Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ANALYSIS OF EMULSION FLOW THROUGH POROUS MEDIA USING CAPILLARY NETWORK MODEL
Autor: GIOVANE BARROSO LIMA NOGUEIRA
Colaborador(es): MARCIO DA SILVEIRA CARVALHO - Orientador
VLADIMIR ALVARADO BASANTE - Coorientador
Catalogação: 19/AGO/2011 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18104&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=18104&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.18104
Resumo:
Emulsions can be used as mobility control agents in different enhanced oil recovery and carbon storage methods in oil reservoirs. The application of this technique, with the correct choice of the injected emulsion characteristics and the determination of optimal operating conditions, requires an adequate understanding of the emulsion flow in porous media. The macroscopic characteristics of the emulsion flow through porous media are directly linked to the two-phase flow at the pore scale. Capillary network models allow the implementation of the drop flow mechanisms in the pore throats and the determination of macroscopic flow parameters. In this work, emulsion flow in porous media is analyzed through an unstructured 3D dynamic network model. The pressure distribution, and consequently the flow rate in each capillary of the network, isdetermined by mass balance equation in each pore. The effects of the drops of dispersed phase in the flow behavior within each element of the network is described by a flow blocking factor based on experimental results on emulsion flow through single microcapillary tubes with throats. The blocking factor describes the changes in the conductivity of each element and it is a function of the throat geometry, the size and volumetric concentration of the dispersed phase and the local capillary number. The concentration distribution of the dispersed phase along the network is described by a mass transport equation, allowing the study of the filtration process of the drops in the pores and the analysis of the alternate injection of water and emulsion.Time integration in the dynamic model is performed by a semi-implicit method and the non-linear system of equations obtained in each time step is solved by an iterative method. The results illustrate the evolution of the permeability reduction and the effluent concentration of drops as a function of the drops size, injection flow rate, concentration of the injected emulsion and injected volume of emulsion. The analysis of the emulsion/water alternate injection clearly shows the pore blockage by the emulsion drops and the change in the flow pattern after the reinjection of water.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LIST OF FIGURES PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
REFERENCES PDF