Título: | LOCALLY CONVEX HYPERSURFACES IMMERSED IN HN × R | ||||||||||||||||||||||||||||
Autor: |
INES SILVA DE OLIVEIRA |
||||||||||||||||||||||||||||
Colaborador(es): |
PAUL ALEXANDER SCHWEITZER - Orientador |
||||||||||||||||||||||||||||
Catalogação: | 19/ABR/2012 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19463&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=19463&idi=2 |
||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.19463 | ||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||
In 1897, J. Hadamard proved a result about compact, locally strictly convex
surfaces in the Euclidean space R3 showing that such surfaces are embedded
and homeomorphic to the sphere. Since then many generalizations were
made adapting the assumptions about the curvature and considering new
spaces in which these surfaces could be immersed so that analogous results
were obtained. Following this context, this work generalizes a result of
Hadamard-Stoker type to locally convex hypersurfaces immersed in Hn×R.
We prove that every complete connected hypersurface immersed in Hn ×R
with positive second fundamental is embedded, homeomorphic to the sphere
Sn or to Rn, and in the second case we study the behavior of the end.
|
|||||||||||||||||||||||||||||
|