Título: | STRUCTURAL BREAKS DETECTION: AN APPLICATION TO THE BRAZILIAN HEDGE FUNDS | ||||||||||||||||||||||||||||||||||||
Autor: |
ALEXANDRA RIBEIRO MENDES DE ALMEIDA |
||||||||||||||||||||||||||||||||||||
Colaborador(es): |
HELIO CORTES VIEIRA LOPES - Orientador BEATRIZ VAZ DE MELO MENDES - Coorientador |
||||||||||||||||||||||||||||||||||||
Catalogação: | 24/SET/2010 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||||||||||||||||||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||||||||||||||||||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||||||||||||||||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=16317&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=16317&idi=2 |
||||||||||||||||||||||||||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.16317 | ||||||||||||||||||||||||||||||||||||
Resumo: | |||||||||||||||||||||||||||||||||||||
Stationarity has always played an important role in the theoretical treatment
of time series. However many series show a nonstationary behavior.
In many cases, simple techniques such as differentiation is not enough. In
this context, and considering the most frequent assumption of instability
in the stochastic characteristics of financial returns as well as the consequences
of assume stationarity when this feature is not reasonable, we use
the methodology proposed by Picard (1985) (37), extended by Kluppelberg
and Mikosch (1996) (23) and later by Starica and Granger (2005) (41),
whose goal is to identify stationary periods in globally non-stationary series,
and locally approximate them by stationary models. Aiming to broaden
the understanding of the usefulness of the statistical methodology used, we
made a simulation study involving structural or point changes in the generating
process, and evaluating the performance of the methodology to detect
these changes. This method of identifying homogeneous periods was applied
in the context of Brazilian hedge funds, financial instruments where
traditionally we see significant autocorrelation, even for long-term lags, feature
explained in the literature as a result of illiquidity, as in Getmansky et
al (2003) (14). Motivated by empirical evidence involving the influence of
changes in non-conditional second moment of financial time series behavior
of the function of serial correlation, discussed in Mikosch and Starica (2004)
(32), we apply the methodology aiming identifying stationary periods in the
hedge funds volatility series that had global non-stationarity.
|
|||||||||||||||||||||||||||||||||||||
|