$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: MÉTODOS DE OTIMIZAÇÃO MULTIOBJETIVO PARA PROGRAMAÇÃO DE PETRÓLEO EM REFINARIA UTILIZANDO PROGRAMAÇÃO GENÉTICA
Autor: CRISTIANE SALGADO PEREIRA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
DOUGLAS MOTA DIAS - COORIENTADOR

Nº do Conteudo: 58609
Catalogação:  11/04/2022 Liberação: 11/04/2022 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=58609&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=58609&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.58609

Resumo:
A programação de produção em refinaria pode ser compreendida como decisões que buscam otimizar alocação de recursos, o sequenciamento de atividades e a sua realização temporal, respeitando restrições e visando ao atendimento de múltiplos objetivos. Apesar da complexidade e natureza combinatória, a atividade carece de sistemas sofisticados que auxiliem o processo decisório, especialmente baseadas em otimização, pois as ferramentas utilizadas são planilhas ou softwares de simulação. A diversidade de objetivos do problema não implica em equivalência de importância. Pode-se considerar que existem grupos, onde os que afetam diretamente a capacidade produtiva da refinaria se sobrepõem aos associados à maior continuidade operacional. Esta tese propõe o desenvolvimento de algoritmos multiobjetivos para programação de petróleo em refinaria. As propostas se baseiam em conceituadas técnicas da literatura multiobjetivo, como dominância de Pareto e decomposição do problema, integradas à programação genética com inspiração quântica. São estudados modelos em um ou dois níveis de decisão. A diferenciação dos grupos de objetivos é avaliada com base em critérios estabelecidos para considerar uma solução proposta como aceitável e também é avaliada a influência de uma população externa no processo evolutivo. Os modelos são testados em cenários de uma refinaria real e os resultados são comparados com um modelo que trata os objetivos de forma hierarquizada. As abordagens baseadas em dominância e em decomposição apresentam vantagem sobre o algoritmo hierarquizado, e a decomposição é superior. Numa comparação com o modelo em dois níveis de decisão, apenas o que utiliza estratégia de decomposição em cada nível apresenta bons resultados. Ao final deste trabalho é obtido mais de um modelo multiobjetivo capaz de oferecer um conjunto de soluções que atendam aos objetivos críticos e deem flexibilidade de análise a posteriori para o programador de produção, o que, por exemplo, permite que ele pondere questões não mapeadas no modelo.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui