$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: UMA ARQUITETURA DE FILTRAGEM COLABORATIVA EM TEMPO REAL BASEADA EM NUVEM PARA RECOMENDAÇÃO DE VÍDEOS EFÊMEROS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): RAFAEL SILVA PEREIRA

Colaborador(es):  HELIO CORTES VIEIRA LOPES - Orientador
Número do Conteúdo: 28711
Catalogação:  16/01/2017 Idioma(s):  INGLÊS - ESTADOS UNIDOS

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28711@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28711@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.28711

Resumo:
Esta tese propõe que a combinação de técnicas de filtragem colaborativa, em particular para recomendações item-item, com novas tecnologias de computação em nuvem, pode melhorar drasticamente a eficiência dos sistemas de recomendação, particularmente em situações em que o número de itens e usuários supera milhões de objetos. Nela apresentamos uma arquitetura de recomendação item-item em tempo real, que racionaliza o uso dos recursos computacionais através da computação sob demanda. A arquitetura proposta oferece uma solução para o cálculo de similaridade entre itens em tempo real, sem ter que recorrer à simplificação do modelo de recomendação ou o uso de amostragem de dados de entrada. Esta tese também apresenta um novo modelo de feedback implícito para vídeos de curta duração, que se adapta ao comportamento dos usuários, e descreve como essa arquitetura foi usada na implementação de um sistema de recomendação de vídeo em uso pelo maior grupo de mídia da América Latina, apresentando resultados de um estudo de caso real para mostrar que é possível reduzir drasticamente o tempo de cálculo das recomendações (e os custos financeiros globais) usando o provisionamento dinâmico de recursos na nuvem. Ela discute ainda a implementação em detalhes, em particular o projeto da arquitetura baseada em nuvem. Finalmente, ela também apresenta oportunidades de pesquisa em potencial que surgem a partir desta mudança de paradigma.

Descrição Arquivo
CAPA, AGRADECIMENTOS, ABSTRACT, RESUMO, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
CAPÍTULO 7  PDF
CAPÍTULO 8  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui