Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: QUENCHING AND PARTITIONING OF NI-ADDED HIGH STRENGTH STEELS: KINETICS MODELLING MICROSTRUCTURE AND MECHANICAL PROPERTIES
Autor: ANA ROSA FONSECA DE AGUIAR MARTINS
Colaborador(es): FERNANDO COSME RIZZO ASSUNCAO - Orientador
Catalogação: 03/DEZ/2007 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=10952&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=10952&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.10952
Resumo:
High strength steels containing significant fractions of retained austenite have been developed in recent years and are the subject of growing commercial interest when associated with the TRIP phenomenon during deformation. A new process concept, Quenching and Partitioning, has been recently proposed for production of steel microstructures containing carbon-enriched austenite. The heat treatment sequence involves quenching to a temperature between the martensite-start (Ms) and martensite-finish (Mf) temperatures, followed by a partitioning treatment, above or at the initial quench temperature, designed to enrich the remaining untransformed austenite with the carbon escaping from the supersaturated martensite phase, thereby stabilizing the retained austenite phase during the subsequent quench to room temperature. To enable the austenite enrichment, competing reactions, principally carbide precipitation, must be suppressed by appropriate alloying elements, such as Si and/or Al. The concept assumes a stationary martensite/austenite interface and the absence of shortrange movements of iron and substitutionals elements. The condition under which partitioning occur has been called Constrained Carbon Equilibrium (ECC), due to the restriction in movement of the interface and the assumption that only carbon equilibrates its chemical potencial at the interface. In this work, a group of four alloys was investigated, containing different additions of C and Ni and containing Si, Mn, Mo e Cr. These alloys were designed to preclude bainite formation at the partitioning temperatures of interest. Several heat-treatments, were performed in these alloys, using the Q&P concept, to evaluate its effect on the resulting microstructure and mechanical properties. Each alloy was quenched at selected temperatures and partitioned from 350 to 450°C for times ranging from 10 to 1000s. Microstructural characterization was performed by optical microcoscopy, scanning and transmission electron microscopy, while X-ray diffraction was used to determine both the fraction and the carbon content of the retained austenite. Partitioning kinetics were simulated with DICTRATM. The results were analyzed taking into consideration the scale of the microstructure, as well as the partitioning temperature. Tensile test results indicated that very high levels of strength with moderate toughness can be achieved confirming the potential of the Q&P to produce a superior combination of mechanical properties.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
REFERENCES AND ANNEX PDF