XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: QUANTUM-INSPIRED NEURAL ARCHITECTURE SEARCH APPLIED TO SEMANTIC SEGMENTATION Autor: GUILHERME BALDO CARLOS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ADVISOR
KARLA TEREZA FIGUEIREDO LEITE - CO-ADVISOR
Nº do Conteudo: 63217
Catalogação: 14/07/2023 Liberação: 14/07/2023 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63217&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63217&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.63217
Resumo:
Título: QUANTUM-INSPIRED NEURAL ARCHITECTURE SEARCH APPLIED TO SEMANTIC SEGMENTATION Autor: GUILHERME BALDO CARLOS
KARLA TEREZA FIGUEIREDO LEITE - CO-ADVISOR
Nº do Conteudo: 63217
Catalogação: 14/07/2023 Liberação: 14/07/2023 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63217&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=63217&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.63217
Resumo:
Deep neural networks are responsible for great progress in performance
for several perceptual tasks, especially in the fields of computer vision, speech
recognition, and natural language processing. These results produced a paradigm shift in pattern recognition techniques, shifting the demand from feature
extractor design to neural architecture design. However, designing novel deep
neural network architectures is very time-consuming and heavily relies on experts intuition, knowledge, and a trial and error process. In that context, the
idea of automating the architecture design of deep neural networks has gained
popularity, establishing the field of neural architecture search (NAS). To tackle the problem of NAS, authors have proposed several approaches regarding
the search space definition, algorithms for the search strategy, and techniques
to mitigate the resource consumption of those algorithms. Q-NAS (Quantum-inspired Neural Architecture Search) is one proposed approach to address the
NAS problem using a quantum-inspired evolutionary algorithm as the search
strategy. That method has been successfully applied to image classification,
outperforming handcrafted models on the CIFAR-10 and CIFAR-100 datasets
and also on a real-world seismic application. Motivated by this success, we
propose SegQNAS (Quantum-inspired Neural Architecture Search applied to
Semantic Segmentation), which is an adaptation of Q-NAS applied to semantic
segmentation. We carried out several experiments to verify the applicability
of SegQNAS on two datasets from the Medical Segmentation Decathlon challenge. SegQNAS was able to achieve a 0.9583 dice similarity coefficient on the
spleen dataset, outperforming traditional architectures like U-Net and ResU-Net and comparable results with a similar NAS work from the literature but
with fewer parameters network. On the prostate dataset, SegQNAS achieved
a 0.6887 dice similarity coefficient, also outperforming U-Net, ResU-Net, and
outperforming a similar NAS work from the literature.
Descrição | Arquivo |
COMPLETE |