Referências Bibliográficas

AL-ZAID RAJEH Z.; AL-SUGAIR FAISAL H.; AL-NEGHEIMISH ABDULAZIZ I. **Investigation of potential uses of Electric Arc Furnace Dust (EAFD) in Concrete.** Cement and Concrete Research, Vol.27, No.2, p.267-278, 1997.

AMERICAN IRON AND STEEL INSTITUTE CHAPTER 3: IRON UNIT RECICLYNG, disponível em: <u>www.steel.org</u>, acesso em: 15 de julho de 2004, p.51-77, 2004.

ARUPISITTHORN C. J.; PIMTONG T.; LOTHONGKUM G. Investigation of kinetics of zinc leaching from Electric Arc Furnace dust by sodium hydroxide. Materials Chemistry and Physics 77, p. 531-535, 2002.

AZAKAMI TAKESHI; SUGIMOTO HIROFUMI; KOJIMA SACHIO. **Direct production of metallic zinc from EAF dust.** Metallurgical and Materials Processing: Principles and Technologies. Vol. 1. Materials Processing Fundamentals and New Technologies, 2003.

BAHGAT M.; SASAKI Y.; IGUCHI M.; ISHII K. The Effect of Grain Boundaries on the Surface Rearrangement during Wüstite Reduction within its Range of Existence. ISIJ International, Vol. 45 No. 5, p. 657-661, 2005.

BARANCHIKOV A. E.; IVANOV V. K.; OLEYNIKOV N.N.; KETSKO V.A.; TRET'YAKOV Y. D. **Zinc ferrite synthesis in an ultrasonic field.** Russian Journal of Inorganic Chemistry 49, Vol.11, p.1646-1650, 2004.

BARATI MANSOOR; COLEY KENNETH S. A comprehensive Kinetic Model for the CO-CO2 Reaction with Iron Oxide-containing Slags. Metallurgical Transactions B, Vol. 37B,p. 61-69, February, 2006.

BERA S.; PRINCE A. A. M.; VELMURUGAN S.; RAGHAVAN P. S.; GOPALAN R.; PANNEERSELVAM G.; NARASIMHAN S. V. Formation of the zinc ferrite by solid-state reaction and its characterization by XRD and XPS. Journal of Materials Science 36, p.5379-5384, 2001.

BID S.; PRADHAN S. K. Preparation of zinc ferrite by high-energy ballmilling and microstructure characterization by Rietveld's analysis. Materials Chemistry and Physics No.82, p.27-37, 2003. BOGDANDY L.VON; ENGELL H. –J. **The Reduction of Iron Ores.** Scientific Basis and Technology, 1971.

BREHM FELICIANE ANDRADE. Adição de óxido de zinco (ZnO) em pastas de cimento visando viabilizar a reciclagem de Pós de Aciaria Elétrica (PAE) na construção civil. Tese para a obtenção do titulo de Doutor em Engenharia. Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais. Escola de Engenharia. Universidade Federal de Rio Grande do Sul, 2004.

BREHM FELICIANE A.; MORAES CARLOS A. M.; GRAFFITTI DANIELA F.; VILELA ANTÔNIO C. F. **Caracterização química, térmica e estrutural dos pós de aciaria elétrica.** Trabalho apresentado ao XIII Seminário de Fusão, Refino e Solidificação.Trabalho apresentado ao XIII Seminário de Fusão, Refino e Solidificação. Salvador-BA, Brasil, 2001.

BOTTA P. M.; AGLIETTI E. F.; PORTO LÓPEZ J. M. Kinetics study of $ZnFe_2O_4$ formation from mechanically activated $Zn-Fe_2O_3$ mixtures. Materials Research Bulletin 41, pp.714-723, 2006.

CARPIO VERA J. I.; D'ABREU J. C. **Carburação de ferro esponja na zona de redução de um forno de cuba.** Dissertação de Mestrado – Departamento de Ciência dos Materiais e Metalurgia - Pontifícia Universidade Católica do Rio de Janeiro, 2005.

CHEN HSI-KUEI. Kinetics study on the carbothermic reduction of zinc oxide. Scandinavian Journal of Metallurgy. Vol. 30 p. 292-296, 2001.

CHEN HSI-KUEI; CHIU NIEN-HUA. **Mathematical modelling for** carbothermic reduction of zinc oxide. Journal of Material Science Letters No. 21, p.1529-1532, 2002.

CHENG HSI-KUEI; YANG CHING-YI. **A study on the preparation of zinc ferrite**. Scandinavian Journal of Metallurgy, No.30, p.238-241, 2001.

CURILLA JAROSLAV. The development of zinc flow arrangement in iron and steelmaking. The system for the internal recycling of metallurgical wastes with high content of zinc. 3rd. International Conference on Science and Technology of Ironmaking, Düsseldorf- Germany, p.353-357, 2003.

DA CUNHA A.F.; DE ARAÚJO FILHO G.; MARTINS JÚNIOR A.; GOMES B. O. C. ; ASSIS S. P. Aspectos técnicos da utilização da carepa gerada em processos siderúrgicos e tratada por desagregação ultra-sônica. Tecnologia em Metalurgia e Materiais, São Paulo, Vol.3, No.2, p.1-5, Outubro-Dezembro, 2006. DA LUZ A. B.; SAMPAIO J. A.; DE ALMEIDA S. L. M. Tratamento de Minérios. CETEM - MCT. 4 Edição, 2004.

DANA JAMES D. Manual de Mineralogia.1969.

DONALD J. R.; PICKLES C.A. **Reduction of electric arc furnace dust with solid iron powder.** Canadian Metallurgical Quartely. Vol.35, No. 3, p.255-267, 1996.

DONALD J. R.; PICKLES C.A. **A kinetic study of the reaction of zinc oxide with iron powder**. Metallurgical and Materials Transations B, Vol.27 B, p.363-374, 1996.

DUNCAN J. F.; STEWART D. J. **Kinetics and mechanics of formation of zinc ferrite**. Chemistry Department, Victoria University of Wellington, New Zealand, 1966.

DUTTA H.; SINHA M.; LEE Y. C.; PRADHAN. Microstruture characterization and phase transformation kinetics of ball-mill prepared nanocrystalline Mg-Zn-ferrite by Rietveld's analysis and electron microscopy. Materials Chemistry and Physics, No. 105, p. 31-37, 2007.

FELTZ E.; MARTIN A.. Solid-state reactivity and mechanisms in oxide systems II. Inhibition of zinc ferrite formation in zinc oxide- α -iron (III) oxide mixtures with a large excess of α -iron (III) oxide. Reactivity of Solids. Vol.2, Issue 4, p. 307-313, 1987.

FITZNER K. Thermodynamics properties and cation distribution of the ZnFe₂O₄-Fe₂O₃ spinel solid solutions at 900 °C. Thermochimica Acta, Vol. 31, Issue 2, p.227-236, 1979.

HAGNI ANN M.; HANGI RICHARD D.; DEMARS CHRISTELLE. **Mineralogical characteristics of Electric Arc Furnace dusts.** JOM, "O Jornal dos Minerais, Metais e Sociedade de Materiais", p.28-30, 1991.

HALIKIA I.; MILONA E. Kinetic-study of the solid-state reaction between alpha-Fe₂O₃ and ZnO for zinc Ferrite formation. Canadian Metallurgical Quarterly Vol. 33 No. 2, p. 99-109, 1994.

HAY S. M.; RANKIN W.J. Recovery of iron and zinc from Blast Furnace and Basic Oxygen Furnace dusts: A Thermodynamic Evaluation. Minerals Engineering, Vol. 7 No. 8 p. 985-1001, 1994.

HONG LAN; SOHN HONG YONG; SANO MASAMICHI. Kinetics reduction of magnesia and zinc oxide by thermogravimetric analysis technique. Scandinavian Journal of Metallurgy 2003; 32; p.171-176, 2003.

HOPKINS D. W.; JOHNSON W.; DAVIES R. **Constitution of steelmaking dusts.** Ironmaking and Steelmaking Quartely, No.1, p.25-29, 1975.

HSI-KUEI; CHEN Kinetics study on the carbothermic reduction of zinc oxide. Scandinavian Journal of Metallurgy. Vol. 30 p. 292-296, 2001.

HSI-KUEI; CHEN; CHING-YI YANG. **A study on the preparation of zinc ferrite.** Scandinavian Journal of Metallurgy. Vol. 30, p. 238-241, 2001.

GAJBHIYE N. S.; BHATTACHARYA U.; DARSHANE V. S. **Thermal decomposition of zinc-iron citrate precursor.** Thermochimica Acta 264, p.219-230, 1995.

GÓMEZ MARROQUÍN MERY CECILIA. **Contribuição à cinética de redução e formação da ferrita de zinco.** Dissertação de Mestrado – Departamento de Ciência dos Materiais e Metalurgia – Pontifícia Universidade Católica do Rio de Janeiro, 2004.

GÓMEZ MARROQUÍN M. C.; D'ABREU J. C.; KOHLER M. H. **"Contribuição ao estudo da formação da ferrita de zinco contida nas poeiras de aciaria elétrica".** Trabalho apresentado no II Seminário de Auto-Redução e Aglomeração a Frio, do 59[°] Congresso Anual da ABM-Internacional, São Paulo, 19 a 22 de Julho de 2004.

GÓMEZ MARROQUÍN M. C.; D'ABREU J. C. **Contribución cinética de la formación de ferrita de cinc**. Trabajo presentado al XII Encuentro Científico Internacional de Verano 2005 (ECI-2005v). Lima - Peru, 2-5 enero, 2005.

GÓMEZ MARROQUÍN M. C.; D'ABREU, J. C. **Contribution to the kinetics study zinc ferrite formation.** Trabalho apresentado em seção posters no TMS 2005 "Inorganic Materials Symposium" Section Experimental Approaches to the Study of Phase Transformation". Pointe Hilton Squaw Peak Resort of Virginia - USA. June 2nd 2005.

GÓMEZ MARROQUÍN M. C.; D'ABREU J. C. **Estudo termodinâmico da redução da ferrita de zinco.** Trabalho apresentado no III Seminário de Auto-Redução e Aglomeração a Frio, do 60° Congresso Anual da ABM - Internacional, Belo Horizonte, 25 a 28 de Julho de 2005.

GÓMEZ MARROQUÍN. M. C.; D'ABREU, J. C. **Estudio termodinámico de la reducción de ferrita de cinc.** Trabajo presentado al XIII Encuentro Científico Internacional de Verano 2006 (ECI-2006v). Lima- Perú, 2-5 enero, 2006.

GÓMEZ MARROQUÍN M. C.; D'ABREU J. C.; KOHLER M. H. Estudo cinético da formação de ferrita de zinco. Trabalho a ser apresentado no

tema matérias primas para área de redução carvão, minério de ferro, fundentes e adições do XXXVI Seminário de Redução de Minério de Ferro e Matérias Primas - VII Simpósio Brasileiro de Minério de Ferro. Ouro Preto - MG, 12 a 15 de Setembro de 2006.

GÓMEZ MARROQUÍN M. C.; D'ABREU J. C.; KOHLER M. H. **Estudio cinético de la formación de la ferrita de cinc**. Trabajo presentado a la 2^{da}. Jornada IAS sobre Medio Ambiente y Reciclado. Instituto Argentino de Siderurgia. Buenos Aires - Argentina, 6 a 9 de Noviembre 2006.

GÓMEZ MARROQUÍN M. C.; D'ABREU J. C. Reducción de ferrita de cinc, óxido de fierro III y óxido de cinc por la mezcla de gases CO - CO₂. Trabajo presentado al XIV Encuentro Científico Internacional de Verano 2007 (ECI-2007v) "Alberto Cazorla Talleri". Lima - Perú, 2-5 enero, 2007.

GÓMEZ MARROQUÍN M. C.; D'ABREU J. C.; KOHLER M. H. **Redução de ferrita de zinco das poeiras de aciaria pela mistura CO - CO₂.** Trabalho apresentado no Seminário de Processos - Recuperação e Tratamento de Rejeitos do 62° Congresso Anual da ABM Internacional, Vitória - ES, 23 a 27 de Julho de 2007.

GÓMEZ MARROQUÍN M. C.; D'ABREU J. C.; KOHLER M. H. **Redução de ferrita de zinco pela mistura gasosa CO - CO**₂. Trabalho apresentado no Tema "Reciclagem na área de redução" do XXXVII Seminário de Redução de Minério de Ferro e Matérias Primas -VIII Simpósio Brasileiro de Minério de Ferro. Salvador - BA, 18 a 21 de Setembro 2007.

GÓMEZ MARROQUÍN M. C.; D'ABREU J. C.; KOHLER M. H. **Reducción de ferrita de cinc por la mezcla de gases CO - CO₂.** Trabajo presentado a la 3^{ra}. Jornada IAS sobre Medio Ambiente y Reciclado. Instituto Argentino de Siderurgia. Buenos Aires - Argentina, 6 a 9 de Noviembre 2007.

GONÇALVES J. M. Estudo da caracterização e avaliação da influencia do tempo na redução carbotérmica do Pó de Aciaria Elétrica. Dissertação de Mestrado em Engenharia. Escola de Engenharia. Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais. Universidade Federal do Rio Grande do Sul, Porto Alegre 2004.

GONÇALVES J. M; MORÃES C. A. M.; VILELA A. C. F. Estudo da redução carbotérmica do pó de aciaria elétrica utilizando diferentes agentes redutores a base de carbono. Contribuição técnica apresentada no Seminário de Auto-redução e Aglomeração a Frio do 58 Congresso Anual da ABM, Rio de Janeiro - RJ, 21-24 Julho, 2003.

GUAITA F. J., BELTRAN H.; CORDONCILLO E.; CARDA J. B.; ESCRIBANO P. Influence of the precursors on the formation and the properties of **ZnFe₂O₄.** Journal of the European Ceramic Society 19, p.363-372, 1998.

GUAÑO S. E.; SOLORZANO-NARANJO I. G. Nanoestruturas de ZnO altamente luminiscentes: Síntese e Caracterização. Dissertação de Mestrado – Departamento de Ciência dos Materiais e Metalurgia – Pontifícia Universidade Católica do Rio de Janeiro, 2007.

GUGER C. E.; MANNING F. S. **Kinetics of Zinc Oxide Reduction with Carbon Monoxide.** Metallurgical Transactions Vol. 2, November p.3083-3090, 1971.

INAMI T.; SUZUKI K. Kinetic analysis on reduction of wustite prior to iron metal formation by mixed control model. The Iron and Steel Institute of Japan (ISIJ).Vol. 81, No. 11 p. 7-12, 1995.

JHA M. K.; KUMAR V.; SINGH R. J. **Review of Hydrometallurgical Recovery of Zinc from Industrial Wastes.** Resources Conservation and Recycling 33, p.1-22, 2001.

JUNG CHOI EUN; AHN YANGKYU; SONG KI-CHANG. **Mossbauer study in zinc ferrite nanoparticles.** Journal of Magnetism Materials 301, p. 171-174, 2006.

KAMALA KANTA SAHU; ARCHANA AGRAWAL; BANSHI DHAR PANDEY. **Recents trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources.** Waste Manage Resources, 2004. Vol.22, p.248-254.

KAZINCZY BELA; KÓTAI LÁSLÓ; GÁCS ISTVÁN; SAJÓ ISTVÁN E.; SREEDHAR B.; LÁZÁR KÁROLY. **Study of the Preparation of Zinc (II) Ferrite and Zinc and Iron Containig Industrial Wastes**. Ind. Eng. Chem. Res.– Materials and Interfaces. No. 42, p.318-322, 2003.

KOLTA G. A.; EL-TAWIL S. Z., IBRAHIM A. A.; FELIX N. S. **Kinetics and mechanism of zinc ferrite formation.** Thermochimica Acta, 36, p. 359-366, 1980.

KIM WANTAE; SAITO FUMIO. Mechanochemical synthesis of zinc ferrite from zinc oxide and α -Fe₂O₃. Powder Technology, Vol.114. p.12-16, 2001.

KRISHNAMURTHY K. R.; GOPALAKRISHNAN J.; ARAVAMUDAN G.; SASTRI M.V.C. **Studies on the formation of zinc ferrite.** Journal of Inorganic and Nuclear Chemistry Volume, 36, Issue 3, p.569-573, 1974.

LAN HONG; HONG YONG; MASAMICHI SANO. Kinetics reduction of magnesia and zinc oxide by thermogravimetric analysis technique. Scandinavian Journal of Metallurgy 2003; 32; p.171-176, 2003.

LECLERC NATHALIE; MEUX ERIC; LECUIRE JEAN-MARIE. Hydrometallurgical recovery of zinc and lead from Electric Arc Furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride. Journal of Hazardous Materials B91, p.257-270, 2002.

LEE JYH-JEN; LIN CHUN-I; CHEN HSI-KUEI. **Carbothermal reduction of zinc ferrite.** Metallurgical and Materials Transactions B. Volume 32B, December 2001, p.1033-1040, 2001.

LI Y.; RATCHEV I. P.; LUCAS J. A.; EVANS G. M.; BELTON G. R. Rate of Interfacial Reaction between Liquid Iron Oxide and CO-CO₂. Metallurgical and Materials Transactions B, Vol. 31B, p. 1049-1057, October 2000.

LÓPEZ DELGADO A.; MARTÍN DE VIDALES J. L.; VILA E.; LÓPEZ F. A. Synthesis of mixed ferrite with spinel - type structure from a stainless steelmaking solid waste. Journal of Alloys and Compounds No. 281, p.312-317, 1998.

LOPEZ F. A.; MEDINA F.; MEDINA J. Tratamientos de polvos de aceria electrica mediante procesos hidrometalurgicos y reduccion carbotermica. Revista de Metalurgia Madrid. Vol. 26, No. 2, p.71-85, 1990.

MAMANI PACO L. J.; D'ABREU J. C. Cinética da redução de pelotas RD nas condições de topo e sopro de um forno de cuba. Dissertação de Mestrado – Departamento de Ciência dos Materiais e Metalurgia - Pontifícia Universidade Católica do Rio de Janeiro, 2005.

MANRIQUE M.; BONALDE A.; HENRIQUEZ A.; TORRENTE G. Thermodynamic analysis of the iron oxide reduction using hydrogencarbon monoxide mixtures as reducing agent. 6 th. IAS Ironmaking Conference, Rosário - Argentina. P.93-101, 2007.

MANTOVANI MARIO C.; RAMIRO D. CYRO TAKANO; DO NASCIMENTO JUNIOR. Caracterização do resíduo de aciaria elétrica e sua aplicação na forma de pelotas auto-redutoras. Trabalho apresentado no XXVII Seminário de Redução de Minérios de Ferro, Santos, SP-Brasil, 4-6 de dezembro de 1996.

MARTINS KARLA DE MELO; D'ABREU J. C. **Morfologia do ferro metálico em briquetes auto-redutores.** Dissertação de Mestrado – Departamento de Ciência dos Materiais e Metalurgia - Pontifícia Universidade Católica do Rio de Janeiro, 2002.

MASUD A.; ABDEL-LATIF. Fundamentals of zinc recovery from metallurgical in the Enviroplas process. Minerals Engineering , No. 15, p.945-952, 2002.

MOHAI I.; SZÉPVOLGYI J. Treatment of particulate metallurgical wastes in thermal plasmas. Chemical Engineering and Processing No. 44, p.225-229, 2005.

MONDAL K.; LORETHOVA H.;HIPPO E.; WILTOWSKI T.; LALVANI S. B. Reduction of iron oxide in carbon monoxide atmosphere – reaction controlled kinetics. Fuel Processing Technology No. 86 p.33-47, 2004.

MORAES C. A. M.; BREHM F., GRAFFITTI D.; VILELA A. C. F. **Estado da arte da reciclagem e reutilização de resíduos sólidos de aciaria elétrica uma ou várias linhas de ação?.** Trabalho apresentado no 57º Congresso Anual da ABM - Internacional, realizado no São Paulo de 22 - 25 de Julho de 2002, p.1378-1387, 2002.

MOURÃO M. B.; YOKOJI A.; MALYNOWSKYI A.; LEANDRO C. A. DA SILVA; TAKANO C.; QUITES E. E. C.; GENTILE F.E.; LENZ E SILVA G. F. B.; BOLOTA J. R.; GONÇALVES M.; FACO R. J. Introdução à Siderurgia. São Paulo - SP: Associação Brasileira de Metalurgia e Materiais, 2007.

NEDAR LOTTA. **Dust formation in a BOF converter**. Steel Research Vol. 67, No. 8, p. 320-327, 1996.

NETO BENÍCIO DE BARROS; SCARMINIO IEDA SPACINO; BRUNS ROY EDWARD. Como fazer Experimentos. Pesquisa e Desenvolvimento na Ciência e na Industria. Editora Unicamp. 2003.

NISHIOKA KOKI; MAEDA TAKAYUKI; SHIMIZU MASAKATA. **Recovery of zinc and lead from iron and steelmaking dusts with microwave heating.** 3rd. IAS Ironmaking Seminar, Buenos Aires - Argentina, 2001.

NYIRENDA R. L. The processing of steelmaking Flue-Dust: A review. Minerals Engineering, Vol. 4, No. 7-11, p.1003-1025, 1991.

NYIRENDA R. L., An Appraisal of the Caron Zinc Process when zinc ferrite is reduced to a magnetite containing product, Mineral Engineering, Vol 3, No.3-4, 1990, p.319-329, 1990.

NOLDIN. J.H.J.;D'ABREU J.C. **Contribuição ao estudo da cinética de redução de briquetes auto-redutores** Dissertação de Mestrado, Departamento de Ciência dos Materiais e Metalurgia – Pontifícia Universidade Católica do Rio de Janeiro. 2002.

PINEAU A.; KANARI N.; GABALLAH I. Kinetics of reduction of iron oxides by H2 Part I: Low temperature reduction of hematite. Thermochimica Acta No. 447 p. 89 -100, 2006.

PTAK W.; SOBIERAJSKI S.; KURTYS M. On the Equilibrium of Zinc Oxide Reduction by Zinc Vapour Pressure Measurements. Bulletin de Lacademie Polonaise des Sciences. Série dos Sciences techniques Volume XXI. No. 6. p.487-492, 1973.

PIOTROWSKI KRZYSZTOF; MONDAL KANCHAN; LORETHOVA HANA; STONAWSKLUBOR I; SZYMÁNSKI TOMASZ; WILTOWSKI TOMASZ. Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process. International Journal of Hydrogen Energy, No.30 p. 1543-1554, 2005.

PISTORIUS P. CHRIS. Kinetics of carbothermic reduction reactions under heat transfer control: modelling results. Scandinavian Journal of Metallurgy. Vol. 34, p. 122-130, 2005.

PICKLES C. A. Reaction of electric arc furnace dust with molten iron containing carbon and silicon. Transactions I & SM, December 2002, p.55-67, 2002.

ÖZBAYOĞLU G.; HIÇYILMAZ C.; AKDEMIR Ü. **Briqueting of zinc oxide fines.** Powder Technology, Vol.77 p.153-158, 1993.

ROCHA A. L. DE ANDRADE; SOLORZANO-NARANJO I. G. **Estudo Microanalítico da Precipitação de micro e nanoparticulas magnéticas em ligas diluídas de Cu-Co.** Tese de Doutorado apresentado ao Departamento de Ciência dos Materiais e Metalurgia - Pontifícia Universidade Católica do Rio de Janeiro, 2007.

RODRIGUES FILHO RAIMUNDO NONATO. Efeito da atmosfera na fenomenologia de redução de pelota auto-redutoras de minério de ferro e carbono. Dissertação de Mestrado – Departamento de Ciência dos Materiais e Metalurgia – Pontifícia Universidade Católica do Rio de Janeiro, 1995.

ROSENQVIST TERKEL. **Principles of Extractive Metallurgy.** Second Edition, 1971.

SASAKI Y.; BAHGAT M.;IGUCHI M.; ISHII K. The Preferable Growth Direction of Iron Nuclei on Wüstite Surface during Reduction. ISIJ International, Vol. 45, No.8, p.1077-1083, 2005.

SASAKI Y.; BAHGAT M. ISHII K. **The surface rearrangement during wüstite reduction within its existence.** 5th Japan-Brasil Symposium on Dust Processing-Energy-Environment in Metallurgical Industries. São Paulo - SP, 2004.

SCHÜRMANN E.; JANHSEN U. Determination of the phase boundaries of the wustite solid solution within the context of reduction tests. Steel Research Vol. 64 No. 6 p. 279-285, 1993.

SHIMIZU AKIRA. Suitable of the kinetics model for estimation of powder reaction rate. Powder Technology Vol. 100, p.24-31, 1998.

SRINIVASAN N. S.; LAHIRI A. K. Studies on the Reduction of Hematite by Carbon. Metallurgical Transations B, Vol.8B, p.175-178, March 1977.

STREET S. J.; BROOKS G. A.; WORNER H. K. **Recent developments in the Environment process.** Canadian Metallurgical Quartely, Vol. 36, No.5, p.333-340, 1997.

SUGIHARA Y.; NOGUCHI T.; SUGIMOTO T. Recents activities on reducing slag quantity in EAF Steelmaking. The International Conference on Steel and Society, p.293-295, 2000.

TAKASHI R.; TAKEHAMA R.; SHIMADA T.; ZHANG X.; YAGI J. Direct Recovery of metallic iron and zinc from Electric Arc Furnace dust by coke filter-zinc condenser process developed by JRCM. 2nd Japan-Brazil Symposium on Dust Processing-Energy-Environment in Metallurgical Industries. October 6th, 2000. Tohoku University Sendai - Japan and University of São Paulo – Brazil, 2000.

TAKANO C., MANTOVANI M. C., CAVALCANTI F. L., MOURÃO M. B. **Electric Arc Furnace dust characterization and recycling by selfreduction pellets.** Work presented to "First Japan-Brazil Symposium on Dust Processing - Energy - Environment in Metallurgical Industries", University of São Paulo-Brazil, (October 5th, 1999) and Tohoku University, Sendai - Japan (November 4th, 1999), 1999.

THE AISE STEEL FOUNDATION. **Fundamentals of Iron and Steelmaking.** Character 2, p.54-56 Pittsburgh PA, 1999.

TONG, FUI LEE. **Reduction mechanisms and behavior of zinc ferrite-Part 1: pure ZnFe₂O₄.** Received by the Institution of Mining and Metallurgy on 21 February, 2001; Paper published in Trans. Instn Min. Metall. (Sect. C: Mineral Processes. Extractive Metallurgy), 110, January-April 2001. The Institution of Mining and Metallurgy 2001.

TONG, FUI LEE. **Reduction mechanisms and behaviour of zinc ferrite-Part 2: ZnFe₂O₄ solid solutions.** Received by the Institution of Mining and Metallurgy on 6 March, 2001; Paper published in Trans. Instn Min. Metall. (Sect. C: Mineral Processes. Extractive Metallurgy), 110, September-December 2001. The Institution of Mining and Metallurgy 2002. TURKDOGAN E. T.; VINTERS J. V. Gaseous Reduction of Iron Oxides: Part III. Reduction-Oxidation of Porous and Dense Iron Oxides and Iron. Metallurgical Transactions Vol. 3, p. 1561-1574, June 1972.

UTIGARD T.; SANCHEZ G.; MANRIQUEZ J.; LURASCHI A.; DIAZ C.; CORDERO D. ALMENDRAS E. Reduction Kinetics of Liquid Iron Oxide – containig Slags by Carbon Monoxide. Metallurgical and Materials Transactions B, Vol. 28B, P. 821-826, October, 1997.

VALENZUELA M. A.; BOSCH P., JIMENEZ -BECERRILL J.; QUIROZ O., I. PÁEZ A. Preparation, characterization and photo catalytic activity of **ZnO**, **Fe**₂**O**₃ and **ZnFe**₂**O**₄. Journal of Photo chemistry and Photobiology A: Chemistry 148, p.177-182, 2002.

WANG JOHN. Transparent Magnetic $ZnFe_2O_4$ nanoparticles in amorphous silica. Department of Materials Science, NUS Publications, December 2001, acessível em: <u>www.science.nus</u> e acesso em dezembro 2003.

XIA DAN K.; PICKLES CHRISTOPHER A. **Kinetics of zinc ferrite formation in the rate deceleration period**. Metallurgical and Materials Transactions B. Volume 28 B, August 1997 p. 671-677, 1997.

XIA DAN K.; PICKLES CHRISTOPHER A. **Microwave Caustic Leaching of Electric Arc Furnace Dust.** Minerals Engineering, Vol.13, No.1, p.79-94, 2000.

YAMASHITA T.; NAKADA T.; NAGATA K. In-situ **Observation of Fe**_{0.94}**O Reduction at High Temperature with the use of Optical Microscopy.** Metallurgical and Materials Transactions B, Vol. 38B, p.185-191, April, 2007.

YANG HUAMING; ZHANG XIANGCHAO; HUANG CHEN; YANG WUGUO; QIU GUANZHOU. Synthesis of ZnFe₂O₄ nanocrystallites by mechanochemical reaction. Journal of Physical and Chemistry of Solids. Vol.65, p.1329-1332, 2004.

YE GUOZBU; BURSTRÖM ERICK; MACCAGNI MASSIMO; BIANCO LORIS; STRIPPLE HAKAN. **REZIN - New ways to recover zinc from EAF dust.** SANMET II - 2nd International Conference on Process Development of Iron and Steelmaking, 6-9 June, 2004. Luiwi-Sweden, 2004.

YOUCA ZHAO; STANFORTH R. **Technical Note: Extraction of zinc from zinc ferrites by fusion with Caustic Soda**. Minerals Engineering, Vol.13, No.13, p.1417-1417, 2000. APÊNDICES

APÊNDICE 1:

Calculo da percentagem de redução dos materiais estudados

Em geral a percentagem de redução de amostras de ferrita de zinco (α), contendo óxido de zinco -ZnO P.A. e óxido de ferro (III)-Fe₂O₃ P.A. pelo CO puro e misturas gasosa CO-CO₂, foram calculadas, em função das somatórias das proporções de perda de peso na quantidade total dos elementos zinco e/ou oxigênio removidos das fases envolvidas (franklinita (*ZnFe*₂O₄), hematita (III) (*Fe*₂O₃) e zincita (*ZnO*), segundo o método Rietveld), como pode se observar na sucessão de fórmulas apresentadas a seguir.

$$\alpha = 100 \left(\frac{\Delta W_t}{W_o} \right) \tag{A.1}$$

$$\Delta W_t = W_i - W_t \tag{A.2}$$

Onde, ΔW_t representa a perda de peso no tempo "t" (W_i é o peso inicial e W_t é o peso da amostra de ferrita de zinco reduzida após do tempo "t").

 W_o é a quantidade total de zinco e/ou oxigênio removido das fases presentes nas amostras de ferrita de zinco, e pode ser expressa assim:

$$W_{o(fase)} = \left(\frac{PM}{W_{Zn\&O}}\right)_{fase} (\% fase)(W_i)$$
(A.3)

Onde, *PM* e $W_{Zn\&O}$ são os pesos moleculares e quantidades de Zn e O nas fases presentes, respectivamente. A "% *fase*", esta expressa pelos resultados obtidos segundo os ajustes da análise quantitativa - método Rietveld (software Diffracc Plus: Topas versão 3.0).

Então para calcular a quantidade total de zinco e/ou oxigênio removido das fases presentes nas amostras de ferrita de zinco, fizeram-se as seguintes contas:

Num mol-g de ferrita de zinco equimolar (PM=241,08) a quantidade de zinco e oxigênio em g serão: 65,38 + 4(16) = 129,38 g de Zn e O.

Então,
$$W_{o(ZnFe_2O_4)} = \left(\frac{129,38}{241,08}\right) (\% ZnFe_2O_4)(W_i)$$
 (A.4)

De maneira análoga, um mol-g de Fe_2O_3 , (PM=159,79) possui 48 g de O, portanto:

$$W_{o(Fe_2O_3)} = \left(\frac{48}{159,79}\right) (\% Fe_2O_3)(W_i)$$
(A.5)

e uma mol-g de ZnO (PM=81,38) possui 81,38 g de Zn e O, portanto:

$$W_{o(ZnO)} = (\% ZnO)(W_i) \tag{A.6}$$

Logo, a quantidade total de zinco e/ou oxigênio reduzíveis das fases presentes na amostra de ferrita de zinco (Wo) será expressa pela soma das expressões (A.4)+(A.5)+(A.6):

$$W_{o} = W_{o(ZnFe_{2}O_{4})} + W_{o(Fe_{2}O_{3})} + W_{o(ZnO)}$$

~

Logo,

$$W_{o} = \left[\left(\frac{129,38}{241,08} \right) (\% ZnFe_{2}O_{4}) + \left(\frac{48}{159,79} \right) (\% Fe_{2}O_{3}) + (\% ZnO) \right] (W_{i})$$
(A.7)

Finalmente, a percentagem de redução das amostras de ferrita de zinco (A.5) fica expressa pela substituição da expressão (A.4) em (A.1):

$$\alpha_{1} = \left\{ \frac{100(\Delta W_{i})}{\left[\left(\frac{129,38}{241,08} \right) (\% ZnFe_{2}O_{4}) + \left(\frac{48}{159,79} \right) (\% Fe_{2}O_{3}) + (\% ZnO) \right] (W_{i}) \right\}$$
(A.8)

Analogamente, no caso da redução do óxido de zinco e do óxido de ferro (III), as percentagens de redução são expressas pelas equações (A.9) e (A.10).

$$\alpha_2 = \left\{ \frac{100(\Delta W_i)}{\% ZnO(W_i)} \right\}$$
(A.9)

$$\alpha_{3} = \left\{ \frac{100(\Delta W_{i})}{\left[\left(\frac{48}{159,79} \right) (\% \operatorname{Fe}_{2}\operatorname{O}_{3}) \right] (W_{i})} \right\}$$
(A.10)

Sabe-se que a análise química do minério de ferro é:

% Fe total = 66,90 % Si
$$O_2 = 1,50$$
 % $H_2O = 5,22$

De maneira análoga calcula-se a %Redução o Grau de metalização do minério de ferro, usado nos testes de redução de óxido de ferro (III), sendo:

ou

$$\alpha_{4} = \left\{ \frac{100(\Delta W_{i})}{\left[\left(\frac{48}{159,79} \right) \left[\frac{66,90}{69,94} \right] \right] (W_{i})} \right\}$$
$$\alpha_{4} = \left\{ \frac{100(\Delta W_{i})}{\left[\left(\frac{66,90}{100} \right) \left[\frac{3x16}{2x55,85} \right] \right] (W_{i})} \right\}$$

Finalmente a % Redução do óxido de ferro no minério de ferro, é:

$$\alpha_4 = \left\{ \frac{100(\Delta W_i)}{[(28,7374\%)](W_i)} \right\}$$

Analogamente ao caso da redução das amostras de ferrita de zinco, calculase a %Redução dos Pós de Aciaria Elétrica - PAE:

$$\alpha_{5} = \left\{ \frac{100(\Delta W_{i})}{\left[\left(\frac{129,38}{241,08} \right) (\% ZnFe_{2}O_{4}) + \left(\frac{48}{159,79} \right) (\% Fe_{2}O_{3}) + (\% ZnO) + \dots + \dots \right] (W_{i}) \right\}$$

Onde os pontos sucessivos representam a remoção de outros elementos voláteis e o seu oxigênio correspondente presentes nas poeiras de aciaria.

APÊNDICE 2:

Refinamento do espectro de difração da amostra PAE pelo método de Rietveld

File 1 : "C:\Usuários do Rietveld 2\Mery\dabreu.RAW" Range Number : 1

R-Values

0	+-+	71-	naia T			1.1			
Rexp`:	31.80	Rwp`:	36.92	Rp`	:	28.78	DW	:	1.51
Rexp :	40.37	Rwp :	46.87	Rp	:	35.76	GOF	:	1.16

Quantitative Analysis - Rietveld

Crystallite Size

Phase 1 : Zincite		7.954 %
Phase 2 : Hematite		61.226 %
Phase 3 : Franklinite		30.820 %
Background		
One on X		37.30704
Chebychev polynomial, Coefficient	0	-1.074277
	1	0.05760616
	2	1.216094
	3	-0.1268276
Instrument		
Primary radius (mm)		200.5
Secondary radius (mm)		200.5
Receiving slit width (mm)		0.3078391
Divergence angle (°)		1.002336
Full Axial Convolution		
Filament Length (mm)		12.29899
Sample Length (mm)		12.29899
Receiving Slit Length (mm)		12.29899
Primary Sollers (°)		2.085017
Secondary Sollers (°)		2.085017
Tube_Tails		
Source Width (mm)		0.04
Z1 (mm)		-0.881974
Z2 (mm)		1.282701
Fraction		0.0006377918
Corrections		
Zero Error		0.2439738
LP Factor		26.37
Absorption (1/cm)		8.473604
Miscellaneous		
Convolution Steps		2
Structure 1		
Phase name		Zincite
R-Bragg		13.531
Spacegroup		186
Scale		6.11811795e-005
Cell Mass		162.778
Cell Volume (Å^3)		47.54938
Wt% - Rietveld		7.954

Cry Size Lor	centzian (nm)		235.3				
Strain	issian (nnn)		10000.0				
Strain L			0.2024617				
Strain G			0.0001000476				
Crystal Linear	278.042						
Crystal Density		5.685					
Preferred Orier	tation (Dir 1	: 0 0 1)	1				
Lattice paramet	ers						
a (A)			3.2495712				
c (Å)			5.1995064				
Site Np x	У	Z	Atom Occ	Beq			
s1 2 0.33333	0.66667	1.00000	ZN+2 1	0.45			
s2 2 0.33333	0.66667	0.37500	0-2 1	0.73			

