$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC |



Título: SISTEMAS INTELIGENTES NO ESTUDO DE PERDAS COMERCIAIS DO SETOR DE ENERGIA ELÉTRICA
Autor: JOSE EDUARDO NUNES DA ROCHA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
MARCO AURELIO CAVALCANTI PACHECO - COORIENTADOR

Nº do Conteudo: 4707
Catalogação:  25/03/2004 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4707&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4707&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.4707

Resumo:
Esta dissertação investiga uma nova metodologia, baseada em técnicas inteligentes, para a redução das perdas comerciais relativas ao fornecimento de energia elétrica. O objetivo deste trabalho é apresentar um modelo de inteligência computacional capaz de identificar irregularidades na medição de demanda e consumo de energia elétrica, considerando as características sazonais não lineares das curvas de carga das unidades consumidoras, características essas que são difíceis de se representar em modelos matemáticos. A metodologia é baseada em três etapas: categorização, para agrupar unidades consumidoras em classes similares; classificação para descobrir relacionamentos que expliquem o perfil da irregularidade no fornecimento de energia elétrica e que permitam prever a classe de um padrão desconhecido; e extração de conhecimento sob a forma de regras fuzzy interpretáveis. O modelo resultante foi denominado Sistema de Classificação de Unidades Consumidoras de Energia Elétrica. O trabalho consistiu em três partes: um estudo sobre os principais métodos de categorização e classificação de padrões; definição e implementação do Sistema de Classificação de Unidades Consumidoras de Energia Elétrica; e o estudo de casos. No estudo sobre os métodos de categorização foi feito um levantamento bibliográfico da área, resultando em um resumo das principais técnicas utilizadas para esta tarefa, as quais podem ser divididas em algoritmos de categorização hierárquicos e não hierárquicos. No estudo sobre os métodos de classificação foram feitos levantamentos bibliográficos dos sistemas Neuro-Fuzzy que resultaram em um resumo sobre as arquiteturas, algoritmos de aprendizado e extração de regras fuzzy de cada modelo analisado. Os modelos Neuro-Fuzzy foram escolhidos devido a sua capacidade de geração de regras lingüísticas. O Sistema de Classificação de Unidades Consumidoras de Energia Elétrica foi definido e implementado da seguinte forma: módulo de categorização, baseado no algoritmo Fuzzy C-Means (FCM); e módulo de classificação baseado nos Sistemas Neuro-Fuzzy NEFCLASS e NFHB-Invertido. No primeiro módulo, foram utilizadas algumas medidas de desempenho como o FPI (Fuzziness Performance Index), que estima o grau de nebulosidade (fuziness) gerado por um número específico de clusters, e a MPE (Modified Partition Entropy), que estima o grau de desordem gerado por um número específico de clusters. Para validação do número ótimo de clusters, aplicou-se o critério de dominância segundo o método de Pareto. No módulo de classificação de unidades consumidoras levou-se em consideração a peculiaridade de cada sistema neuro-fuzzy, além da análise de desempenho comparativa (benchmarking) entre os modelos. Além do objetivo de classificação de padrões, os Sistemas Neuro-Fuzzy são capazes de extrair conhecimento em forma de regras fuzzy interpretáveis expressas como: SE x é A e y é B então padrão pertence à classe Z. Realizou-se um amplo estudo de casos, abrangendo unidades consumidoras de atividades comerciais e industriais supridas em baixa e média tensão. Os resultados encontrados na etapa de categorização foram satisfatórios, uma vez que as unidades consumidoras foram agrupadas de forma natural pelas suas características de demanda máxima e consumo de energia elétrica. Conforme o objetivo proposto, esta categorização gerou um número reduzido de agrupamentos (clusters) no espaço de busca, permitindo que o treinamento dos sistemas Neuro-Fuzzy fosse direcionado para o menor número possível de grupos, mas com elevada representatividade sobre os dados. Os resultados encontrados com os modelos NFHB-Invertido e NEFCLASS mostraram-se, na maioria dos casos, superiores aos melhores resultados encontrados pelos modelos matemáticos comumente utilizados. O desempenho dos modelos NFHB-Invertido e NEFCLASS, em relação ao te

Descrição Arquivo
CAPA, DEDICATÓRIA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO, LISTAS, EPÍGRAFE  PDF  
CAPÍTULO 1  PDF  
CAPÍTULO 2  PDF  
CAPÍTULO 3  PDF  
CAPÍTULO 4  PDF  
CAPÍTULO 5  PDF  
CAPÍTULO 6  PDF  
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui