collaborative 

filtering architecture to produce recommendations, considering a scenario with 

millions of items, dozens of millions of unique users per month, and more than 500 

million video views (user feedbacks).  This shows that besides being scalable to 

very large datasets, and presents an interesting performance in conversion ratios, 

the proposed architecture also have a very low operating cost, considering the 

volume of data that is being processed, and compared to a more traditional approach 

that uses physical infrastructure.  
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