Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SYNTHESIS, PROCESSING AND CHARACTERIZATION OF CU-CNT NANOCOMPOSITE MATERIALS
Autor: MARTIN EMILIO MENDOZA OLIVEROS
Colaborador(es): IVAN GUILLERMO SOLORZANO NARANJO - Orientador
EDUARDO DE ALBUQUERQUE BROCCHI - Coorientador
Catalogação: 01/ABR/2009 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13223&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=13223&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.13223
Resumo:
The increasing interest in nanostructure materials in recent years has provided incentive to develop nanostructure composite materials with metal matrix, reinforced with carbon nanotubes. In the present work, copper matrix nano composite with carbon nanotubos (2% wt) was produced by chemical synthesis method. The procedure begins by the copper nitrate dissociation containing SWCNT and anionic tensoactive agent at 250°C, followed by in-situ reduction at 350°C, under hydrogen atmosphere at pressure of 1atm. CuO and Cu formation was confirmed by X ray diffraction at the moment of dissociation and reduction respectively. CNTs presence was detected at both steps by this characterization method. Transmission Electron Microscopy analysis, estimate particles grain size of 30nm for CuO powder while Cu powder particles were observed to be in the 100-300nm range, showing good dispersion of CNT. Bulk nano-composite pellets of the reduced material were obtained by pre-compactation under uniaxial pressure of 17 MPa followed by issostatic pressure of 150MPa. Sinterizing of the compacted material was carry out at 650°C under Argon atmosphere by 15 min. Scanning Electron Microscopy and Transmission Electron Microscopy analysis of the sinterized material showed an heterogeneous grain size distribution in the 100nm to 4 ìm range. Electric resistivity measures show that the nanocomposite material has lower resistivity at low temperature (2x10(-6) ? .cm) at 83°K than the copper without carbon nanotubes (5.9x10(-6) ? .cm).
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
REFERENCES PDF