
 

 

4 A Real-Time Large Scale Collaborative Filtering 
Architecture 

Based on the theoretical model for item-item similarity discussed in the previous 

section, we initially used a feedback matrix F with N columns, where N is the 

number of items, and M rows, where M is the number of unique users who have 

given some kind of feedback about a particular item. As also discussed in the 

previous section, for practical cases such as major content portals like CNN, BBC, 

and so on, there are millions of unique users and items, which would result in a 

matrix with trillions of elements.  

Thus, as also described by Pereira et. al. [70], the first practical restriction in 

using such a model is the data representation. A practical representation requires an 

efficient model, which is feasible since this scenario would have a highly sparse 

matrix, as most users would not provide feedback, even implicit feedback, for many 

of the items. 

The second challenge is associated with the real-time update of the similarity 

graph. In the theoretical model, for each piece of feedback it would be necessary to 

recalculate the cosine between the vectors representing the item associated with the 

feedback and all other items. If, in calculating the cosine, it was necessary to go 

through all the vector dimensions, one would have, at worst, an algorithm with 

O(N2M) time complexity for assembling the entire similarity graph [2] (a 

pseudocode is given in Algorithm 1). However, taking into account that the cosine 

between two vectors is represented by the dot product and magnitude, it is possible 

to obtain in practical terms, an algorithm with O(NM), since most users only provide 

feedback for a very limited number of items [2]. 
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Algorithm 1 - Similarity graph update [2] 

 

One of the simplest kinds of feedback that can be collected is user clicks, i.e., 

if a user takes action to access specific content (item). The mere fact that the user 

accesses an item indicates deliberately, even minimally, his interest in the item, 

which can be considered in a recommendation model. In this case, the engine would 

have binary feedback, representing whether the user accessed a particular item, for 

example, watched a video. A simpler and less expensive alternative for representing 

the same information contained in the feedback matrix in this situation could be 

through sets, where each item comprises a set of indices that represents the users 

who have accessed this item. In this way, the system would only keep the actual 

feedback, since 94% of the feedback matrix elements comprise unknown data [59], 

i.e., the absence of feedback. 

The representation of item vectors based on their feedback set is extremely 

useful in calculating the cosine similarity between items. With this type of binary 

feedback, the calculation of the scalar product necessary to obtain the cosine of the 

vectors can be accomplished through the intersection of the sets representing the 

items. Thus, its value would be equal to the number of existing elements in this 

intersection. Furthermore, the magnitude is the square root of the number of 

elements in the set. Thus, in practical terms, the use of sets to represent the feedback 

matrix reduces the number of operations, since the size of a set tends to be much 
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smaller than the number of unique users in the model, which is the number of item 

vector’s dimension (M). 

To exemplify the use of sets, suppose that there are M = 10 users, and that for 

the items I1 and I2 we have binary feedback vectors as follow: I1 = 

(0,1,0,0,0,0,0,0,1,1) and I2 = (0,1,0,0,1,0,1,0,1,0). So, for these two items their 

corresponding set is given by Set(I1) = {2, 9, 10} and Set(I2) = {2, 5, 7, 9}. The 

elements on these sets are the coordinates where the vectors I1 and I2 have a non-

zero value. In order to calculate the similarity between I1 and I2, we use Equation 1: 

345467849: QR, Q; = ST,SM
ST 	. SM

= ⋕ 0YZ ST ∩0YZ SM

⋕ 0YZ ST 	. ⋕ 0YZ SM 	
= 	 ;

<	. \
, 

where # represents the cardinality. 

Despite the simplification of the data used to represent the feedback, there is 

still the scalability challenge, i.e., how to obtain recommendations quickly and 

efficiently even if the numbers of users and items grow significantly. It is of 

particular interest to ascertain how to leverage the benefits of on-demand computing 

platforms to create a recommendation architecture that can adapt to variations in the 

number of model elements. 

4.1. A multi-layered architecture 

The first step in allowing the adoption of a cloud computing platform to 

address scalability issues is to analyze all steps taken to obtain the similarity between 

items. Basically this is a process where upon receiving information that a user has 

accessed an item, this user must be included in the corresponding item set, and then 

the similarity between this item and others must be recalculated using the algorithm 

described above to update the similarity graph. As the calculation of similarity 

between any two items is independent of the calculation of similarity between other 

pairs of items, this process can be executed concurrently. Therefore, it is possible to 

isolate problem in components to address the scalability issue independently, thus 

creating a multi-layered architecture. With a multi-layered architecture it is possible 

to address the scalability for each layer independently, thus increasing flexibility and 

resource usage efficiency. 

DBD
PUC-Rio - Certificação Digital Nº 1122198/CA



 

 

51 

The use of a multi-layered architecture is also interesting from a software 

engineering perspective, since it allows the flexibility to replace components as 

needed, reuse it individually in different scenarios or under different conditions. It 

also reduces dramatically maintenance and evolution costs, since each layer and/or 

component is responsible for one single task and has one well defined responsibility. 

Finally, a multi-layered approach is extremely interesting from a failure recover 

perspective, since it is easier to identify the point of failure and recover the work 

from that point, once each layer/component has one clear responsibility. 

Figure 10 illustrates the proposed architecture, which will next be described. 

 

 
Figure 10 - Multi-layer collaborative filtering process 

 

4.1.1. The first layer – Hits Layer 

The first layer is responsible for receiving the information that a user has 

accessed a particular item. At this point, the engine receives the information that an 

identified user, for example, represented by an UUID, has viewed an item, also 

represented by an UUID. This information can be sent through a REST [60] 
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interface, using an HTTP protocol through a call such as 

http://:host:port/item/:UUID/user/:UUID.  

This could be implemented in the player side, when in the first time that a 

user started playing a video, an unique identifier for that user is generated and stored 

in user’s machine as a cookie. Then, for each video start, the player would send the 

information that the user started to watch a specific video through the HTTP call, 

as illustrated in the Figure 11. 

 
Figure 11 - Player sending the HTTP call informing that an user started to watch a video 

 

The information can be temporarily stored in a queue, which will be 

consumed on demand, by the next processing layer, thereby isolating these layers 

and introducing control of information flow between them so that one does not 

overwhelm the other. Thus, this first layer can scale independently, adding or 

removing computing resources according to fluctuations in demand. This is a 

classic example of Infrastructure as a Service (IaaS) use, where, as more (fewer) 

users view items, more (fewer) HTTP requests regarding this information will be 

sent to the recommendation platform, and therefore, a greater (lesser) number of 

servers will be needed to handle these requests. Scalability control is performed 

automatically by monitoring agents that evaluate the server loads and create or 

destroy instances according to the fluctuating demand. 

 

4.1.2. The second layer – Persistence Layer 

The second layer is composed of worker nodes that consume the user:item 

pairs from the queue and insert the user in the respective item set. For example, when 

the feedback from user U3 to item I2 is received, the U3 identifier should be included 

in the set corresponding to I2, which contains all user identifiers that already sent a 
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feedback regarding item I2. Figure 12 below illustrates how the feedback 

information is stored in sets of items. 

 

Figure 12 - Layer II storing binary feedback in sets 

 

Once consumed and stored, it is necessary to recalculate the similarity between 

the item whose set was modified, and the other existing items. Thus, in order to 

isolate the processing associated with this calculation to allow greater control over 

resources needed for the operation, this second layer only identifies which pairs of 

items need to have their similarity recalculated. When using binary feedback, it is 

not necessary to recalculate the similarity between the item whose feedback is being 

processed and all other existing items.  

In this case, only those items already evaluated by the user and items that have 

a non-zero similarity with this one must be considered. For the items already 

evaluated by the user, the scalar product and magnitude will have changed. For the 

items that have a non-zero similarity with the item being processed, only the 

magnitude will have been updated, which will reduce the similarity. For the other 

items, since the scalar product and magnitudes remain unchanged, the cosine value 

does too. 

To allow a fast identification of the items already evaluated by the user that 

will need to have their similarities recalculated, one can use a supporting structure 

through sets, similar to that used to store user:item feedbacks. In this case, each user 

has a corresponding set containing the items already evaluated by him. Using the 

same example, when the feedback from user U3 to item I2 is received, the U3 

identifier should be included in the set corresponding to I2, which contains all user 

identifiers that already sent a feedback regarding item I2, and the identifier I2 also 

should be included in the set corresponding to U3, which contains all item identifiers 

that were already evaluated by the user U3. With this supporting structure, to identify 
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which items were already evaluated by the user and need to have their similarity 

recalculated, it is only necessary to query the items inside the corresponding user 

set. The Figure 13 illustrates this process with the supporting structure. 

 

Figure 13 - Layer II storing items already evaluated by the user in a supporting set 

structure 

 

Besides the items already evaluated by the user, it is also necessary to 

recalculate the similarity for the items that have a non-zero similarity with the item 

being processed. In this case, it is important to promptly identify which are those 

items, which should be done querying the similarity graph. So, store the similarity 

graph in an efficient way to allow for the fast querying of the items that have a non-

zero similarity with the item being processed is an important requisite for the third 

layer, and will be detailed in the following. 

Other important point to be considered by this layer is regarding temporal 

dynamics. As discussed previously, user’s interests change over time, so, this should 

be considered in the recommender systems. This can be achieved from different 

ways, and one of them is discarding aged feedbacks. In this case, only recent 

feedbacks are considered. So, to introduce temporal dynamics in the proposed 

architecture, it is important to store a lifespan for each item and user set, so that they 

can be discarded after a specific period of time. 

In summary, the second layer consumes the user:item pairs output by the first 

layer, inserts the user into the respective item set and the item in the respective user 

set, computes which pairs of items need to have their similarity recalculated, and 
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finally places these in a queue. With this approach, the second layer can be scaled 

as necessary so that its input queue should always be empty.  

 

4.1.3. The third layer – Similarity Layer 

Finally, the third layer calculates the similarity between pairs of items 

consumed from the second layer’s output queue, and updates the item’s similarity 

graph. As discussed previously, the similarity is computed through the cosine of the 

item vectors. Since only binary feedbacks are being considered, this computation 

can be done through the intersection of item sets, as stated above, and represented 

in the following equation: 

345467849: QR, Q; = ST,SM
ST 	. SM

= ⋕ 0YZ ST ∩0YZ SM

⋕ 0YZ ST 	. ⋕ 0YZ SM 	
, 

where # represents the cardinality. 

So, since the layer II is structuring the feedbacks as item sets, to compute the 

similarity between two items the third layer just need to obtain the intersection 

between the sets representing those items and the size of each one of sets. Figure 

14 below, illustrates the similarity calculation between two items, I1 and I2, through 

the intersection of sets stored by the layer II. 

 

 
Figure 14 - Similarity calculation between items I1 and I2 through intersection of sets 

 

The third layer can also be scaled as necessary, however, only a single worker 

node should operate over a specific pair of items at the same time, since the 

similarity calculation is not atomic. A lock mechanism using a shared key with 

timeout is used to avoid concurrency of multiple nodes over the same pair of items. 

As described above, one important requisite of this third layer is the ability to 

store the similarity graph in a structure that allows a promptly identification of the 

items that have a non-zero similarity with the item being processed by the layer II. 
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Moreover, it is also important to store this graph using a scalable structure, that 

could handle millions of items with a minimum resource requirement. 

In order to address those needs, a sorted set structure can be used to represent 

the item similarity graph. Basically, each item can be represented as a sorted set of 

items, ordered by their similarities. For example, consider that the similarity 

between the item I2 and I3 is 0.945, the similarity between I2 and I1 is 0.897, and the 

similarity between I2 and I4 is 0.602. In this case, this information could be store in 

a sorted set Set(I2) = (I3, I1, I4), being I3 the I2 most similar item and I4 the less 

similar. Note that with this structure only the items that have non-zero similarity 

were stored, which allows for the fast identification of which pair of items should 

have their similarity recalculated due to change in magnitude, as discussed 

previously. Moreover, only essential information is stored, reducing the memory 

and storage requirements. 

However, despite the scalability related to the number of user and items and 

their variations along the time, there is also an important point that the proposed 

architecture must address. It must be flexible and scalable enough to work with 

different implicit feedbacks rather than binary. 

As mentioned in the beginning of this chapter, only a binary feedback is being 

used as implicit feedback until now, basically associated with the start watching 

action. However, this basic binary feedback may not consistently represent the 

actual user interest. So, it is important to analyze a different type of implicit 

feedback, and also how to use the proposed architecture with those different 

feedback types in order to keep all of its advantages. 

The next chapter presents an alternative implicit feedback model that could 

be used with the proposed architecture, and that improves the quality of generated 

recommendations.  
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