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Abstract

Baldo Carlos, Guilherme; Rebuzzi Vellasco, Marley Maria Ber-
nardes (Advisor); Leite, Karla Tereza Figueiredo (Co-Advisor).
Quantum-inspired Neural Architecture Search applied to
Semantic Segmentation. Rio de Janeiro, 2023. 81p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Deep neural networks are responsible for great progress in performance
for several perceptual tasks, especially in the fields of computer vision, speech
recognition, and natural language processing. These results produced a para-
digm shift in pattern recognition techniques, shifting the demand from feature
extractor design to neural architecture design. However, designing novel deep
neural network architectures is very time-consuming and heavily relies on ex-
perts’ intuition, knowledge, and a trial and error process. In that context, the
idea of automating the architecture design of deep neural networks has gained
popularity, establishing the field of neural architecture search (NAS). To tac-
kle the problem of NAS, authors have proposed several approaches regarding
the search space definition, algorithms for the search strategy, and techniques
to mitigate the resource consumption of those algorithms. Q-NAS (Quantum-
inspired Neural Architecture Search) is one proposed approach to address the
NAS problem using a quantum-inspired evolutionary algorithm as the search
strategy. That method has been successfully applied to image classification,
outperforming handcrafted models on the CIFAR-10 and CIFAR-100 datasets
and also on a real-world seismic application. Motivated by this success, we
propose SegQNAS (Quantum-inspired Neural Architecture Search applied to
Semantic Segmentation), which is an adaptation of Q-NAS applied to semantic
segmentation. We carried out several experiments to verify the applicability
of SegQNAS on two datasets from the Medical Segmentation Decathlon chal-
lenge. SegQNAS was able to achieve a 0.9583 dice similarity coefficient on the
spleen dataset, outperforming traditional architectures like U-Net and ResU-
Net and comparable results with a similar NAS work from the literature but
with fewer parameters network. On the prostate dataset, SegQNAS achieved
a 0.6887 dice similarity coefficient, also outperforming U-Net, ResU-Net, and
outperforming a similar NAS work from the literature.

Keywords
Neural Architecture Search; Evolutionary Algorithms; Semantic Segmen-

tation; Quantum-inspired Computin.
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Resumo

Baldo Carlos, Guilherme; Rebuzzi Vellasco, Marley Maria Bernar-
des; Leite, Karla Tereza Figueiredo. Busca por arquitetura neu-
ral com inspiração quântica aplicada a segmentação semân-
tica. Rio de Janeiro, 2023. 81p. Dissertação de Mestrado – Depar-
tamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

Redes neurais profundas são responsáveis pelo grande progresso em di-
versas tarefas perceptuais, especialmente nos campos da visão computacional,
reconhecimento de fala e processamento de linguagem natural. Estes resulta-
dos produziram uma mudança de paradigma nas técnicas de reconhecimento
de padrões, deslocando a demanda do design de extratores de características
para o design de arquiteturas de redes neurais. No entanto, o design de no-
vas arquiteturas de redes neurais profundas é bastante demandanteem termos
de tempo e depende fortemente da intuição e conhecimento de especialistas,
além de se basear em um processo de tentativa e erro. Neste contexto, a idea
de automatizar o design de arquiteturas de redes neurais profundas tem ga-
nhado popularidade, estabelecendo o campo da busca por arquiteturas neurais
(NAS - Neural Architecture Search). Para resolver o problema de NAS, autores
propuseram diversas abordagens envolvendo o espaço de buscas, a estratégia
de buscas e técnicas para mitigar o consumo de recursos destes algoritmos.
O Q-NAS (Quantum-inspired Neural Architecture Search) é uma abordagem
proposta para endereçar o problema de NAS utilizando um algoritmo evolucio-
nário com inspiração quântica como estratégia de buscas. Este método foi apli-
cado de forma bem sucedida em classificação de imagens, superando resultados
de arquiteturas de design manual nos conjuntos de dados CIFAR-10 e CIFAR-
100 além de uma aplicação de mundo real na área da sísmica. Motivados por
este sucesso, propõe-se nesta Dissertação o SegQNAS (Quantum-inspired Neu-
ral Architecture Search applied to Semantic Segmentation), uma adaptação do
Q-NAS para a tarefa de segmentação semântica. Diversos experimentos fo-
ram realizados com objetivo de verificar a aplicabilidade do SegQNAS em dois
conjuntos de dados do desafio Medical Segmentation Decathlon. O SegQNAS
foi capaz de alcançar um coeficiente de similaridade dice de 0.9583 no con-
junto de dados de baço, superando os resultados de arquiteturas tradicionais
como U-Net e ResU-Net e atingindo resultados comparáveis a outros trabalhos
que aplicaram NAS a este conjunto de dados, mas encontrando arquiteturas
com muito menos parãmetros. No conjunto de dados de próstata, o SegQNAS
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alcançou um coeficiente de similaridade dice de 0.6887 superando a U-Net,
ResU-Net e o trabalho na área de NAS que utilizamos como comparação.

Palavras-chave
Busca por Arquitetura Neural; Algoritmos Evolucionários; Segmentação

Semântica; Computação com Inspiração Quântica.
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1
Introduction

Deep learning techniques have achieved excellent results in various per-
ceptual tasks in computer vision, speech recognition, and natural language
processing. This success is owed to the capacity these methods have to auto-
matically learn to extract features from unstructured data [1].

Traditional pattern recognition methods relied on handcrafted feature
extractors, which were time-consuming and lacked efficacy. Deep learning
techniques, on the other hand, are able to automatically learn to extract
features that are important for the task and that may be non-obvious even
to an expert in the field. Besides that, deep learning techniques are able to
extract those multiple features on multi scales, in a hierarchical form, and
define how important each of those features is for the task.

These methods are based on Deep Neural Network (DNN) models, which
are Artificial Neural Networks (ANN) composed of multiple layers. Despite the
capacity to automatically learn to extract features, several hyperparameters
must be manually defined to achieve good results with DNNs. Each layer of the
network can perform a different operation, i.e., convolution, fully connected
layers, pooling, transposed convolution, etc. Furthermore, every layer could
have hyperparameters to define. For example, for a convolutional layer, one
should define the number of kernels, kernel size, stride, and padding. Moreover,
the number of layers and how the layers are interconnected have also to be
defined.

Historically the architecture definition of DNNs is manually done, relying
on experts’ knowledge and a trial and error process. However, manually
designing novel DNN architectures, aside from being time-consuming, is prone
to human bias and may leave non-obvious architectures unexplored.

A logical step in the direction of automatizing deep learning methods is
to automatize the architecture definition of the DNNs used. This research field
is known as Neural Architecture Search (NAS) [2].

Several methods have been proposed in the literature to tackle the NAS
problem. Q-NAS (Quantum-inspired Neural Architecture Search [3] is one of
the proposed methods, which introduces a Quantum-inspired Evolutionary
Algorithm (QIEA) to perform the search for a deep neural architecture on
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Chapter 1. Introduction 16

the image classification task. Q-NAS was able to outperform hand-designed
models from the literature on the CIFAR-10 and CIFAR-100 datasets, and
also on a real-world seismic application.

The majority of papers on NAS apply their work to image classification.
Motivated by this and by the success of Q-NAS, this work extends Q-NAS to
Semantic Segmentation, which is another fundamental task in the computer
vision field.

1.1
Objectives

In this work, we introduce SegQNAS (Quantum-inspired Neural Archi-
tecture Search applied to Semantic Segmentation), which is an extension of
Q-NAS to perform NAS on semantic segmentation DNNs.

Our primary goal is to propose a NAS algorithm based on Q-NAS to
search for semantic segmentation deep neural networks.

The secondary goal of this work is to evaluate the performance of SegQ-
NAS on two datasets from the Medical Segmentation Decathlon challenge [4]
and compare its performance to well-established baselines from the literature
and a similar NAS work from the literature.

1.2
Contributions

In this section, we list the main contributions of this work:

– Extending Q-NAS to semantic segmentation. Semantic segmen-
tation plays a major role in a variety of applications. Therefore, in this
work, we extended Q-NAS to semantic segmentation.

– The usage of a bi-level search space. An adequate search space
had to be used to extend Q-NAS to semantic segmentation. The search
space is a global search space as in the original Q-NAS. However, a
bi-level search space accounts for both topology and cell levels search.
That approach allows for performing the search either separately on the
topology and cell levels, sequentially, or simultaneously.

– Decoding rules to ensure feasibility. In this work, we propose some
decoding rules to ensure the decoded network is a feasible segmentation
network according to some design constraints.

DBD
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1.3
Work outline

This work comprises 6 additional chapters, which we describe below.
In Chapter 2, we present the semantic segmentation task and describe

how current deep neural network architectures are designed to tackle this
computer vision problem.

Next, Chapter 3 provides the theoretical background to understand
NAS, and its components, namely search space, search strategy, performance
estimation strategy, and also its challenges.

Chapter 4 presents the Q-NAS model, its individual representation,
specific operations, algorithmic steps, and implementation details.

SegQNAS is introduced in Chapter 5. In this chapter, we discuss the
changes made to apply Q-NAS to semantic segmentation, including the search
space used and decoding strategies to ensure the feasibility of the networks
decoded. Furthermore, we discuss the techniques used to mitigate the time
consumption of the search.

Chapter 6 describes and discusses the experiments proposed to validate
SegQNAS. The results are presented and compared to baselines and other
models in the literature.

Finally, Chapter 7 concludes our work and discusses the next steps of
our research.
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2
Semantic Segmentation

In this chapter, we present what is semantic segmentation and how
deep learning methods based on convolutional neural networks are used to
solve this task. Firstly, a brief review is provided of how convolutional neural
networks are able to perform automatic feature extraction learning. Then, fully
convolutional networks are presented. Architectures like FCN, DeconvNet,
SegNet, and U-Net and their particularities are discussed.

2.1
Semantic Segmentation

Image segmentation is a fundamental computer vision task. Its goal is to
partition images or video frames into semantic labeled regions [5]. This task
can be broken down into three classes of problems.

– Semantic segmentation: This can be formulated as the task of pixel-level
classification, assigning a semantic label to every pixel in the image.

– Instance segmentation: In contrast, instance segmentation involves par-
titioning individual instances of objects in the image.

– Panoptic segmentation: Panoptic segmentation deals with performing
both semantic and instance segmentation.

