XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: INSTABILIDADE PARAMÉTRICA DE COLUNAS Autor: SALETE SOUZA DE OLIVEIRA BUFFONI
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
PAULO BATISTA GONCALVES - ORIENTADOR
Nº do Conteudo: 2132
Catalogação: 21/11/2001 Liberação: 21/11/2001 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2132&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2132&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.2132
Resumo:
Título: INSTABILIDADE PARAMÉTRICA DE COLUNAS Autor: SALETE SOUZA DE OLIVEIRA BUFFONI
Nº do Conteudo: 2132
Catalogação: 21/11/2001 Liberação: 21/11/2001 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2132&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2132&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.2132
Resumo:
O presente trabalho tem por objetivo desenvolver uma
formulação e certas estratégias que permitam a análise da
perda de estabilidade de colunas esbeltas submetidas a
carregamento axial periódico, fenômeno este conhecido como
ressonância paramétrica. Uma excitação é dita paramétrica
quando aparece nas equações de movimento do sistema na forma
de coeficientes variáveis com o tempo - geralmente
periódicos - e não como uma não homogeneidade. A coluna é
descrita pela formulação clássica de Navier. O presente
trabalho trata a coluna considerando-se um e três graus de
liberdade com ou sem não-linearidades. As equações de
movimento são obtidas utilizando-se o princípio de Hamilton
através do método de Ritz. A equação linear (equação de
Mathieu) e a equação de Duffing com pequeno amortecimento,
são resolvidas de forma aproximada pelo método das
múltiplas escalas, revelando a possibilidade de
instabilização da posição de equilíbrio em diversas regiões
do espaço definido pelos parâmetros de controle. A mesma
conclusão é mostrada utilizando-se procedimentos
computacionais para a resolução dos sistemas de equações
lineares e nãolineares, com ou sem imperfeição geométrica
inicial, podendo-se obter assim, a resposta do sistema,
planos fase, seções de Poincaré e diagramas de bifurcação.
Mostra-se a partir dos resultados numéricos, que a coluna
submetida a cargas axiais harmônicas, pode tanto apresentar
soluções com o mesmo período da força excitadora, quanto
oscilações subarmônicas e superarmônicas de diversas
ordens, além de movimentos caóticos.
Descrição | Arquivo |
NA ÍNTEGRA |