XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: THE USE OF DECISION TREES, NEURAL NETWORKS AND KNN SYSTEMS TO AUTOMATICALLY IDENTIFY BOX & JENKINS NON-SEASONAL AND SEASONAL STRUCTURES Autor: LUIZA MARIA OLIVEIRA DA SILVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
REINALDO CASTRO SOUZA - ADVISOR
Nº do Conteudo: 7587
Catalogação: 19/12/2005 Liberação: 19/12/2005 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7587&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7587&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.7587
Resumo:
Título: THE USE OF DECISION TREES, NEURAL NETWORKS AND KNN SYSTEMS TO AUTOMATICALLY IDENTIFY BOX & JENKINS NON-SEASONAL AND SEASONAL STRUCTURES Autor: LUIZA MARIA OLIVEIRA DA SILVA
Nº do Conteudo: 7587
Catalogação: 19/12/2005 Liberação: 19/12/2005 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7587&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7587&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.7587
Resumo:
The Box & Jenkins is the most popular forecasting
technique. However,
some researchers have not embraced it because the
identification of its structure is
highly complex. The process of proper characterizing the
properties of both
autocorrelation functions and partial correlation
(theoretical or estimated) depends
on the time series from which they are being obtained.
Given the results in
question, it is possible to infer the proper Box & Jenkins
structure for the time
series being studied. For the reasons above, the goal of
this dissertation is to
develop three new methodologies to identifying, in an
automatic fashion, the Box
& Jenkins structure of an ARMA series. The methodologies
identify, in a simpler
manner, both the seasonal and linear filters of the
series. The first methodology
applies the decision tree. The second applies the neural
networks. The third
applies the K-Nearest Neighbor (KNN). In each of them the
Box & Jenkins
seasonal structures of 3, 4, 6 and 12 periods were used,
as well as the nonseasonal
structure. The results are applied to simulated and actual
series. For
comparison purposes, the automatic identification
procedure of the software
FPW-XE is also used.