$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: CHARACTERIZATION AND ZINC FERRITE CONTAINED INTO STEELMAKING DUSTS REDUCTION, BY CO-CO2 GAS MIXTURES
Autor: MERY CECILIA GOMEZ MARROQUIN
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  JOSE CARLOS D ABREU - ADVISOR
Nº do Conteudo: 12488
Catalogação:  14/11/2008 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12488@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=12488@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.12488

Resumo:
This work deals with the behavior of the synthetic zinc ferrite reduction as well as a case study for the same process using electric arc furnace dusts (EAFD). These processes were conducted under pure CO atmosphere and CO-CO2 gas mixtures. The research here reported onsets with the characterization of the compounds present in EAFD - Iron (III) oxide, zinc oxide and zinc ferrite - using techniques, methodologies and equipments for thermal characterization (DTA-TGA), structural (XRD), microscopic (SEM-TEM coupled to EDS), physical (briquette porosity, specific gravity, average size and particle specific surface) and chemical analysis. It was found that the studied materials particles showed predominantly spherical geometry and in particular, the TEM scans in the zinc ferrite, reveled cluster type micrometric and homogeneous agglomerates formed from single crystal round particles having the size of circa 100 nm. Aiming at the study of the kinetics of the zinc ferrite reduction experiments were conducted using synthetic and EAFD materials submitted to pure CO gas and mixtures of it with CO2 in the following proportions: 75 per cent CO-25 per cent CO2 e 50 per cent CO-50 per cent CO2. The runs were conducted at the temperatures 1073, 1173, 1223, 1273 e 1373K and the maximum reaction time was 105 min. The obtained results permitted the proposal of a kinetic reduction reaction chain. In the course of the study, also, the main zinc ferrite reduction products were characterized by the SEM analysis. This analysis also permitted the observation of phenomenological and morphological correlations during the process. It was concluded that the morphological and kinetic zinc ferrite reduction, in spite being a complex process, it is similar to iron oxides reduction, meaning, dependent on the gaseous compositions, temperature and reaction times. The morphological prism permitted to propose that the zinc ferrite reduction denounces its instantaneous decomposition in their constituent oxides (ZnO and Fe2O3) when submitted to temperatures in the range of 1073 to 1273K and also the sequential reduction of zinc and iron oxides. The typical reduction products were zinc oxide (ZnO), wüstite (FeO) and mix oxides type (Zn, Fe) O and metallic iron. Again, the kinetic study established that a rapid reduction of the zinc oxide occurs, as compared to the other present oxides, through the sequence: firstly the zinc oxide reduction takes place, and this is followed by the iron oxides reduction. The last processes occur significantly for temperatures in the range of circa 1223 to 1373K. A general model of the zinc ferrite reduction by the gaseous mixture of CO-CO2 was proposed using the response surface methodology (RSM) for the factorial analysis 3(4). This was done evaluating the effect of the following variables: temperature, reducing atmosphere composition, specimen mass and reaction time over the (percentage)Reduction. The kinetic models that presented the better adjustment for the reduction were the boundary chemical reaction model for spherical symmetry (BCRM ss) with the equation [1 - cubic root (1 - alfa)] equal kt and the model of simple exponential continuous reaction obeying the relation: − ln(1 - alfa) equal kt . The kinetic parameters obtained (Ea, apparent activation energy, and A, Arrhenius preexponential frequency fator) were for the first model, that is synthetic zinc ferrite: (a) 100 per cent CO gas: Ea equal 55,60 kJ/mol & A equal 8,83 mHz; (b) 75 per cent CO-25 per cent CO2: Ea equal 88,21 kJ/mol and Aequal 127,74 mHz; (c) 50 per cent CO-50 per cent CO2: Ea equal 95,21 kJ/mol and A equal 193,37 mHz. And for the second material, zinc ferrite contained in the EAF dusts: (a) 100 per cent CO gas: Ea equal 52,34 kJ/mol and A equal 4,98 mHz; (b) 75 per cent CO-25 per cent CO2: Ea equal 66,70 kJ/mol and A equal 76,06 mHz; (c) 50 per cent CO-50 per cent CO2: Ea equal 86,28 kJ/mol and A equal 289,59 mHz. The comparison between the apparent activation energy obtained from the best fitting kinetic models permitted to conclude that the zinc ferrite reduction as well as the electric arc furnace dusts reduction global reactions rates are controlled by iron oxides reduction, this in particular for the case of the reduction with 100 per cent CO. As for the reduction with the CO-CO2 gas mixtures, this was not observed for the synthetic zinc ferrite, although, for the reduction of the electric arc furnace dust, this could be the case due to their low zinc content. Considering these facts and the experimental results of this work, it is suggested that the zinc ferrite reduction by CO-CO2 gas mixtures has the global reaction rate controlled simultaneously by the reduction of both zinc and iron oxides.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
CHAPTER 6  PDF
REFERENCES AND APPENDICES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui