Título: | PRODUCTION AND ANALYTICAL/STRUCTURAL/PROPERTIES CHARACTERIZATION OF CU-MWCNT NANOCOMPOSITES | |||||||
Autor: |
MARTIN EMILIO MENDOZA OLIVEROS |
|||||||
Colaborador(es): |
IVAN GUILLERMO SOLORZANO NARANJO - Orientador EDUARDO DE ALBUQUERQUE BROCCHI - Coorientador |
|||||||
Catalogação: | 24/JUL/2013 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=21808&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=21808&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.21808 | |||||||
Resumo: | ||||||||
Copper- multiwall carbon nanotube nanocomposites (Cu-MWCNT) are been
considered as a promising material for applications in electronic materials, heat
exchanger and structural elements. It is expected that MWCNT addition in a
copper matrix can improve the mechanical and transport properties. In this work
Cu matrix nanocomposites reinforced with 0,5 wt percent; 2 wt percent; and 5,0 wt percent
MWCNT were produced. The procedure starts from the MWCNTs
functionalization by conventional oxidation and microwave methods and
subsequent incorporation into the copper nitrate solution, dispersion, dissociation,
and in-situ reduction in hydrogen atmosphere. Also, it was evaluated water and
THF solutions for MWCNTs dispersants. Cold compaction follow by
conventional sintering and Spark Plasma Sintering (SPS) techniques were used
to produce pellets. CNTs functionalized by conventional method are shown
effective for dispersing and decorating CNTs when THF was used as dispersant
solution. TEM-EELS analyses indicate the presence of metallic copper in the Cu-
MWCNT interface. Pellets produced by conventional sintering were in the 50nm -
4 um grain size, with good CNT distribution and decreasing in 98 per cent the electrical
resistivity using 5wt percent MWCNT. Meanwhile, pellets produced by SPS were in the
50nm - 2um grain size with high segregation and modification of MWCNTs at the
grain boundaries, as well as the increase in electrical resistivity. Increase of
hardness 139 percent and 65.5 percent in elastic modulus were observed in the sample
containing 0.5 wt percent MWCNTs produced by SPS, while similar or lower values
were observed in the other MWCNTs fractions.
|
||||||||