As can be seen in Figure 2.1, image a shows an example of an input
image, and in images b, c, and d the ground truth for semantic segmentation,
instance segmentation, and panoptic segmentation, respectively. It is possible
to notice that in image b, every pixel of the image is classified into a semantic
label, not differentiating instances of objects. Therefore, every pixel of a car
in the image a is mapped to the car label. The same is true for the pixels of
the sky, person, street, sidewalk, and so on. On the other hand, in image c,
each instance of person or car is mapped to a different semantic label. This
characterizes the instance segmentation problem. Finally, in image d, we see
what the ground truth of panoptic segmentation looks like. In that case, both
semantic segmentation and instance segmentation are performed, so besides
classifying every pixel of the image with a semantic label, one should also
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Chapter 2. Semantic Segmentation 19

Figure 2.1: © IEEE 2019 Image segmentation: Given an (a) input image
we see the ground truth for the given tasks: (b) semantic segmentation
(pixel-level labels); (c) instance segmentation (object-level label); (d) panoptic
segmentation (both). Source: Kirillov et al. 2019 [6].

differentiate between different instances of objects. In this work, we are going
to focus on the problem of semantic segmentation.

Semantic segmentation plays a major role in a broad domain of real-
world applications, including scene parsing [7], autonomous driving [8], remote
sensing [9], video surveillance [10], medical image analysis [11], among others.
When it comes to autonomous driving applications, the labels could be road,
pedestrian, vehicle, etc. On the other hand, when it comes to medical image
analysis, the semantic labels could be organs, vessels, and tissues, to name a
few possibilities.

As described, semantic segmentation is the task of classifying an input
image on a pixel level. That is, every pixel of the input image should be
mapped to a semantic label belonging to a set of predefined labels. Thus, this is
generally a more demanding undertaking task than image classification, which
deals with attributing a unique label to the whole image [5]. Due to the nature
of the task, semantic segmentation methods should be able to extract features
from the image that have not only semantic information but also localization
information.

In order to do that, several semantic segmentation methods have been
developed in the literature, such as thresholding [12], region-growing [13], k-
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means clustering [14], watershed methods [15], active contours [16], graph cuts
[17], conditional random fields (CRFs) [18], Markov random fields [19] and
sparsity-based methods [20, 21]. One challenge these feature-based methods
face is that they rely heavily on the quality of the features extracted by domain
experts, although humans are bound to miss latent or abstract features that
could be important to the problem [22].

In that sense, Deep Learning methods were able to tackle the issue
of automated feature learning, achieving remarkable performance in several
computer vision tasks, such as classification, object detection, and semantic
segmentation [22]. However, it is important to notice that the success of
those methods is highly supported by the large data and computing resource
availability we are witnessing.

The next sections will present the basic concepts of Convolutional Neural
Networks, how they extract features from an input image, and how some
architectures designed for Semantic Segmentation work.

2.2
Convolutional Neural Networks

In 1980 Fukushima [23] introduced an artificial neural network based
on a hierarchical model of the visual system’s structure. His network, called
Neocognitron, was composed of several layers and each layer was composed
of neurons sharing parameters. The neurons received as input patches of
the previous layer, producing translational invariance. That aspect is very
important for recognition tasks, where the goal is to recognize a pattern despite
its location in the image. The Neocognitron was trained on an unsupervised
scheme. Later in 1989, Yan Lecun and other collaborators proposed the
Convolutional Neural Network (CNN) [24] building upon the Neocognitron’s
ideas. However, the CNN was trained with back-propagation and therefore
trained in a supervised manner, achieving state-of-the-art results for pattern
recognition tasks [25].

CNNs are deep neural networks, meaning that they are composed of
multiple layers. Typically they are composed of stacked blocks of convolutional
layers, activation layers, and pooling layers (Figure 2.2).

A convolutional layer receives as input a tensor with shape (H×W ×C)
where H is the height, W is the width, and C is the number of channels of the
input tensor. Then, it convolves k kernels (or filters) of size (h×w×C) along
the x and y axis of the input tensor, producing an output tensor with shape
(H−h+2×p

s
+ 1× W −w+2×p

s
+ 1× k) where p is the padding and s is the stride.

Padding is the number of pixels added around the input tensor and stride is

DBD
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Chapter 2. Semantic Segmentation 21

Figure 2.2: A typical CNN block comprises a convolutional layer, activation
layer, and pooling layer.

the number of units the kernel slides on the input tensor when performing the
convolution. Those parameters are used to control the output tensor shape.
Figure 2.3 illustrates the convolution operation applied to a 4 × 4 × 1 input
tensor with a 2×2×1 kernel with s = 1 and p = 0 producing an output tensor
of 3× 3× 1.

The kernel is a tensor of weights and during training, these weights are
adjusted using the back-propagation algorithm to extract task-specific features
from the input tensor. Therefore, the output tensor of a layer is called a feature
map.

The use of convolutional layers provides three main advantages to neural
networks when compared to fully connected layers, traditionally used in multi-
layer perceptrons (MLP) [26]:

– Sparse interactions: In fully connected layers, all of the neurons are
connected to all of the previous layer neurons. Therefore, each element in
the input influences each element in the output of the layer. In contrast,
in a convolutional layer, each input element influences only a patch of
the output element. As can be seen in Figure 2.3, The element b in the
input tensor is only affecting the first and second elements of the output
tensor. The sparse connectivity reduces memory usage and the number
of operations required to produce the output. This is translated into a
significant efficiency improvement.

– Parameter sharing: As the convolution operation uses the same kernel
to convolve through the whole input tensor, the parameters are shared.
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Figure 2.3: Example of a convolution with s = 1 and p = 0. This is also called
a valid convolution.

This also produces an efficiency improvement.
– Translational invariance: This means that the kernels can identify the

same features regardless of their position in the input tensor. However,
the convolution operation is not invariant to other transformations like
scale and rotations. This invariance can be achieved during training by
applying data augmentation techniques.

The second type of layer is the activation layer. This type of layer
performs an element-wise non-linear operation on an input tensor, enabling
the CNN to learn non-linear features. There are several possibilities for
activation functions but the most common is ReLU [27], which is defined as
f(x) = max(0, x).

Finally, pooling layers reduce the spatial resolution of an input tensor.
Given a patch of the input of size k × k, the pooling layer replaces the values
by an aggregation statistic measure like average or max. That patch also slides
through the input tensor with stride s. Figure 2.4 illustrates a 2 × 2 average
pooling operation.

The dimensional reduction in the feature maps is important for two main
reasons. First, reducing the feature maps resolution can reduce the resource
requirement, which improves efficiency; second, it allows for small kernels to
have a larger receptive field. That means that a larger region of the input
image is taken into account in a kernel patch during convolution. When we
stack CNN blocks (Figure 2.2) in a chain-like structure, earlier layers extract
more localized features, while deeper layers are able to extract more semantic
information.
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Figure 2.4: Example of an 2x2 average pooling operation with s = 2.

A classification CNN is formed by stacking several CNN blocks (Figure
2.5) followed by fully connected layers. The fully connected layers are respon-
sible for receiving the features extracted by the CNN blocks and outputting
an array of size N × 1, containing the probability distribution over N classes.

Figure 2.5: Typical Classification CNN. The CNN blocks (blocks convolution
+ activation followed by pooling) extract features from the input image. The
fully connected layers use those features as input in order to produce the dense
prediction.

Since the introduction of CNNs, several architectures have been pro-
posed, such as LeNet [25], AlexNet [28], VGGNet [29], InceptionNet [30],
ResNet [31], DenseNet [32] and so on. In addition, all of them included im-
provements on hyperparameters and architecture over the previous ones.

In Figure 2.6 we see the architecture of VGG-16, one architecture from
the VGG family [29]. In that Figure, the activation function (ReLU) is implicit
in the convolutional layers. It is possible to notice that the main idea is
that we have blocks of convolutional layers followed by pooling layers. The
number of kernels increases with the depth of the network, and the resolution
of the feature maps decreases as pooling layers are applied. So, despite all
convolutions being 3 × 3, the receptive field increases since the feature maps
are downsampled by the pooling layers. That layout allows for features to
be hierarchically extracted. Earlier layers extract general localised features
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like contours, and deeper layers use those features to extract more complex
semantic features. The semantically rich features are useful for the fully
connected layers to perform classification. However, localisation information
is lost during both the feature extraction process and the flattening of the
feature maps to be fed to the fully connected layers.

Figure 2.6: VGG-16. The architecture from the VGG family with 16 layers
[29].

The next section covers how to adapt the CNN to perform semantic
segmentation.

2.3
Fully Convolutional Neural Networks

The typical classification CNN, shown in Figure 2.5, predicts a label
for the whole input image. This is suitable for classification but not for
semantic segmentation, as we would like to predict a label for every pixel in the
input image. To solve that issue, Fully Convolutional Networks (FCNs) were
proposed [33]. The authors used well-known classification CNNs architectures
like VGG-16 and performed the following modifications:

1. The flattening operation was removed and the fully connected layers were
replaced by 1 × 1 convolutional layers. That allowed the classification
CNN to receive input images of arbitrary sizes.

2. In order to output semantic segmentation maps, a transpose convolu-
tional layer is appended to produce a H ×W ×N output (where H and
W are the height and width of the input image respectively and N is
the number of segmentation classes). The transpose convolution (or de-
convolution) is applied in order to increase the spatial resolution of the
output feature maps. This operation is shown in Figure 2.7.

In Figure 2.8, the feature maps of the FCN VGG-16 modified to perform
semantic segmentation are shown. As can be seen, now the output feature maps
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Figure 2.7: Example of a transpose convolution with kernel 2× 2, input tensor
2× 2 producing an output tensor of 3× 3.

(segmentations maps) are the same resolution as the input image but with the
number of channels equal to the number of classes, N , in the dataset. However,
notice that to generate the segmentation maps, the transposed convolution
had to upsample the previous feature map by 32 times, that is, the prediction
is made on semantically rich features but with low localisation information,
leading to a coarse segmentation.

Figure 2.8: Feature maps of a semantic segmentation FCN based on the VGG-
16 architecture.

To tackle this issue, the authors proposed combining the feature maps
from earlier layers to add localisation information to the prediction and
achieve a finer segmentation. They proposed three architectures. First, FCN-
32s performed the prediction solely on the last feature map (32-stride). Second,
FCN-16s upsampled 2 times the 32-stride feature map and added it to the 16-
stride feature map to perform the prediction. Lastly, FCN-8s upsampled 4
times the 32-stride feature map, 2 times the 16-stride feature map and added
them to the 8-stride feature map in order to perform the prediction. The
upsampling and the predictions are performed by transposed convolutions.
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Figure 2.9 shows the three architectures.

Figure 2.9: Feature maps of a semantic segmentation FCN based on the VGG-
16 architecture.

Adding earlier layers to the semantically rich feature maps provided
localisation information to the feature map used to produce the segmentation
maps. The semantically rich features that are key for classification help to
answer the question "what" and the localisation-rich features coming from the
earlier layers of the architecture help to answer the question "where". Both
types of features are fundamental to the task of semantic segmentation.

The comparison between the segmentation mask produced by FCN-32s,
FCN-16s, and FCN-8s is shown in Figure 2.10. It is noticeable that FCN-
16s was able to produce a finer segmentation than FCN-32s and that FCN-8s
produced an even finer one, supporting the idea that earlier layer feature maps
could provide essential features for computer vision tasks that need localisation
information.

As seen in Section 2.2, the convolutional blocks of classification CNNs
perform very well in extracting semantically important features of the input
image. In Section 2.3 we stated that despite the importance of the semantic
features, localisation-rich features are also necessary for the task of semantic
segmentation as we are interested in answering not only the "what" question
but also the "where" question. In the next section, we cover a family of FCNs
that exploit the encoder-decoder approach to perform semantic segmentation.

2.4
Encoder-Decoder based models

Traditionally, autoencoders have been used to extract features from input
images while retaining most of the original information. That is done with an
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Figure 2.10: Segmentation mask produced by FCN-32s, FCN-16s and FCN-8
compared to the ground truth [33].

encoder-decoder architecture (Figure 2.11) where the encoder is responsible for
the feature extraction while the decoder attempts to reconstruct the input from
the extracted features. The idea is that the extracted features, also called latent
space, in the bottleneck of the autoencoder, have the information necessary
for the decoder to reconstruct the input image. For those cases, the loss is
calculated by a difference measure between the input and the output of the
autoencoder.

Figure 2.11: Default autoencoder representation.

When applying this idea to perform semantic segmentation, the loss is
computed as the difference between the output and the pixel-level annotated
ground truth. The generative nature of the decoder is beneficial to generate
sharper borders semantic segmentation masks as output. The encoder is like
a feature extractor of a typical CNN (Figure 2.5): a series of convolution,
activation, and pooling layers, while the decoder uses transposed convolutional
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layers (Figure 2.7) or unpooling layers (Figure 2.12) in order to generate the
segmentation maps from the extracted features.

Figure 2.12: The max unpooling is an example of an unpooling layer. The max
unpooling uses the indices of the max elements in the pooling operations in the
encoder stage to define the position of the unpooled elements in the output.
Other examples of unpooling layers include the nearest neighbor unpooling
and the bed of nails.

DeconvNet [34] and SegNet [35] are encoder-decoder architectures pro-
posed to perform semantic segmentation using the max unpooling operation
(2.12) in the decoder. DeconvNet uses VGG-16 (with fully connected layers
replaced by their 1 × 1 convolutional layer equivalent) (Figure 2.6) as the
encoder. As the decoder, the mirrored VGG-16 with max-pooling layers is re-
placed by max unpooling layers, and convolution operations are replaced by
transposed convolution operations, producing at the output the segmentation
maps with the same size as the inputs. SegNet (Figure 2.13) proposes a very
similar architecture that uses the first 13 convolutional layers of VGG-16 and
also uses a mirrored encoder as a decoder with max-pooling layers replaced by
max unpooling layers.

For both DeconvNet and SegNet architectures, the decoder uses the
output feature map and pooling indices of the encoder in order to produce
the segmentation output. U-Net [36] (Figure 2.14), on the other hand, does
not use the pooling indices from the encoder but uses the entire feature maps.
This is done by adding skip connections from the encoder to the decoder.
A skip connection is added after every encoder convolutional block (before
the pooling operation) to the decoder. The feature map from the encoder is
concatenated with the upsampled feature map from the decoder (transposed
convolution output) and used as input for a new convolutional block. Adding
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Figure 2.13: SegNet layer representation.

those skip connections to use feature maps from different levels in the decoding
process has proved to be very effective to produce sharper segmentation models
[22].

Other contributions of the U-Net paper [36] include the training strategy
that heavily relies on data augmentation and the Soft Dice loss function based
on the Dice coefficient.

U-Net was originally designed to perform semantic segmentation on
biological microscopy images. However, it was successful to perform semantic
segmentation on a variety of applications. That motivated other works to
develop variations of the U-Net architecture like UNet++ [37], V-Net [38]
and the One hundred layer Tiramisu [39].
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Figure 2.14: U-Net architecture.
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3
Neural Architecture Search

In this chapter, we present the field of Neural Architecture Search
(NAS). First, we describe its main components: Search space, Search Strategy,
and Performance Estimation Strategy. Then we review some of the Neural
Architecture Search methods applied to Semantic Segmentation.

3.1
Neural Architecture Search

NAS can be seen as a search process defined by three components: the
search space, the search strategy, and the performance evaluation strategy
(Figure 3.1) [1]. The search strategy samples candidate architectures - a -
from the search space A, and these candidate architectures are evaluated
accordingly to a performance estimation strategy. The evaluation is used both
for determining which candidates are better than other and to assist in the
search strategy sampling of the search space as the problem deal with the
exploration-exploitation trade-off.

Figure 3.1: NAS process. The search strategy samples candidate architectures
from the search space. The candidates are evaluated accordingly to a perfor-
mance estimation strategy.
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3.2
Search Space

Following the notation used in [40], a DNN can be represented as a direct
acyclical graph (DAG) composed by n nodes ∈ Z, where each node z(k) of the
graph represents a tensor and its associated operation o(k) ∈ O that is applied
to its set of parent nodes I(k). Input nodes have neither parent nodes nor
operations. The computation performed by a node k is then represented by

z(k) = o(k)(I(k)) (3-1)
The set of operations O can contain unary or multivariate operations.

Nodes that perform unary operations can have a single parent. Examples
of these operations include convolutions, pooling, activation, and etc. In
comparison, nodes that perform multivariate operations can have multiple
parent nodes. Examples of multivariate operations are concatenation, addition,
and so on. Moreover, the operations O could also contain blocks of layers
instead of unique layers.

The set of all possible architectures represented by this DAG comprises
the search space. Therefore, it combines all possible ways of connecting the
nodes and all possible operations in the O set. An architecture from the search
space is denoted as a.

However, the search space can be limited by imposed constraints that
insert prior knowledge into the search space and reduce it. These constraints
simplify the NAS process, but the loss in the degrees of freedom may prevent
the search from exploring promising architectures.

The choice of the search space defines hugely impacts the difficulty of the
search problem, since these are non-continuous and with exponentially large
search spaces [1].

Focusing on computer vision tasks, and therefore, thinking about search
spaces dedicated to representing CNNs, the search spaces can be divided into
two main groups: global search space and cell search space. Those search space
approaches will be further explained in the next sections.

3.2.1
Global Search Space

Global search spaces allow for a higher degree of freedom in the network
definition. Network templates are proposed to guarantee that the search space
is not exponentially large and that the DNNs make sense for the desired task.
These templates insert constraints into the search space. For example, the
number of nodes n in the DAG, how the node z(k) might be connected to the
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other nodes, the operations o that are allowed in each node z(k), and some
fixed layers. For example, for a classification, CNN one might impose the last
layers to be fully connected.

A simple chain-structured search space is proposed by [41] (Figure 3.2).
In this search space, the number of nodes is fixed to n and the node z(k) has
only one parent, the node z(k−1). That way, the node computation described
in equation 3-1 is simplified to:

z(k) = o(k)(z(k−1)) (3-2)
The operations o are all unary and belong to the set O = {convolutions,

pooling operations, and fully connected layers}. Additional constraints are
taken into account. Architectures with pooling as first operations and with
fully connected layers before convolutional layers are removed from the search
space. Classical classification CNNs like VGG-16 [29] are contained in this
search space.

Figure 3.2: Chain-structured search space.

In another work [42], a relaxed version of the simple chain-structured
search space is proposed. In this alternative, skip connections are allowed.
In that case, the node z(k) has one default parent node, z(k−1), and possible
ancestor nodes, depending on the architecture a sampled (equation 3-3).

z(k) = o(k)({z(k−1)} ∪ {z(i)|ai,j = 1, i < k − 1}) (3-3)
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In the case where exists a skip connection, a concatenation is performed.
The addition of the skip connection made it possible to represent more complex
networks including ResNet [31] and DenseNet [32].

Other works proposed search spaces [43, 44, 45] that allowed for more
complex multi-branch architectures, increasing the degrees of freedom and al-
lowing for even more complex architectures. However, having a more extensive
search space increases the challenge of NAS.

Figure 3.3: Multi-branch search space.

3.2.2
Cell Search Space

As we can see from VGG-16, Figure 2.6, shown in Chapter 2 and by other
well-known architectures from the literature like ResNet, DenseNet, Inception-
Net, etc., handcrafted DNNs present architectures that rely on repeating motifs
or structures. These repeating structures may be referred to as cells or blocks.
Cell search spaces leverage this idea of repeating patterns in the architecture
to perform NAS. Accordingly to [1], this approach yields the following advan-
tages:

– The size of the search space can be significantly reduced. Since each cell
of a repeating structure network has fewer layers than the whole network.

– Architectures built from cells are more easily adapted to other datasets,
either by varying the number of cell repetitions or changing the number
of filters of the model.
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– The literature has many examples of DNNs with repeating patterns,
confirming the idea that stacking cells can be beneficial for feature
extraction.

One of the earliest works to explore cell search spaces was [46]. In this
work, the popular NASNet search space was proposed. This search space is
based on the typical structure of a CNN, where convolutional blocks are stacked
followed by pooling layers. Two repeated motifs are searched in NASNet, the
Normal Cell and the Reduction Cell. Both are convolutional cells, but the
normal cell produces a feature map as output, which has the same size as
the input feature map, while the reduction cell produces a feature map that
is reduced by a factor of 2. Each cell is a small DAG representing a feature
transformation, as the search space was described at the beginning of the
Chapter.

The cells are organized on a template (Figure 3.4). In this template, a
repetition of N normal cells is followed by a reduction cell in a repeating way.
In order to perform classification, the last layer is fully connected with softmax
activation. N is a predefined hyperparameter. For the template proposed for
ImageNet, a first layer 3x3 convolution is fixed and its role is to extract low-
level features from the input. In the NASNet search space, the skip connections
are subject to search, so each cell can take as input two previous cell outputs.

Similarly, other works [47, 48] proposed a similar search space, but
searching for only one cell and fixing the reduction operations, instead of having
normal cells and reduction cells.

Despite the advantages of cell search spaces, this approaches deals with
NAS on the micro level (inside the cells) and the macro level is still manually
defined.

3.3
Search Strategy

The objective of the search strategy is to find an architecture a from
the search space A that maximizes an objective function on unseen data.
This objective function may refer to a performance metric, but can also be
multiobjective, e.g. maximizing performance while minimizing the number of
parameters. Furthermore, the search strategy defines how architectures from
the search space will be sampled to perform better on the validation set
when trained on the training set (Figure 3.1). The search space is potentially
exponentially large; therefore, the choice of the search strategy deals with the
exploitation-exploration trade-off, since quick convergency, despite desirable,
may lead to poor-performing DNNs.
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Figure 3.4: Templates proposed for the NASNet search space (a) template
proposed for CIFAR10 (b) template proposed for ImageNet. The green cells
are fixed cells in the template.

NAS is a search problem, and several algorithms have been used in the
literature, i.e., random search, reinforcement learning, evolutionary algorithms,
etc.

3.3.1
Reinforcement Learning

Reinforcement learning (RL) methods are used in order to model sequen-
tial decision-making processes. In RL methods, an agent interacts with the
environment by taking actions and receiving rewards. The goal is to optimize
a policy that makes the agent select its actions to maximize future returns.
Return is the cumulative discount sum of rewards over multiple interactions
with the environment. The policy defines how the agent will act based on the
environmental state. And the environment’s state is obtained by observation
3.5.

When framing NAS as an RL problem, the sampling of a candidate
architecture is the agent’s action, and the RL’s action space is the NAS
search space. The return required by the RL algorithm is the evaluation
of the candidate’s architecture. Different works applying RL to NAS differ
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Figure 3.5: A general framework for RL methods.

in the policy representation and optimization method. [42] uses a recurrent
neural network (RNN) policy and trains it with REINFORCE [49]. The RNN
sequentially samples a variable-length string that is decoded into the candidate
architecture. In a follow-up work [46], they used Proximal Policy Optimization
instead of REINFORCE. Another alternative is used by [41]. In this work, Q-
Learning trains a policy to choose a layer and its hyperparameters sequentially.
Despite the layers of the architecture being sequentially sampled, the reward
is only given once the whole architecture is evaluated. This approach simplifies
the RL problem to a stateless multi-armed bandit problem.

A different approach frames NAS as a sequential decision-making process.
In [50], the reward is the estimated performance of a partially trained network
and the action corresponds to the application of a function-preserving mutation
in the architecture. The policy for this work is also an RNN trained with
REINFORCE.

RL-based approaches are a popular choice to tackle the NAS problem
and several other works explore it. The next section covers another popular
choice for the search strategy which is evolutionary algorithms.

3.3.2
Evolutionary Algorithms

Evolutionary algorithms (EAs) are population-based optimization algo-
rithms inspired by the natural process of evolution. The algorithm comprises
some key steps: initialization, parent selection, recombination and mutation,
and survivor selection [51]. The first step is initialization which defines how the
first population is created. After initialization, each generation is composed of
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the following steps:

1. Select parents from the population for reproduction.

2. Apply recombination and mutation operations to create offspring with
higher variability.

3. Evaluate the fitness of the offspring.

4. Select the survivors of the population based on their fitnesses.

The generations are repeated until a stop criterion is reached, which
could be a maximum number of generations or a fitness requirement. The
whole process is in Figure 3.6.

Figure 3.6: A general framework for EA methods.

When applying EAs to NAS, the population is a set of candidate
architectures sampled from the search space and its fitness is the validation
set’s evaluation. Usually, only the mutation operation is applied for NAS, since
there is no indication that combining two candidate architectures with high
fitness will lead to a good architecture.

Different works using EAs on NAS differ on how they encode and
represent architectures (individuals), the selection, and the update operations.

One of the first works to find competitive classification CNN architectures
using EAs was [52]. In their approach, the initialization step starts with
the definition of one thousand simple architectures, composed only of a
global average pooling layer and the fully connected output layer. Then two
architectures are sampled at random from the population for evaluation. The
better performing one is copied and mutated to generate a child architecture.
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Then the parent and the child architectures are added back to the population,
while the worse architecture is removed. The possible mutation operations
include adding or removing convolutional layers, changing hyperparameters,
adding or removing skip connections, and so on.

In [43], the architecture is represented by a sequence of triplets defining
each block’s operation and inputs. The string formed by the concatenation of
those triplets forms the genotype. Since that representation may lead to unused
inputs or disconnected blocks, some parts of the genotype may be inactive
and therefore, not present in the decoded architecture (phenotype). They use
(1+λ)-evolutionary strategy (λ = 2) approach [53]. The mutation is generated
by changing parts of the genotype and the fitness value is the accuracy metric
on the validation set. The parent selection method is the tournament.

Lie et al.,[48] proposed a hierarchical search space and at every genera-
tion, a hierarchical level is selected to be mutated. The population is initialized
with two hundred simple individuals, diversified by a thousand random muta-
tions. Mutations can add, change or remove operations from the genotype on
a hierarchical level. Parents are selected through a tournament and no indi-
viduals are removed from the population during evolution.

In [54] an EA was applied to the NASNet search space, leading to the
discovery of AmoebaNet-B and AmoebaNet-C. The evolutionary algorithm
used a tournament for parent selection, and the selected individuals are
mutated with a random operation change or connection change. For survival
selection, the fitness value and the age of the individual are considered. That
way, individuals that lived for multiple generations tend to be removed from
the population. This provides a regularization effect that adds diversity and
ensures that a good performance on the validation set is the only way an
architecture keeps in the population for longer. [54] also conducted a case
study comparing RL and EA, concluding that EA performs as well as RL in
terms of accuracy, but EA is able to find smaller architectures.

3.3.3
Other methods

The majority of works in the field of NAS use either RL or EA.
However, with the growing interest in this research field, other techniques
have been proposed, such as Bayesian Optimization [55], Monte Carlos Tree
Search [56, 57], Hill Climbing Algorithm [58] and Gradient-based optimization
[59, 60, 61, 62, 63] for a continuos-relaxed version of the search space.
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3.4
Performance Estimation Strategy

As previously mentioned in the Search Strategy section, the objective
of NAS is to find a neural architecture a that maximizes the performance on
unseen data. This performance may be a task-specific metric, or NAS may
also deal with multi-objective optimization (e.g. finding good-performing yet
small architectures). The most straightforward way of assessing a candidate’s
architecture a performance is to train it on a training set and evaluate it
on a validation set. However, this process is time and resource-consuming,
sometimes achieving thousands of GPU days [46, 52, 54].

In that context, it is interesting to use methods to reduce the cost of
estimating the performance of a candidate architecture. For example, some
works propose lower-fidelity estimates of the performance, like training for a
reduced number of epochs [64, 65], training on a subset of the training set
[66], training with lower-resolution input images [67], reducing the number
of filters of the convolutional layers or reducing the number of cells in the
network template [46, 68]. These lower-fidelity estimation strategies effectively
reduce the time and resource consumption of the search process. However, this
strategy may introduce error when the ranking produced by the estimates is
different from the ranking that would be achieved in case of a full evaluation.

Another approach is to extrapolate the learning curve. Several works
applied this concept in different ways. [69] propose to extrapolate the learning
curve to identify candidate architectures that would probably not achieve
a good performance and interrupt their training and evaluation process.
That would speed up the NAS process because only promising candidate
architecture would be fully evaluated. Other works [68, 70, 71, 72] consider
architectural hyperparameters to predict which partial learning curves are
most promising. [73] trains a surrogate model to predict the performance of
candidate architectures based on previously evaluated architectures using its
architecture properties as predictive variables.

A third approach is to initialize the weights from a previously trained
architecture. This is done by initializing the weights of candidate architectures
based on the weights of previously trained ones. Network morphisms [74]
is a mechanism that allows generating child architectures from parent ones
preserving their function, several works already use this mechanism [50, 58, 75].
The weight inheritance allows for candidate architecture not to be trained from
scratch, significantly reducing the time consumption of the evaluation.

As stated in Section 3.2, an architecture can be viewed as a DAG. For
One-shot Architecture Search, the candidate architecture DAGs are subgraphs
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of a supergraph (the One-shot model). The subgraphs share weights and edges.
Therefore, in that approach, the One-shot model is trained once before the
search. During the search, the candidate architectures are sampled from the
One-shot model and their weights are inherited from the One-shot model. This
significantly speeds up the evaluation process since no training is required.
However, it is important to notice that since all subgraphs are trained together,
the performance estimation of the candidate architectures can incur in a large
bias and do not correspond to the performance those architectures would
achieve if trained from scratch. In addition, one limitation of One-shot methods
is that the whole supergraph has to fit on memory.

Despite the great focus on the strategies to reduce time and resource
consumption of the performance estimation process, noise in the estimation is
also important. Estimating the performance of a DNN is a stochastic process,
due to several factors like weights initialization, training, and dataset split.
This issue is particularly problematic for small datasets. Dushatskiy et al.,[76]
showed that performing 5-fold cross-validation with 3 different initialization
leads to a more reliable performance estimation than the straightforward single
initialization single evaluation. On the other hand, this increases time and
resource consumption.

3.5
Neural Architecture Search applied to Semantic Segmentation

With the success of NAS on classification, other works applied to other
computer vision tasks like object detection and image segmentation. This
section will cover some works on NAS applied to semantic segmentation.

The first work applying NAS to semantic segmentation was done by
Google DeepLab [77]. After the outstanding performance achieved by their
family of proposed semantic segmentation architectures DeepLab-v1 [78],
DeepLab-v2 [79] and DeepLab-v3 [80], they proposed an architecture search
space to search for a dense prediction cell (DPC), that produces segmentation
maps from the features extracted by a backbone. In their work, they used
MobileNet-v2 [81] and Xception [82] as backbones. The DPC consisted of a
DAG with n branches and each branch was specified by a 3-tuple (Xi, OPi, Y i),
where Xi is the input tensor, OPi is the operation performed by the branch
and Yi is the output tensor. The operation could be:

– 1× 1 convolution

– 3 × 3 atrous separable convolution with rate rh × rw, where rh and rw

∈ {1, 3, 6, 9, ..., 21}
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– Average spatial pyramid pooling with grid size gh × gw where gh and gw

∈ {1, 2, 4, 8}

In order to reduce time consumption, they trained the backbone on a
proxy task and cached the weights, so that when evaluating a DPC, they can
train for fewer epochs. The search strategy used in this work was random
search [83].

Another work from Google DeepLab [56] applied NAS to the backbone of
the architecture and used Atrous Spatial Pyramid Pooling (ASPP) modules to
produce the segmentation maps. The search space is divided into two, the cell
level search space and the network level search space. The cell is a convolutional
module composed of n blocks, and each block is composed of a two-branch
structure mapping 2 input tensors to 1 output tensor. Each block is specified
by a 5-tuple (I1, I2, O1, O2, C), where I1 and I2 are the input tensors, O1 and
O2 are the operations performed on each input and C is the operation used to
combine the tensor produced by the operations. The operations belong to the
set of operations:

– 3× 3 depthwise-separable convolution.

– 5× 5 depthwise-separable convolution.

– 3× 3 atrous convolution with rate 2.

– 5× 5 atrous convolution with rate 2.

– 3× 3 average pooling.

– 3× 3 max pooling.

– skip connection.

– no connection.

A network template was defined on the cell search spaces covered in
Section 3.2. In Auto-DeepLab [56], they set a continuous relaxation approach
in order to find the network-level architecture of the decoder. Furthermore,
they adopt a gradient-descent approach to perform the search.

Following the idea of having a network-level search space and a cell-level
search space, C2FNAS was proposed [84]. A bi-level search (coarse-to-fine)
is performed, in which first the macro-level (coarse stage) search is performed
and the topology of the network is defined and then the micro-level (fine stage)
search is performed in order to define the operations each cell performs.

During the coarse stage, a default operation is attributed to each cell,
and use an EA performs the search for topology. The topology incorporates
two priors: (1) U-shaped encoder-decoder structure and (2) skip-connections
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between encoder and decoder. After the topology is defined, the fine stage takes
place. During that stage, the topology is fixed and One-shot NAS is performed
in order to define the operation in each cell.

Different search strategies are used in the coarse and fine stages because
the topology search space is reduced when compared to the cell level. So an
EA is applied to the small search space because it needs every candidate to
be evaluated and then One-shot is applied to the big search space because, in
that case, the whole search space (supergraph) is trained once.

The possible operations belong to the set:

– 3× 3× 3 convolution.

– 3× 3× 3 depthwise-separable convolution.

– 3× 3× 1 convolution.

The cell is composed of either one or two branches (in case there is a
skip connection). In the case of one branch, the input tensor passes through a
1×1×1 convolution, then the cell operation is applied, and finally, a 1×1×1
convolution is applied. In the case of a two branches cell (with skip-connection),
both branches go through a 1× 1× 1 convolution and cell operation. Finally,
the output tensor is summed and passes through a 1×1×1 convolution again.

MixedBlock [85] used a similar search space as CF2NAS [84] composed
by a topology-level and a cell-level search space. However, this work presents
two main differences: (1) the topology and cell search were performed simul-
taneously, and (2) instead of defining cells that perform simple operations,
convolutional blocks used by state-of-the-art classification CNNs were used.
So the operation performed by each cell could be one of the following:

– VGG block [29].

– ResNet block [31].

– DenseNet block [32].

– InceptionNet block [30].

In this work, Local Search was used as the search strategy.
Both CF2NAS [84] and MixedBlock [85] search spaces produced networks

with great inspiration from encoder-decoder architectures like U-Net. Another
work that took inspiration from the U-Net architecture, but using cell search
spaces, was NAS-Unet[86]. In this work, two types of cells were defined: (1) the
DownSC cell that halves the resolution of the feature maps and (2) the UpSC
cell that doubles the resolution of the feature maps. The U-Net architecture
is used as a network template; the encoder is composed of DownSC cells and
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the decoder of UpSC cells. Each cell is a DAG that receives possibly 2 inputs
(the previous cell output and skips connection when applied) and produces one
output. The number of operations inside the DAG is parametrizable. DownSC
cells have only downscaling and normal operations, while UpSC cells have
upscaling and normal operations.
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4
Q-NAS

This chapter presents Q-NAS (Quantum Inspired Neural Architecture
Search). In the first section, we overview the algorithm; then, we present the
search space and how Q-NAS represents the individual. Finally, we will go
through the quantum-inspired evolutionary algorithm used in Q-NAS.

4.1
Overview

Q-NAS is a quantum-inspired evolutionary algorithm (QIEA) developed
to perform NAS. Q-NAS searches for the best DNN architecture and hyperpa-
rameters for a predefined task. When proposed, Q-NAS was applied to perform
image classification [3]. However, it’s core QIEA was designed to be task ag-
nostic. So, it could potentially be extended to any task.

Figure 4.1 shows an overview of Q-NAS. Before running Q-NAS, the user
must predefine the network template, function set, hyperparameters, and their
ranges. This information characterizes the search space and is closely related to
the specific task. In Figure 4.1, we see a network template, where the network
is represented by a chain structure of nodes followed by a fully connected layer
to produce the output. The function set comprises all possible operations a
node in the network template can perform. So one can define a function as a
simple layer or a complex block.

With that defined, Q-NAS is run, and the output is produced. The
output of Q-NAS is the best architecture found in the search process and
its hyperparameters.

In order to address the search for network architecture and hyperpa-
rameters, the quantum chromosome is divided into two parts. The numerical
part accounts for the hyperparameters, and the categorical part accounts for
encoding the functions each node from the network performs.

Figure 4.2 shows an overview flowchart of QNAS. During initialization,
the predefinitions are made, the generation count is set to 0 and the quantum
population is initialized. The quantum individual can not be directly evaluated,
so in each generation, the quantum population is observed in order to generate
the classical population. Then, the classical population is evaluated and the

DBD
PUC-Rio - Certificação Digital Nº 2020878/CA



Chapter 4. Q-NAS 46

Figure 4.1: Q-NAS overview. The user must predefine the network template,
function set, hyperparameters, and ranges. Q-NAS produces as output the best
architecture and its hyperparameters.

fitness of the individuals is used to update the quantum individuals. The
generation of the classical individual and the update of the quantum individual
is done differently for the categorical and numerical part of the chromosome.
The process ends when the maximum number of generations is reached.

4.2
Search Space and Chromosome Representation

The quantum individual representation is a key concept for quantum-
inspired evolutionary algorithms since quantum individuals represent many
quantum states, and when observed, the classical individual can be decoded
into a possible solution to the problem. As stated before, Q-NAS quantum
individual is two-fold: the numerical part and the categorical part.

4.2.1
Numerical quantum chromosome

Given G hyperparameters the quantum chromosome qi is defined as:

qi = [pi1(x), ..., piG(x)] (4-1)
Where each pij(x) is a probability density function (PDF) that represents

the probability of observing a specific range of values for the hyperparameter
j when the individual i is observed. Q-NAS defines the pij(x) as square pulses
that are initially defined by their predefined ranges (lij for the lower bound
and uij for the upper bound).

DBD
PUC-Rio - Certificação Digital Nº 2020878/CA



Chapter 4. Q-NAS 47

Figure 4.2: Q-NAS simplified flowchart showing in the dark boxes the steps
are executed differently for the two parts of the chromosome.

The generate numerical step in Figure 4.2 represents the observation
process. The observation of pij(x) follows the steps:

1. generate a random number r in the interval [0, 1].

2. find x such that Fij(x) = r, where Fij(x) is the cumulative density
function (CDF) of pij(x)

3. the observed hyperparameter value is x = r × (uij − lij) + lij

After observation, the numerical part of the classical individual is gener-
ated. A crossover operation is then applied to the classical individual.

Another step that has to be defined is the quantum individual update. A
random mask is generated based on the parameter update_quantum_rate to
define, which pij(x) are going to be updated. The idea is that pij(x) is changed
in order to increase the probability of observing values that lead to better-
evaluated individuals. This is done by changing the mean µij and the width
σij of the pij(x) using the following equation (Eq. 4-2).
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dt = max
i=1..N

ct
ij − min

i=1..N
ct

ij

µt+1
ij = µt

ij + r × (ct
ij − µt

ij)

σt+1
ij = σt

ij + r × (dt − σt
ij)

(4-2)

Where ct
ij is the jth current value of a classical individual i and r is a

random number in a range [0, 1]. Rewriting the Equation 4-2 in terms of lij

and uij we have:

lt+1
ij = lt

ij + r ×
(

ct
ij − lt

ij −
dt

2

)

ut+1
ij = ut

ij + r ×
(

ct
ij − ut

ij + dt

2

) (4-3)

The Equation 4-3 can be interpreted as the PDF defined by pij(x), being
shifted and narrowed in the direction of the value of the best classical individual
hyperparameter.

4.2.2
Categorical quantum chromosome

For the numerical part of the quantum chromosome, the observation
already produces the values of the hyperparameters that are going to be used.
On the other hand, for the categorical part of the chromosome, the observation
process will output the functions from the function set that each node is going
to perform. A decoding process must take place to translate these into the
network itself, using the network template so the individual can be evaluated.

The network template proposed in [3] is a chain-like structure composed
of L nodes, and every node performs a function F from the function set. As
it was proposed to be applied to image classification, a final fully connected
layer is fixed.

As shown in Figure 4.1, the user predefines M functions. The functions
are mapped to integers in the [0, M−1] range. That way the classical individual
pi is defined as:

pi = [gi1, .., giL], gij ∈ [0, M − 1] (4-4)
Considering this classical individual representation, the quantum indi-

vidual defines a probability mass function (PMF) for each node in the network
template. A quantum gene encoding a node is then represented by:
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gj = [xj1, .., xjL], xik ∈ [0, 1)and
M∑

k=1
xjk = 1 (4-5)

where xjk is the probability the function k is observed in the classical
individual for the node j.

That way, if we have N individuals, the quantum population can be
represented by an array of shape (N, L, M).

At the initialization step, every gene gj starts with the same PMF.
The user can also specify this so that an initial bias towards some functions
can be inserted. After that, the observation process is simply the use of the
probabilities xj to sample which function is going to be observed.

Figure 4.3 shows the process of observing a quantum individual, gen-
erating a classical individual, and then decoding it into the network to be
evaluated using the network template. As an example, the quantum gene g0 is
composed by a set of probabilities [0.2, 0.1, 0.3, 0.1, 0.3]. Each probability value
in the vector g0 defines the sampling probabilities of the associated functions.
So, for the case shown in Figure 4.3, the function 0 was sampled, and it had
20% probability of being observed. The function 0 in the function set is the
1× 1 convolution with 32 kernels.

Figure 4.3: The observation process generates a classical individual from the
quantum individual. The classical individual is then decoded into the network
to be evaluated.

The classical individual can lead to unfeasible networks. For example,
for a given input image resolution, there is a maximum number of pooling
operations allowed. In Q-NAS, a penalize_number parameter is defined so
that only that number of pooling layers is decoded. The exceeding layers are
ignored during the decoding process. However, a decrease of 0.01 for each
exceeding pooling layer is applied to the fitness value of that individual.
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Following the same idea that the best classical individuals should guide
the update of the quantum chromosome, the update of the categorical quantum
chromosome aims to increase the probability that functions observed in a
good-performing classical individual should be increased while the remaining
decrease. Q-NAS uses a simple heuristic for that. First, a random mask, based
on the update_quantum_rate parameter is generated to update the quantum
individual. This mask defines which gi are going to be updated, then for each
node i in the mask the following steps are executed:

1. get the function for node i in the best classical individual

2. calculate update_value = r × 0.05 where r is a random number in the
interval [0, 1]

3. increase the probability of observing that function by update_value

4. decrease the probability of observing the other functions by update_value
M−1

These steps ensure that the probability of observing any function will
never be 0.

4.3
Quantum Inspired Evolutionary Algorithm Search Strategy and Evaluation
Strategy

After defining the Search Space, how the quantum individual is repre-
sented and evaluated. This section covers the steps of the quantum-inspired
evolutionary algorithm and evaluation strategy used in [3].

The algorithm of Q-NAS is stated below (Algorithm 1).
First, the quantum population Q(t) is initialized. Q(t) is composed of N

quantum individuals qt
i , i = 1, 2, .., N , where the size of the quantum popula-

tion is defined by the number_of_individuals parameter. The initialization
process involves assigning the initial probabilities to the quantum individuals.
For the numerical part, the user provides lower lij and upper uij bounds of the
PDFs, and for the categorical part, the user provides the initial probabilities of
observing each function of the function set. If not provided, the probabilities
will be assumed the same.

Then the classical population is generated by observing both parts of the
quantum individuals’ chromosomes. These procedures were already discussed.
One important aspect is that each quantum individual can generate one or
more classical individuals. Because of the stochastic nature of the observation
process, each observation of the same quantum individual may lead to different
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Algorithm 1 Q-NAS
t← 0
Initialize Q(t)
while t ≤ T do

Generate classical population C(t) observing Q(t)
if t = 0 then

Evaluate C(t)
P (t)← C(t)

else
C(t)← recombination between C(t) and P (t)
Evaluate C(t)
P (t)← best individuals from [C(t) ∪ P (t)]

end if
Q(t + 1)← update Q(t) based on P (t) values
t← t + 1

end while

classical individuals. The number of classical individuals generated for each
quantum individual is defined by the parameter repetition.

After that, each classical individual is decoded and evaluated. The
evaluation process follows the steps:

1. train the decoded network for 50 epochs on a subset of the training set.

2. evaluate the accuracy of the network on the validation set for the 5 last
epochs.

3. assign the best of the 5 accuracies as the individual fitness.

Training for a restricted number of epochs and on a subset of the training
set are some strategies used to reduce the time consumption of Q-NAS.
Another restriction imposed is that networks that took more than 90 minutes
to train are evaluated with a fitness value equal to 0.

In the first generation (t = 0), the best population P (t) will be C(t). For
the other generations (t ≥ 0), there is already a previous P (t), so recombination
can be applied. Crossover is applied to the numerical part of the chromosome
and no recombination is applied to the categorical part, since there is no
indication that this can lead to better network architectures [2]. Q-NAS uses
the steady-state approach for selecting P (t). That means that if the classical
population has size K (K = N × repetition), P (t) will save the K best
individuals from the set P (t) ∪Q(t).

Finally, quantum individuals are updated based on P (t) following the
procedures previously defined, based on the parameter update_quantum_gen,
which defines the periodicity of the quantum individuals’ update. Therefore,

DBD
PUC-Rio - Certificação Digital Nº 2020878/CA



Chapter 4. Q-NAS 52

for example, if update_quantum_gen = 3, the quantum individuals are going
to be updated every 3 generations.

The algorithm is run for T = max_generations. After its completion,
the best architecture is trained for 300 epochs using the best hyperparameters
on the whole dataset.
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5
SegQNAS

In this chapter, we present our method, SegQNAS, which applies Q-NAS
to search for semantic segmentation neural networks.

In order to extend Q-NAS to perform NAS for semantic segmentation
networks, an adequate search space must be used. This is done by changing
the network template and function set predefinitions and adjusting the per-
formance estimation strategy. The decoding process had also to be changed
to account for the design constraints imposed on the network topology. The
Quantum Inspired Evolutionary Algorithm, the core of Q-NAS, is task agnos-
tic. Therefore the search strategy remains the same.

SegQNAS was implemented using the Keras framework [87].
One observation is that SegQNAS focused on the evolution of the network

architecture; thus, the hyperparameter search is not covered.

5.1
Search Space

The search space proposed for SegQNAS is based on the works of [84, 85]
that divide the search space into the topology and cell levels. The following
sections will cover this two level search space.

5.1.1
Topology level search space

The topology level search space is shown in Figure 5.1. The network is
represented by a DAG composed of L cells. Each cell is on a level in the [0, D]
range. D defines the maximum allowed level. At the level d, the feature maps
have shape R

d2 , R
d2 , F ×d2, where (R, R) is the resolution of the input image and

F is the number of kernels (number of filters) of the stem convolution. The
cell level is subject to four design constraints:

1. The cell level either increases by 1 unit, decreases by 1 unit, or remains
the same as the previous cell.

2. The output cell level is the same as the input cell level.

3. The minimum cell level is 0.
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Figure 5.1: One possible network in the topology search space. The circles
represent feature maps, while the arrows represent the cells. The dark grey
circles represent the network’s input (left) and the output (right). The yellow
circles are feature maps that are outputs of the network’s cells. The first and the
last arrows represent, respectively, a stem convolution to adequate the feature
map shape and the final convolution that produces the segmentation maps. The
solid arrows are cells of the network, and the dashed arrows represent other
possibilities in the search space; therefore, feature maps that are not connected
by any arrow are infeasible. Skip connections are omitted for illustration
purposes. The cell level is on the right ranging from 0 to 4 (D = 4), and
on the top, the cell enumeration ranges from 0 to 9 (L = 10).

4. The maximum cell level is D.

The first constraint ensures that the features are extracted and recovered
gradually by the network. The second constraint is a requirement for segmen-
tation networks since it is needed that the dimensions of the output match the
dimensions of the input. The third and fourth constraints are just limiters of
the search space.

With that in mind, each cell could be of one of the types: upscaling,
downscaling, or nonscaling. The upscaling cell increases the cell level by 1
unit, causing the feature map resolution to double while halving the number
of channels. The downscaling cell halves the feature map resolution while
doubling the number o channels, while the nonscaling cell preserves the same
feature map shape as the previous cell. That relationship between the feature
map resolution and the number of kernels with the cell level is expressed by
the resolution of the feature map at the cell level d being R

d2 , R
d2 , F × d2 where

(R, R) is the resolution of the input image and F is the number of kernels
(number of filters) of the stem convolution.

In order to enforce the aforementioned design constraints and prevent
infeasible solutions from being decoded, a special decoding process is proposed
and will be described in Section 5.2.
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Figure 5.2: U-Net topology represented in SegQNAS search space. The dashed
arrows connecting the encoder and decoder are the skip-connections.

Another design choice for the search space was the addition of skip-
connections during the decoding process. The skip-connections are added when
there is a a previous cell on the same level. This is similar to the proposed skip
connections in the U-Net architecture [36].

The proposed topology search space allows for a variety of topologies
while still having as subset encoder-decoder topologies like U-Net (Figure 5.2)
and its variants.

5.1.2
Cell level search space

SegQNAS search space is a global search space, in which each cell
performs a different operation. That means that we are not searching repeated
cells. Instead, following the strategy in [85] each cell operates a state-of-the-
art CNN block. This decision allows for great flexibility, allowing each cell to
perform a different operation while preventing the search space from growing
too much using blocks.

The cell structure is the same in [76] (Figure 5.3). The cell is composed
of a searchable block, an optional upscaling/downscaling operation depending
on the cell type, and a concatenation of the skip connection and input if the
skip connection is present. The input of the cell l is the output of the cell l− 1
or the output of the stem convolution if l = 0.

The concat block in Figure 5.3 concatenates the input with the skip
connection and applies a 1 × 1 convolution to keep the feature map shape
equal to the input shape.

The upscaling operation is a 3×3 transpose convolution with stride = 2,
and the downscaling operation is a 3 × 3 convolution with stride = 2. The
number of kernels f of those operations is defined by the cell level f = F × d2,
where F is the number of kernels for the stem convolution and d the level.
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Figure 5.3: Cell structure. The dashed blocks exist only when applicable. The
concat block exists only when there is a skip connection to that cell. The
upscaling/downscaling blocks exist depending on the cell type.

The stem convolution is a 3× 3 convolution with F kernels fixed as the
first operation of the network and used to transform the (R, R, c) input image
into a (R, R, F ) feature map, where c is the number of channels of the input.

The final convolution is another fixed operation but fixed as the final
operation of the network, and it is responsible for getting a (R, R, K) feature
map as input and transforming it to the (R, R, N) segmentation maps, where
N is the number of classes of the dataset. The final convolution is a 3 × 3
convolution with N kernels. If N = 1 the activation function of the final
convolution is defined as a sigmoid. If N > 1, the activation function is defined
as softmax.

A block of Batch Normalization and ReLU activation is implicit for all
convolutional operations.

The searchable block is a block belonging to the function set of SegQNAS.
The selected blocks are the same as in [85]; their layers are shown in Figure
5.4 and listed below.

– VGG Block
– ResNet Block
– DenseNet Block
– InceptionNet Block
– Identity Block

Due to their good performance in classification, these blocks are also used
in semantic segmentation architectures. For example, the VGG block is the
standard block of U-Net and the ResNet block is the standard block of ResU-
Net. An Identity block was included to provide flexibility in the architectures.
So, the Identity block does not operate and the goal of adding this block is to
allow for fewer parameters networks to be found.

Figure 5.5 shows a possible network from SegQNAS search space.
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Figure 5.4: Blocks of SegQNAS. Conv(kxk) refers to a k×k convolution where
k is also searchable. BN stands for Batch Normalization and ReLU indicates
all activations as ReLU. All blocks produce as output a feature map with the
same shape as the input.

Figure 5.5: Network from SegQNAS search space.

5.1.3
Network template and Function set

To summarize the search space, each cell can be defined by three
parameters:

1. The cell type (upscaling, downscaling, nonscaling).

2. The block (VGG, ResNet, DenseNet, InceptionNet, Identity).

3. The kernel size (k ∈ {3, 5, 7}) of the block convolutional operations.

The cell type defines the topology level search space and the block and
kernel size define the cell level search space.

Therefore, the network template of SegQNAS is the DAG composed of
L cells and built as shown in Figure 5.1 with the stem and final convolutions
fixed.
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Figure 5.6: Operations that lead to infeasible networks in red. Those operations
disrespect the design constraints listed in Section 5.1.

The function set of SegQNAS is the set of all combinations of cell types,
blocks and kernel sizes. A caveat is that the Identity block does not need a
kernel size specification as it performs no convolutional operation. So, just to
give a small example, the function set could contain the following functions:

– vgg_u_3: VGG upscaling 3× 3
– res_d_5: ResNet downscaling 5× 5
– vgg_n_7: Dense nonscaling 7× 7
– ideu: Identity Upscaling

As there are three possible cell types, five possible blocks, three possible
kernel sizes, and having in mind that the Identity block does not need a kernel
size specification, we could have a function set of size 3× (4× 3 + 1) = 39

5.2
Decoding

The decoding process that translates the classical individual into the
network, using the network template, has to account for the design constraints
mentioned in Section 5.1.

If we do not enforce those constraints, the decoded network could produce
a segmentation map output that is not the same size as the input, with cells
level above 0 or below D. Figure 5.6 shows all possible operations that lead to
infeasible networks considering the network template with D = 4 and L = 10.

In order to guarantee that the decoded network is going to respect the
design constraints, we opted for the approach of fixing the cell type during
decoding. For that, we defined four rules:
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– Rule 1: if d = 0 and the cell type is upscaling, change the cell type to
nonscaling.

– Rule 2: if d = D and the cell type is downscaling, change the cell type
to nonscaling.

– Rule 3: if L− l = d and the cell type is either downscaling or nonscaling

change the cell type to upscaling.

– Rule 4: if L − l = d + 1 and the cell type is either downscaling change
the cell type to nonscaling.

Where d is the cell level.
The rule 1 account for the constraint of not allowing levels below zero,

rule 2 enforces maximum level constraint, while rule 3 and 4 guarantee that
the output level is the same as the input (d = 0).

5.3
Performance Estimation Strategy

The quantum individual is observed, and the classical individual is
generated. Then, the classical individual is decoded into the network. The
next step is to evaluate this network to measure a fitness value that SegQNAS
uses to continue the evolutionary process.

This fitness value must be a task-specific metric measuring the perfor-
mance of the network on unseen data. When Q-NAS was proposed for deep
learning, it was applied to classification tasks and it used accuracy as a per-
formance evaluation metric. However, for semantic segmentation tasks, more
appropriate metrics should be used. SegQNAS uses the Dice-Sørensen coeffi-
cient (DSC) which is defined by:

DSC = 2|X ∩ Y |
|X|+ |Y | (5-1)

Where X is the output segmentation mask produced by the candidate
network and Y is the ground truth.

The training protocol is the same as [85]. ADAM optimizer is used with
a learning rate 10−3 and polynomial decay 0.9. The loss function is Soft Dice,
a differentiable version of the DSC that uses the segmentation maps that the
network outputs instead of the segmentation masks that the network outputs.
A data augmentation protocol was applied with horizontal flipping, shifting,
scaling, rotating, and random brightness operations.

A cross-validation approach was used because [76] showed that the
stochastic nature of the neural network and the dataset split could insert
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noise into the evaluation process. This noise is mitigated by performing cross-
validation. Thus, the evaluation process consisted of performing a 5-fold cross-
validation process. The DSC on the validation set for the last 20% of the epochs
of the 5 folds were then averaged. Finally, this average was taken as the fitness
value of the individual that generated the network.

This process was proposed this way, due to resource constraints, and
some techniques were employed to reduce time consumption in the performance
estimation process. First, the training was performed for a reduced number of
epochs. So instead of training the network until convergence, the network was
trained for only 30 epochs. That means the DSC of the last 6 epochs of each
fold were averaged to get the fitness value.

Furthermore, during the training, only half of the training set is sampled
randomly and used in each epoch, expecting each image to be used at least
once along the 30 epochs.

After the best architecture is found, a 3 initialization cross-validation
with 5-fold is performed, and each network is trained for 100 epochs using the
whole dataset. The best architecture’s performance is the DSC’s average over
the last 20% epochs (20 epochs) for every epoch.
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6
Experiments and Results

In this chapter, we present the experiments conducted in order to evaluate
SegQNAS. First, we describe the datasets used in the experiments, and then
the setup is presented. Next, we overview the experiment protocols, and finally
present and discuss the results on each dataset.

6.1
Datasets

This section describes the datasets used to perform the experiments.
Both are datasets from the Medical Segmentation Decathlon challenge [4] and
are publicly available. The datasets were also used in the MixedBlock paper
[85], and the preprocessing transformations were the same aiming for a more
accurate comparison.

6.1.1
Spleen Dataset

The Spleen dataset contains 61 3D-CT scans from patients undergoing
chemotherapy treatment for liver metastases. The target segmentation was the
Spleen (single-class). This dataset was selected for the challenge due to its large
variation in the field of view.

From the 61 3D-CT scans, the ground truth was provided for 41 scans,
corresponding to 3650 2D slices.

As a preprocessing step, the slices were clipped between -57 and 164
Hounsfield Units (HU) and normalised using min-max normalisation.

6.1.2
Prostate Dataset

The Prostate dataset contains 48 prostate multiparametric MRI (mp-
MRI) scans with target segmentation regions being the prostate peripheral
zone (PZ) and transition zone (TZ). This dataset was selected for the challenge
because it is a segmentation of two adjoined regions with very large subject
variability.
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From the 48 mp-MRI scans, the ground truth was provided for 32 scans,
corresponding to 602 2D slices.

As a preprocessing step, the slices were Z-normalised.

6.2
Setup

The experiments were run on a GPU cluster with three A30 24Gb GPUs.

6.3
Experiments

The goal of the experiments is to evaluate the proposed adaptation of
Q-NAS to perform semantic segmentation, namely SegQNAS. To do that,
four experiments were designed with different function set predefinitions. The
different function sets allow evaluation of the search space on the different
levels. The goals of the experiments are listed below

– Experiment 1: Evaluate the search considering only the topology level
search space.

– Experiment 2: Evaluate the search considering only the cell level search
space.

– Experiment 3: Evaluate performing the search on a bi-level approach like
in [84], which means performing the search sequentially on the topology
level and then on the search level.

– Experiment 4: Evaluate performing the search on the topology and cell
levels simultaneously.

Finally, the best architecture found for each experiment is compared,
in terms of performance and number of parameters, to two state-of-the-art
baselines, namely U-Net and ResU-Net, and also to the architectures found in
[85] which use a similar search space, datasets, and input image resolution.

For the experiments we set L = 10, D = 4, R = 128, F = 16
number_of_individuals = 9, repetitions = 1, max_generations = 100,
update_quantum_rate = 0.9, updated_quantum_gen = 1, and equal initial
observation probability for every function in the function set.

The values of the architecture parameters (L, D, R, and F ) were chosen
to be compatible with the work we are comparing the results.

The next sections will detail the experiments further, and present and
discuss the results on both datasets.
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6.3.1
Experiment 1 - Topology Search

The topology level search space is defined by the cell type. The cell type
can be chosen from the set: upscaling, downscaling, and nonscaling. So we can
restrict the cell block and kernel size in order to perform the search only by
exploring the topology level search space. We defined the default cell block
as VGG and the kernel size 3 since this is the standard U-Net block and a
straightforward choice.

So, the function set is

– vgg_u_3: VGG upscaling 3× 3

– vgg_d_3: VGG downscaling 3× 3

– vgg_n_3: VGG nonscaling 3× 3

6.3.2
Experiment 2 - Cell Search

The cell level search space is defined by the combinations of possible
cell blocks and kernel sizes. The cell block is one of the sets: VGG, ResNet,
DenseNet, InceptionNet, and Identity. Moreover, the kernel size is k ∈ 3, 5, 7.
For experiment 2 we would like to fix the topology. For that, during decoding,
the cell types of a U-Net architecture are enforced (Figure 5.2).

The function set is:

– vgg_3: VGG 3× 3

– vgg_5: VGG 5× 5

– vgg_7: VGG 7× 7

– res_3: ResNet 3× 3

– res_5: ResNet 5× 5

– res_7: ResNet 7× 7

– den_3: DenseNet 3× 3

– den_5: DenseNet 5× 5

– den_7: DenseNet 7× 7

– inc_3: InceptionNet 3× 3

– inc_5: InceptionNet 5× 5

– inc_7: InceptionNet 7× 7

– ide_7: Identity
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6.3.3
Experiment 3 - Bi-level Search

Experiment 3 aims to perform a bi-level search. That is, searching first on
the topology search space, and then, performing the search on the cell search
space, but fixing the topology to the one previously found. Since the topology
search is already performed in Experiment 1, the topology for the cell level
search is fixed to the topology found in Experiment 1.

6.3.4
Experiment 4 - Full Search

For the full search, the search was performed simultaneously on the
topology level and cell level search space, which means that no constraint
was imposed on the function set.

Thus, in this experiment, a function set containing all combinations of
cell types, blocks, and kernel sizes is used.

Table 6.1 summarizes all the experiments.

Table 6.1: Summary of the experiments

Exp. Description Types Blocks k Search Space

1 Topology search
Nonscaling

Downscaling
Upscaling

VGG 3 5.9× 104

2 Cell search U-Net

VGG
ResNet

DenseNet
InceptionNet

Identity

3, 5, 7 1.4× 1011

3 Bi-level search Experiment 1

VGG
ResNet

DenseNet
InceptionNet

Identity

3, 5, 7 1.4× 1011*

4 Full search
Nonscaling

Downscaling
Upscaling

VGG
ResNet

DenseNet
InceptionNet

Identity

3, 5, 7 8.1× 1015

*The experiment 3 search space size is taking into account only the cell search step.
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6.4
Results and discussions

This section presents the results found for the two datasets.

6.4.1
Spleen Dataset

The results of the experiments on the spleen dataset are summarized in
Table 6.2. As can be seen, the DSC obtained in all experiments was higher than
both baselines, U-Net and ResU-Net. The best result was found in experiment
3, in which the bi-level search approach was performed.

Table 6.2: Spleen Dataset Experiments Results

Experiment DSC #Params GPU days
1 0.9566± 0.005 0.9× 106 4.05
2 0.9560± 0.007 5.3× 106 4.15
3 0.9583± 0.006 2.0× 106 4.23
4 0.9582± 0.008 1.0× 106 4.29

U-Net 0.9518± 0.008 2.7× 106 NA
ResU-Net 0.9525± 0.008 2.8× 106 NA

It is possible to notice also that for experiments 1, 3, and 4 SegQNAS
was able to find architectures with fewer parameters than the baselines. The
exception was experiment 2, and that is because the topology was fixed to the
same as the baseline and the function set contained more complex blocks and
larger kernel sizes than the baselines.

Despite the best solution being found by experiment 3. Experiment 4
finds an architecture that presents almost the same DSC but with half of the
parameters.

Table 6.3 contains the comparison for each experiment with MixedBlocks
[85] results.

We notice that in experiment 1, SegQNAS was able to find an architecture
that achieved the same DSC performance with fewer parameters. However, in
experiment 2, MixedBlock achieved better performance and fewer parameters.
However, in experiment 3, SegQNAS achieved better DSC and a fewer param-
eter network. Finally, in experiment 4, MixedBlock found a better-performing
network, but with more than 20 times parameters in comparison to SegQNAS.

The architecture found by SegQNAS in experiment 1 is shown in Figure
6.1. It is possible to notice that when comparing to U-Nets topology (Figure
5.2), the architecture found in experiment 1 does not reach the maximum
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Table 6.3: Spleen Dataset Experiments Results comparison with MixedBlock
[85]

SegQNAS MixedBlock [85]
Experiment DSC #Params DSC #Params

1 0.9566± 0.005 0.9× 106 0.9566± 0.001 3.4× 106

2 0.9560± 0.007 5.3× 106 0.9567± 0.002 2.83× 106

3 0.9583± 0.006 2.0× 106 0.9553± 0.001 6.8× 106

4 0.9582± 0.008 1.0× 106 0.9592± 0.002 22.7× 106

Figure 6.1: Classical individual and decoded network for experiment 1 on the
spleen dataset.

cell level (D = 4), indicating that the features from the spleen dataset are
more localized and therefore do not need that amount of reduction operations.
The early upsampling also indicates that features from less downscaled feature
maps contain valuable information for spleen segmentation. In the Figure, we
can also notice that rules 3 and 4 were applied during the decoding process.
The modified functions are highlighted in red.

Figure 6.2 shows the architecture found in experiment 2. On the block
level, we notice a preference for ResNet blocks. The same preference is also
seen in the network found in experiment 3 (Figure 6.3).

The architecture found in experiment 4 (Figure 6.4) is the most different
among the experiments. It achieves only cell level d = 2, corroborating the
idea that for the spleen segmentation, the features are more local and do not
require many reduction operations. Again we verify the same preference for
ResNet blocks together with DenseNet blocks. Those blocks are characterized
by residual connections.
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Figure 6.2: Classical individual and decoded network for experiment 2 on the
spleen dataset.

Figure 6.3: Classical individual and decoded network for experiment 3 on the
spleen dataset.

Figure 6.4: Classical individual and decoded network for experiment 4 on the
spleen dataset.
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6.4.2
Prostate Dataset

The results of the experiments on the prostate dataset are summarized
in Table 6.4.

Table 6.4: Prostate Dataset Experiments Results

Experiment DSC #Params GPU days
1 0.6598± 0.070 3.8× 106 1.61
2 0.6682± 0.066 5.7× 106 1.74
3 0.6887± 0.067 17.0× 106 1.68
4 0.6821± 0.067 16.4× 106 1.83

U-Net 0.6529± 0.070 2.7× 106 NA
ResU-Net 0.6467± 0.069 2.8× 106 NA

We see also that SegQNAS was able to find architectures in all exper-
iments that achieved better DSC than the baselines. However, this time, all
architectures found have more parameters than the baselines. The best archi-
tecture was also found by experiment 3 and achieved a very similar performance
compared to experiment 4.

Table 6.5 contains the comparison for each experiment with MixedBlocks
results.

Table 6.5: Prostate Dataset Experiments Results comparison with MixedBlock
[85]

SegQNAS MixedBlock [85]
Experiment DSC #Params DSC #Params

1 0.6598± 0.070 3.8× 106 0.6593± 0.004 3.4× 106

2 0.6682± 0.066 5.7× 106 0.6796± 0.007 22.7× 106

3 0.6887± 0.067 17.0× 106 0.6702± 0.005 6.7× 106

4 0.6821± 0.067 16.4× 106 0.6760± 0.010 3.0× 106

It is possible to notice that SegQNAS found better-performing archi-
tecture for experiments 1, 3, and 4 in terms of DSCs. However, it found a
network with much more parameters. It is interesting to notice that again for
experiment 2, MixedBlock outperformed SegQNAS.

Figure 6.5 shows the architecture found in experiment 1. The topology
is very similar to the U-Net one, however, the nonscaling operations happen
in the second and sixth nodes instead of the first and last. We also notice
that rules 2 and 3 were applied in the last 5 nodes. It shows that the search
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Figure 6.5: Classical individual and decoded network for experiment 1 on the
prostate dataset.

Figure 6.6: Classical individual and decoded network for experiment 2 on the
prostate dataset.

favored more operations on the higher cell levels instead of performing the
upscaling. This can indicate that features from higher cell levels (that contain
more global information) are important for prostate segmentation in contrast
to spleen segmentation.

That conclusion is also corroborated by the architecture found in exper-
iment 2 (Figure 6.6). In that case, we notice that dense cells, which perform
more convolutional operations, are selected for the cells on the highest cell
level.

In the architecture found by experiment 3 (Figure 6.7), we notice
that the search process favored kernels with greater size and, therefore,
convolutions with greater reception fields. That is also indicative that more
global information is important for prostate segmentation.

For experiment 4 (Figure 6.8), the architecture found was very similar
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Figure 6.7: Classical individual and decoded network for experiment 3 on the
prostate dataset.

Figure 6.8: Classical individual and decoded network for experiment 4 on the
prostate dataset.

to the one found in experiment 1 and used in experiment 3. And it is also
similar to the U-Net architecture. It is possible to notice the same behavior of
having decoding rules applied to the last 5 nodes. Another similarity between
the network from experiments 3 and 4 is that they have only one VGG block
and presented a preference for more complex blocks, especially ResNet blocks.

One important thing we must notice is that for experiments 1 and 4, in
which the topology search was performed, no upscaling cell was selected.
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7
Conclusions

The primary goal of this work was to propose a NAS algorithm, based on
Q-NAS, that is able to search for semantic segmentation DNN architectures.
The proposed solution, SegQNAS, uses the same QIEA as Q-NAS but with
a different search space, decoding process, and evaluation strategy. SegQNAS
was able to perform NAS for semantic segmentation architectures on a provided
dataset.

The search space used is a global search space comprising a two-level
representation, the topology level and the cell levels. This representation allows
for great flexibility in defining parameters for the topology and blocks for the
cells. In our work, we limited the blocks to a set of four well-known blocks
from the literature, however, more possibilities could be explored.

Regarding the topology level, some design constraint rules were enforced
during the decoding process to ensure the candidate architectures were feasible.

The secondary goal was to evaluate the architectures found by SegQNAS
on two benchmark datasets. To do so, in the experiments, we explored the
search space in different ways. First, experiment 1 covers only the topology
search space, keeping the blocks fixed to a default. Then, experiment 2 explores
performing the search on the cell search space while keeping the topology fixed.
Experiments 3 and 4 performed the search on the whole search space (both
topology and cell level search space). Experiment 3 approached the search as
a bi-level search, where the topology search is performed first and then the
cell search is performed considering the previously found topology. Finally,
experiment 4 explored the search on the topology and cell level search spaces
simultaneously.

The results from the experiments showed that SegQNAS was able to
discover architectures that outperformed both hand-crafted baseline architec-
tures, namely the U-Net and ResU-Net. The models for semantic segmentation
evolved by the SegQNAS methodology also showed competitive results to the
NAS literature, both in terms of DSC and the number of parameters of the
networks, when compared to similar work.

The topologies and block choices in the experiments revealed the task-
specificity of the search. Architectures with different characteristics were found
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for the spleen and prostate datasets. That indicates that the extraction of
features for the two datasets required different architectures in terms of
topologies and cells.

It is important to point out that both the training of the candidate
architectures and the evolution process of the QIEA are stochastic processes.
To mitigate the non-deterministic nature of the training, a 3 initialization
5-fold cross-validation took place to evaluate each candidate architecture. In
order to mitigate this non-deterministic effect on the evolution itself we would
have to perform the experiment multiple times and get the average of the
results. That would lead to a more reliable interpretation of the achieved
results. However, that was not possible due to resource constraints.

For future works, several directions can be explored. Firstly, a com-
parison with a random search baseline could be conducted to evaluate the
efficiency and effectiveness of SegQNAS. Additionally, incorporating multi-
objective optimization techniques would allow for exploring trade-offs between
accuracy, model complexity, and runtime efficiency. The current rules in the
decoding process are deterministic and could restrict the search space explo-
ration. Therefore, introducing stochastic elements into the decoding rules pro-
cess could enhance exploration capabilities and lead to novel architectural con-
figurations.

Furthermore, future research could include a qualitative analysis of the
discovered architectures, visualizing and interpreting learned representations
and feature maps, and incorporating explainable AI techniques. This could
provide insights into the decision-making process of the model and refine the
search space and decoding process.

Expanding the search space to include more blocks from the literature
would enable the exploration of a wider range of architectural configurations.
Finally, investigating different parameter configurations for the search space
would provide insights into the sensitivity of SegQNAS to architectural choices
and guide the refinement of the search space design.
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