

7 Application in Globo.com and Results

To validate the proposed architecture, it was implemented in a real production

scenario used for video recommendations on the Globo.com portal [18]. Globo.com

is the Internet branch of Globo Group, which is the largest media group in Latin

America, and the leader in the broadcasting media segment for Brazilian Internet

audiences. As an Internet branch, Globo.com is responsible for supporting all

companies in the group with their Internet initiatives. One of the most important of

these is making available online all content produced for the Globo TV and PayTV

channels. This means that Globo.com needs to produce more than 2000 new videos

every day, and has more than 4 million videos available for its users. Moreover, this

content is accessed by millions of unique users daily.

The integration of the Globo.com video platform (globo.tv) with the pro-

posed recommendation engine was carried out such that for every video viewed, a

request was made using the platform’s REST interface stating that a particular user

had watched a particular video, each identified by a UUID.

A further point of integration with the recommendation system was developed

so as to offer users additional content at the end of the exhibition of any given video,

as depicted by Figure 21. The top portion of the screen shows the last scene of the

video on the left, and the replay button on the right (depicted as a curved arrow).

The bottom of the screen contains a strip of video recommendations captioned by a

small description of its contents.

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

70

Figure 21 - Recommendations integrated in the player and presented at the end of the

playback

Figure 22 - Recommendations integrated in the web page

In this integration, the platform was subjected to more than 15 million requests

per day, with 500,000 different items and over 3 million unique users daily. On

average, more than 1 billion similarity calculations were performed per day, since

for each piece of feedback, 110 item:item pairs were computed by Layer II with their

similarity calculated by Layer III. Figure 23 shows the requests made during a ten

days period by the player to the feedback interface, indicating that a user plays a

video. Note that the volume of requests changes constantly, and that there are some

request spikes, in this case, associated with real-time coverage of Brazilian Soccer

League on the Globo.com website. It is exactly because of such demand fluctuations

that a cloud computing platform is being used. In the test scenario, one Elastic

Compute Cloud (EC2) [51] instance can handle all the requests for an average day;

however, to support these high demand spikes, it was necessary to use up to 4 front

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

71

end instances, which were managed automatically by the monitoring agents and auto

scale.

Figure 23 - User feedback requests for a 10 day period starting on Monday

Once received, the feedback (user:item pairs) was stored in Queue I, and then

processed by Layer II. The auto-scaling algorithm, developed for the monitoring

agents, was configured to probe the queue size every minute, and to automatically

start a new instance if the queue size was greater than 1000 pairs. Once started, the

instances where only terminated when the queue was completely empty. One

important optimization that could be made concerns the cost management of this

instance start/stop, process. Since Amazon’s minimum charge is by the hour, it is

not economical to terminate an instance with less than 1 hour of usage. This control

could be implemented in the monitoring agents; however, for this test case, it was

not used. With this configuration, 3 machines on average, were sufficient to store

feedback and generate item:item pairs in Layer II. Figure 24 illustrates how the

number of Layer II nodes changes (darker-dashed line - right axis) as the size of

Queue I varies (lighter line - left axis) throughout a 5 days period.

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

72

Figure 24 - Variation in number of Layer II nodes according to Queue I size

One important metric, which is directly associated with the real-time issue, is

the time required to process the feedback and compute similarity pairs, since as the

number of users and items grows, this time tends to increase, compromising how

fast the similarity graph is updated. As shown in Figure 25, below, with distributed

processing using automatic resource provisioning in the Cloud, the time required

(dashed line – right axis) to process feedback and compute similarity pairs stabilizes

at a constant value, around 23ms, although the number of unique users (continuous

line – left axis) is increasing.

Figure 25 - Processing Time in Layer II vs. Total Unique Users

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

73

Regarding Layer III, the same scaling approach was adopted. Figure 26

illustrates how the number of Layer III nodes changes (dashed line – right axis) as

the size of Queue II varies (continuous line – left axis) on average.

Figure 26 - Variation in number of Layer III nodes according to Queue II size

Note that the maximum number of Layer III nodes was limited to 25 nodes,

because of project cost restrictions on Globo.com. However, this number could

easily be changed in the agent configuration.

One important architecture component is the Redis pool, where all the data are

stored. Since Redis is single processed, it could become a bottleneck as the number

of instances reading and writing data increases. In order to distribute this load, a

Master-Slave configuration was used, balancing writes to the Master and reads from

the Slave.

This Master-Slave configuration is native on Redis, and one master can have

multiple slaves. Redis replication is non-blocking on the master side, this means that

the master will continue to serve queries when one or more slaves perform the first

synchronization. Replication is also non blocking on the slave side: while the slave

is performing the first synchronization it can reply to queries using the old version

of the data set. For synchronization, the master starts a background saving, and

collects all new commands received that will modify the dataset. When the

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

74

background saving is complete, the master transfers the database file to the slave,

which saves it on disk, and then loads it into memory. Then, the master will send to

the slave all accumulated commands and all new commands received from clients

that will modify the dataset. This is done as a stream of commands and is in the same

format of the Redis protocol itself.

On our implementation, the three Redis roles were isolated on different

processes, one for each role, to avoid competition between the different layers. In

this scenario, each Redis instance has a different resource usage profile. The Hits

Redis, which stores Queue I, can be fully stored in memory, without disk persistence,

since it should has very fast queue IO, but, this queue must be kept empty most of

the time. Its memory footprint is also very low, since only user:item pairs are stored,

and, the number of elements in the queue is limited.

The Persistence Redis, which stores the items sets and Queue II, has a

completely different requirement. Since all information on user feedback is stored

in this instance, it must store the data to disk, in order to recover the recommendation

input data in case of Redis process failure. However, it should also have high IO

rates, and thus, this data should be available in memory. As a result, the memory

footprint is much higher than that of the Hits Redis, since it stores the information

for all user feedback.

Finally, the Similarity Redis, which stores the similarity relations, has the

same needs as the Persistence Redis, however, with a smaller memory requirement.

One important observation about Redis data persistence on disk is that it

increases server disk IO, which could slow down the operations due to IO delays,

and reduce the read and write throughput. In order to avoid this overhead with disk

IO, one dedicated Slave was set up to perform data persistence. This Slave did not

receive requests from other server instances, and its only responsibility was to dump

data to disk. All other Redis servers were configured to use only memory as storage.

As a result, in the Globo.com case, the Persistence Redis required 25 GB of memory

to maintain all the data in memory, while the Similarity Redis used 20 GB. Figure

27 illustrates how the Redis instances are configured in the Persistence Redis Pool.

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

75

Figure 27 - Persistence Redis pool configuration

Basically, there are two master Redis instances that receive write commands

from workers. Using Redis client, it is possible to distribute keys in several Redis

instances using a sharding schema, where keys are uniformly distributed across

instances to parcel out the load across several processes and machines. Each master

Redis has two slaves, one dedicated for worker read operations and one dedicated

for data persistence. Using this configuration, it is possible to scale read operations

just by adding more read slaves. Furthermore, the data persistence IO operations are

isolated in one dedicated slave, avoiding concurrency with read and write operations

that are critical for real time similarity computation.

Besides the performance evaluation regarding scalability and usage of

computational resources, another important aspect that was evaluated was the

performance in terms of the quality of the produced recommendations, using the

user conversion rate as metric, i.e. once displayed the recommendation, how many

users actually clicked the recommended content. This is the key metric of efficiency

of a recommendation system "who watched this video also watched these” [57].

For evaluation, a scale of five levels of feedback was chosen, using the

adaptive implicit feedback model described previously. In addition, one type of

binary feedback was tested, associated with the video. Tests were conducted for 30

days. The results can be seen in Figure 28.

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

76

Figure 28 - Conversion rate comparison

As one can see, the generated recommendations from the proposed adaptive

implicit feedback model obtained a higher conversion rate compared with the

conversion rates when the binary feedback was used. Considering the average of 30

days, the conversion of the proposed model was 4.3% higher than the binary

feedback associated with the video start. Using an offline collaborative filtering

approach, with a daily batch processing and binary feedback, the conversion rate

was 14% in average.

Besides the scalability concerns, it is also important to analyze whether the

proposed architecture is economically feasible. This cost analysis was carried out on

the architecture deployed using the AWS Cloud platform.

For all tests performed, the EC2 large instance type was used to instantiate

worker nodes, i.e., all servers used in layers I, II, and III. For the Redis pool, which

is the data repository, EC2 Quadruple Extra Large instances were used, since these

servers have high memory requirements.

Furthermore, two ELB load balancers should be created to balance the load of

the FE server and Redis pool. Amazon AWS also charges for data traffic, however,

the data transfer costs are not significant compared to instance costs.

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

77

Lastly, the total cost per month is approximately $9,000, with the details given

below:

Table 2 - Total monthly cost for Globo.com recommendations deployment

This is the average cost per month to run the proposed real-time collaborative

filtering architecture to produce recommendations, considering a scenario with

millions of items, dozens of millions of unique users per month, and more than 500

million video views (user feedbacks). This shows that besides being scalable to

very large datasets, and presents an interesting performance in conversion ratios,

the proposed architecture also have a very low operating cost, considering the

volume of data that is being processed, and compared to a more traditional approach

that uses physical infrastructure.

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA

