XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: INTELLIGENT SYSTEMS APPLIED TO FRAUD ANALYSIS IN THE ELECTRICAL POWER INDUSTRIES Autor: JOSE EDUARDO NUNES DA ROCHA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ADVISOR
MARCO AURELIO CAVALCANTI PACHECO - CO-ADVISOR
Nº do Conteudo: 4707
Catalogação: 25/03/2004 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4707&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4707&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.4707
Resumo:
Título: INTELLIGENT SYSTEMS APPLIED TO FRAUD ANALYSIS IN THE ELECTRICAL POWER INDUSTRIES Autor: JOSE EDUARDO NUNES DA ROCHA
MARCO AURELIO CAVALCANTI PACHECO - CO-ADVISOR
Nº do Conteudo: 4707
Catalogação: 25/03/2004 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4707&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4707&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.4707
Resumo:
This dissertation investigates a new methodology based on
intelligent techniques for commercial losses reduction in
electrical energy supply. The objective of this work is to
present a model of computational intelligence able to
identify irregularities in consumption and demand
electrical measurements, regarding the non-linearity of the
consumers seasonal load curve which is hard to represent
by mathematical models. The methodology is based on three
stages: clustering, to group consumers of electric energy
into similar classes; patterns classification, to discover
relationships that explain the irregularities profile and
that determine the class for an unknown pattern; and
knowledge extraction in form of interpretable fuzzy rules.
The resulting model was entitled Electric Energy Consumers
Classification System. The work consisted of three parts: a
bibliographic research about main methods for clustering
and patterns classification; definition and implementation
of the Electric Energy Consumers Classification System; and
case studies. The bibliographic research of clustering
methods resulted in a survey of the main techniques used
for this task, which can be divided into hierarchical and
non-hierarchical clustering algorithms. The bibliographic
research of classification methods provided a survey of
the architectures, learning algorithms and rules extraction
of the neuro-fuzzy systems. Neuro-fuzzy models were chosen
due to their capacity of generating linguistics rules.
The Electric Energy Consumers Classification System was
defined and implemented in the following way: a clustering
module, based on the Fuzzy CMeans (FCM) algorithm; and
classification module, based on NEFCLASS and Inverted-NFHB
neuro-fuzzy sytems. In the first module, some performance
metrics have been used such as the FPI (Fuzziness
Performance Index), which estimates the fuzzy level
generated by a specific number of clusters; and the MPE
(Modified Partition Entropy) that estimates disorder level
generated by a specific number of clusters. The dominance
criterion of Pareto method was used to validate optimal
number of clusters. In the classification module, the
peculiarities of each neuro-fuzzy system as well as
performance comparison of each model were taken into
account. Besides the patterns classification objective, the
neuro-Fuzzy systems were able to extract knowledge in form
of interpretable fuzzy rules. These rules are expressed
by: IF x is A and y is B then the pattern belongs to Z
class. The cases studies have considered industrial and
commercial consumers of electric energy in low and medium
tension. The results obtained in the clustering step were
satisfactory, since consumers have been clustered in a
natural way by their electrical consumption and demand
characteristics. As the proposed objective, the system has
generated an optimal low number of clusters in the search
space, thus directing the learning step of the neuro-fuzzy
systems to a low number of groups with high representation
over data. The results obtained with Inverted-NFHB and
NEFCLASS models, in the majority of cases, showed to be
superior to the best results found by the mathematical
methods commonly used. The performance of the Inverted-NFHB
and NEFCLASS models concerning to processing time was also
very good. The models converged to an optimal
classification solution in a processing time inferior to a
minute. The main objective of this work, that is the non-
technical power losses reduction, was achieved by the
assertiveness increases in the identification of the
cases with measuring irregularities. This fact made
possible some reduction in wasting with workers and
effectively improved the billing.