## 4 Resultados e comentários

A complexa dinâmica do escoamento de emulsões pode ser analisada por meio das curvas da redução da permeabilidade do meio poroso devido ao bloqueio dos poros por gotas da fase dispersa. A permeabilidade K de um meio poroso submetido a uma diferença de pressão  $\Delta p$  e a uma vazão volumétrica Q pode ser calculada diretamente pela Lei de Darcy:

$$Q = \frac{KA}{\mu} \frac{\Delta p}{l} \tag{4.1}$$

Aredução na permeabilidade do meio poroso durante a injeçãoé representada pela relação  $K/K_0$ , que representa a razão entre a permeabilidade no decorrer da injeção e a permeabilidade inicial, antes da influência da emulsão no escoamento.

No início de cada simulação, quando a injeção da emulsão é iniciada, a permeabilidade da rede é igual à permeabilidade inicial ( $K_0$ ); portanto, $K/K_0$ = 1. Com o andamento da injeção e o aumento da concentração de gotas de emulsão na rede, a permeabilidade do meio diminui até atingir um valor mínimo, que depende dos parâmetros da emulsão e das condições do processo de injeção. A variação dosresultados com o tempo é apresentada em função da quantidade injetada de emulsão, que é definidapela razão entre o volume de emulsão injetadaaté o instante *T* (calculado pelo produto *QT*) e o volume poroso da rede, *V<sub>por</sub>*:

$$V_{inj} = \frac{QT}{V_{por}} \tag{4.2}$$

# 4.1. Injeção contínua de emulsão em rede saturada com água

A análise da injeção contínua de emulsão em um meio poroso saturado com água permite a avaliação dos parâmetros essenciais das emulsões e sua influência sobre o escoamento. Na seção seguinte, serão apresentados os resultados para injeção contínua de emulsão com uma concentração de 20% v/v (volume da fase dispersa/volume total de fluidos,  $C_{inj} = 0,2$ ), permitindo a análise da influência da vazão de injeção e do raio de gota no bloqueio do fluxo. A seção posterior mostra os resultados de diferentes simulações com diferentes valores de concentraçãoda emulsão injetada, possibilitando a análise da influência da concentração da emulsão injetada no comportamento do escoamento.

Os valores dos parâmetros físicos ( $\alpha^* \in Ca^*$ ) e de ajuste ( $ke k_C$ ), presentes na função de bloqueio e utilizados nas simulações de injeção contínua de emulsão são listados na tabela 4.1.

| Parâmetro | α*  | Ca*                | $k=k_C$ |
|-----------|-----|--------------------|---------|
| Valor     | 0,1 | $1 \times 10^{-5}$ | 0,5     |

Tabela 4.1 Valores dos parâmetros da função de bloqueio utilizados na injeção de emulsão

### 4.1.1. Influência da vazão de injeção e tamanho de gotas

A fig. 4.1 mostra curvas típicas da evolução da permeabilidade e da concentração de gotas na saída da rede durante a injeção contínua de emulsão. Pode-se notar que, nas curvas referentes a gotas grandes ou a baixas vazões de injeção, o maior bloqueio exercido pela emulsão leva a uma maior queda da permeabilidade e a um aumento na taxa inicial de redução da permeabilidade.

O surgimento das primeiras gotas de emulsão na saída da rede, chamado de *breakthrough* da emulsão, causa o aumento da concentração na saída. Quanto maior é a inclinação do trecho inicial da curva de concentração, mais uniforme é a frente de concentração, indicando um melhor controle da mobilidade. A

concentração na saída não sofre alterações consideráveis com a variação isolada da vazão ou do tamanho de gota da emulsão.



Figura 4.1 – Curvas típicas de permeabilidade e concentração na saída da rede para injeção contínua de emulsão

A fig. 4.2 mostra uma comparação dos resultados em função da vazão de injeção para tamanhos de gota fixos.



**Figura 4.2** Redução na permeabilidadee permeabilidade final em função da vazão de injeção para tamanhos de gota fixos

A redução na vazão de injeção causa o deslocamento para baixo de todas as curvas de permeabilidade, independentemente do tamanho de gota considerado, indicando que não houve alteração no mecanismo de bloqueio, apenas o aumento de sua intensidade. Esta observação é comprovada pela análise dos resultados de redução final da permeabilidade ( $K_{\infty}/K_0$ ) em função da vazão de injeção para os três tamanhos de gota analisados, onde as três curvas permanecem aproximadamente paralelas com a redução na vazão de injeção, e apresentam um comportamento similar ao reportado por Romero *et al.* (2011) e Cobos (2009).

Os resultados destas simulações são mostrados na figura 4.3 como função do tamanho de gota para vazões constantes. Estas curvas mostram de forma mais clara que a influência do tamanho de gotas na redução da permeabilidade é mais forte para vazões de injeção menores.



Figura 4.3 Redução na permeabilidade e permeabilidade final em função do tamanho de gota para vazão fixa

#### 4.1.2. Influência da concentração de gotas

As curvas típicas de resultados da injeção de emulsão com vazão e tamanho de gota fixos, alterando-se a concentração da emulsão injetada, são mostradas na fig. 4.4. À medida que a rede é saturada com emulsão, a permeabilidade sofre uma redução proporcional à concentração da emulsão injetada. A concentração na saída da rede,  $C_{saída}$ , se aproxima da concentração da emulsão injetada,  $C_{inj}$ .



Figura 4.4 Curvas típicas de permeabilidade e concentração na saída da rede para injeção de emulsão com diferentes concentrações

Ainda, caso a concentração da saída seja normalizada pela concentração máxima injetada neste grupo de simulações, as curvas de concentração se sobrepõem, indicando que o mecanismo de bloqueio não é alterado pela variação apenasna concentração da emulsão.No entanto, esta similaridade não é observada na comparação entre os casos extremos analisados (fig. 4.5). No início da simulação, a concentração na saída cresce mais lentamente para as condições de maior bloqueio (linha contínua), o que indica uma melhor redistribuição de fluxo devido a um melhor controle da mobilidade. Este resultado é importante por mostrar a possibilidade de se obter uma frente de avanço mais uniforme através do correto ajuste das características da emulsão.



Figura 4.5 Resultados das simulações com maior e menor bloqueio obtidas para injeção contínua

A fig. 4.6 mostra a evolução da variação da permeabilidade em função da concentração, para vazão de injeção e tamanhos de gota fixos, bem como a permeabilidade final para os casos analisados.



Figura 4.6 Redução na permeabilidade e permeabilidade final em função da concentração

A influência do aumento da concentração é mais pronunciada para injeção a baixas vazões, conforme pode ser visto nas curvas de permeabilidade final.

### 4.2. Injeção alternada de emulsão e água

A aplicação das equações para a concentração da fase dispersa tornam possível a injeção de água ou emulsão a qualquer instante da simulação (injeção alternada), viabilizando a análise do efeito de um banco de emulsãono bloqueio seletivo do escoamento em meios porosos.O parâmetro de processo específico da injeção alternada é a quantidade de emulsão injetada ( $V_{inj}$ ), que será analisada através de simulações utilizando um meio saturado inicialmente com água. A quantidade de emulsão injetada é expressa como a razão entre o volume de emulsão,  $V_e$ , e o volume porosodo meio considerado,  $V_{por}$ :

$$V_{inj} = \frac{V_e}{V_{por}} \tag{4.3}$$

A análise dos resultados de injeção alternada fornece um melhor entendimentodo comportamento da emulsão e do seu efeito deredistribuiçãodo escoamento, e deve servir de base para o desenvolvimento de simuladores de injeção alternada de emulsão para deslocamento de petróleo.

A fig. 4.7 mostra curvas típicas de variação da permeabilidade e da concentração de gotas da emulsão na saída da rede para uma injeção alternada de um determinado volume de emulsão com concentração de 20%, vazão de  $5 \times 10^{-10} m^3/s$  e gotas com  $17 \mu m$  de raio. A quantidade de emulsão injetada foi de 0,5, 1 e 1,5.



Figura 4.7 Curvas típicas de permeabilidade e concentração para injeção alternada

Para todos os casos analisados, a permeabilidade decresce durante a injeção de emulsão. A taxa de declínio é a mesma para os três casos da fig.4.7, como esperado. No reinício da injeção de água, pode-se observar um aumento da permeabilidade com o tempo (volume injetado) até a permeabilidade inicial ser recuperada. O volume de água injetado para recuperação da permeabilidade inicial varia com o volume de emulsão injetada. Após a injeção de 1 volume poroso de emulsão, foi necessária a injeção de 2,5 volumes porosos de água para a permeabilidade voltar à permeabilidade original. A permeabilidade da rede aproxima-se do valor de permeabilidade em regime permanente para um volume injetado de emulsão de aproximadamente 1,5 volume poroso. É interessante observar que a taxa de aumento da permeabilidade após o reinício da injeção de água é praticamente a mesma se o volume de emulsão injetada for alto o suficiente (neste caso,  $V_{inj} \gtrsim 1 VP$ ).

A concentração de gotas na saída da rede permanece nula até um volume injetado de aproximadamente 0,2 volume poroso. Após este tempo, a concentração de gotas na saída aumenta. Após o reinício de injeção de água, a concentração na saída decresce depois de um determinado volume de água ter sido injetado na rede.

Estes resultados mostram a capacidade do modelo desenvolvido em descrever fenômenos observados experimentalmente no escoamento de emulsões em meios porosos.

#### 4.2.1. Influência do volume de emulsão injetado

Para se obter uma melhor concordância qualitativa com os resultados experimentais e aproximar os resultados do comportamento estabelecido pela teoria de filtração, realizou-se um ajuste nos parâmetros do fator de bloqueio no sentido de aumentar sua intensidade e considerar uma maior redução na vazão volumétrica de alguns elementos da rede já para um baixo valor de concentração local. Deste modo, a vazão volumétrica é reduzida consideravelmente nestes elementos e consequentemente a velocidade das gotas é reduzida, impedindo que estas sejam deslocadas pela injeção posterior de água. Este comportamento é mais próximo do comportamento discutido nas teorias de filtração e de captura de gotas.

Desta forma, os parâmetros da função de bloqueio alterados nas simulações da seção a seguir são mostrados na tabela 3.

| Parâmetro | k    | k <sub>C</sub> |
|-----------|------|----------------|
| Valor     | 0,85 | 0,01           |

Tabela 1 Parâmetros de bloqueio alterados utilizados nas simulações de injeção alternada

Com base no novo fator de bloqueio, foi realizada a análise da injeção alternada de quantidades variáveis de uma emulsão com concentração volumétrica constante. A simulação foi feita para diferentes valores da vazão de injeção  $(Q = 10^{-9} \text{ e } 10^{-10} \text{ } m^3/\text{s})$ , raio de gota  $(r_D = 3 \text{ e } 17 \mu m)$  e volume de emulsão injetado  $(V_{inj} = 0,1; 0,2; 0,5 \text{ e } 0,8)$ . Os resultados são apresentados na fig. 4.8. Pode-se observar que, para a vazão mais alta  $(Q = 10^{-9} \text{ } m^3/\text{s})$  e gotas pequenas  $(r_D = 3 \mu m)$ , a que da permeabilidade não é tão acentuada. Porém, após o reinício da injeção de água, a permeabilidade não retorna a seu valor inicial, estabilizandose em um valor mais baixo. Isto é uma indicação que gotas da fase dispersa ficam retidas em alguns capilares, mesmo após a reinjeção de água. Para uma vazão menor, onde a redução de mobilidade em cada capilar é mais acentuada, podem-se observar os mesmo efeitos, porém em maior intensidade. Para  $Q = 10^{-10} m^3/s$ , o volume de emulsão injetada altera o valor da permeabilidade após o reinício da injeção de água.



Figura 4.8 Evolução da permeabilidade durante a injeção alternada com concentração constante

O mecanismo de redirecionamento de fluxo no espaço poroso devido à ação das gotas da fase dispersa é bem ilustrado nos resultados apresentados na Fig. 4.9. A figura apresenta um corte na rede por um plano horizontal. Os capilares que cortam este plano são representados por pontos nos dois gráficos. A Fig. 4.9(a) apresenta a variação relativa do inverso da condutância dos capilares, comparando os valores no instante final da injeção da emulsão com os valores durante a injeção de água, para  $r_D = 17 \ \mu m \ e \ Q = 10^{-10} m^3/s$ . Os capilares onde a maior variação do inverso da condutância ocorre (barras mais altas) representam os capilares onde a presença das gotas da fase dispersa causou o maior efeito de redução da mobilidade. De forma análoga, a Fig.4.9*b*) apresenta a variação relativa do fluxo em cada capilar, comparando os valores de fluxo ao final do processo de injeção de emulsão com o fluxo durante a injeção de água.

#### 4 - Resultados e comentários

A redistribuição do fluxo fica clara observando-se a região destacada nas figuras. Nesta região, pode-se observar um conjunto de capilares nos quais a redução de mobilidade foi alta, com um conjunto de capilares vizinhos onde a variação da mobilidade foi baixa. Na Fig. , observa-se uma redução considerável no fluxo através dos capilares parcialmente bloqueados pela emulsão e um aumento da vazão nos capilares vizinhos.



**Figura 4.9** Corte transversal da rede durante fluxo de emulsão, relacionando (a) as vazões dos capilares na seção transversal com (b) as respectivas intensidades de bloqueio local