Structure 2

Ph	lase	name			Hematite					
R-	Brag	g			29.277					
Sp	aceg	roup			R-3cH					
Sc	ale				1.02173963e-005					
Ce	ell M	ass			958.149					
Ce	ell V	olume (Å^3)			372.32681					
Wt	% -	Rietveld			61.226					
Cr	ysta	llite Size								
	Cry	Size Lorer	ntzian (nm)		1.3					
	Cry	Size Gauss	sian (nm)		9999.7					
St	rain									
	Str	ain L			4.999996					
	Str	ain G			4.999763					
Cr	vsta	l Linear Ak	sorption Coe	eff. (1/cm)	918.510					
Cr	vsta	l Density	(q/cm^3)		4.273					
La	ittic	e parameter	S.							
	a (Å)			5.3888267					
	с (Å)			14.8048921					
		,								
Site	Np	Х	У	Z	Atom Occ	Beq				
Fe1	12	0.00000	0.00000	0.35528	Fe+3 1	1				
01	18	0.69389	0.00000	0.25000	0-2 1	1				
Stru	ctu	re 3								
Ph	lase	name			Franklinite					
R-	Braq	q			9.905					
Sr	aceq	roup			Fd-3mZ					
0.	1 . ⁻	-			1 50440455 00	C				

Spacegroup	Fd-3mZ
Scale	1.58440455e-006
Cell Mass	1928.642
Cell Volume (Å^3)	600.45899
Wt% - Rietveld	30.820
Crystallite Size	
Cry Size Lorentzian (nm)	215.3
Cry Size Gaussian (nm)	92.0
Strain	
Strain L	0.1966707
Strain G	0.0001
Crystal Linear Absorption Coeff. (1/cm)	847.459
Crystal Density (g/cm^3)	5.334
Lattice parameters	
a (Å)	8.4364768

Site	Np	Х	У	Z	Atom Occ	Beq
Zn1	8	0.12500	0.12500	0.12500	Zn+2 1	1
Fe1	16	0.50000	0.50000	0.50000	Fe+3 1	1
01	32	0.25670	0.25670	0.25670	0-2 1	1

GRÁFICOS:

Difratograma ajustado da ferrita de zinco ou franklinita

APÊNDICE 3:

Resultados do ajuste das constantes de taxa ou velocidades específicas de reação e % Redução da Ferrita de Zinco e dos Pós de Aciaria Elétrica - PAE e seus respectivos erros ou desvios padrão, somatória e média dos erros ou desvios padrão ao quadrado, segundo o modelo de reação química de interface (simetria esférica).

T=1073K		100%CO		$ZnFe_2O_4$				
tempo de	Model	o reação na interf	ase (simetria e	sférica)	desvio	padrão	(desvio p	adrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,985767	$1 - (1 - k't)^3$	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,0010388	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	2,21	0,0074216	0,00831	2,47	0,00011	0,26	1,2E-08	6,89E-06
32,25	7,77	0,0266014	0,03350	9,72	0,00021	1,95	4,6E-08	0,000379
56,50	14,57	0,0511371	0,05869	16,59	0,00013	2,02	1,8E-08	0,00041
80,75	26,72	0,0984389	0,08388	23,11	-0,00018	-3,61	3,2E-08	0,001301
105,00	36,02	0,1383159	0,10907	29,28	-0,00028	-6,74	7,8E-08	0,004539
				Somatória dos	erros ao quad	rado	1,9E-07	0,006636
T=1173K				Media dos erro	os ao quadrado)	3,1E-08	0,001106
tempo de	Model	o reação na interf	ase (simetria e	sférica)	desvio	padrão	(desvio p	adrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,981924	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,00177039	= k ; kt	α΄	k - k'	α–α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	4,25	0,0143722	0,01416	4,19	-0,00003	-0,06	6,8E-10	3,72E-07
32,25	18,42	0,0656106	0,05710	16,17	-0,00026	-2,25	7E-08	0,000507
56,50	23,62	0,0859010	0,10003	27,11	0,00025	3,49	6,3E-08	0,001216
80,75	32,15	0,1212811	0,14296	37,05	0,00027	4,90	7,2E-08	0,0024
105,00	50,67	0,2098606	0,18589	46,04	-0,00023	-4,63	5,2E-08	0,002141
				Somatória dos	erros ao quad	rado	2,6E-07	0,006263
T=1223K				Media dos erro	os ao quadrado)	4,3E-08	0,001044
tempo de	Model	o reação na interf	ase (simetria e	sférica)	desvio	padrão	(desvio p	adrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,973483	$1 - (1 - k't)^3$	e _k	e _α	e _k ²	e_{α}^{2}
t, min.	α	0,00220336	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	7,25	0,0247754	0,01763	5,20	-0,00089	-2,05	8E-07	0,000422
32,25	20,38	0,0731544	0,07106	19,84	-0,00006	-0,54	4,2E-09	2,93E-05
56,50	26,28	0,0966381	0,12449	32,89	0,00049	6,61	2,4E-07	0,00437
80,75	34,51	0,1315896	0,17792	44,44	0,00057	9,93	3,3E-07	0,009866
105,00	56,57	0,2427082	0,23135	54,59	-0,00011	-1,98	1,2E-08	0,000393
				Somatória dos	erros ao quad	rado	1,4E-06	0,015081
T=1273K				Media dos erro	os ao quadrado)	2,3E-07	0,002513
tempo de	Model	o reação na interf	ase (simetria e	sférica)	desvio	padrão	(desvio p	adrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,989009	$1 - (1 - k't)^3$	e _k	e _α	e _k ²	e_{α}^{2}
t, min.	α	0,0028368	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	10,32	0,0356563	0,02269	6,65	-0,00162	-3,67	2,6E-06	0,001343
32,25	22,69	0,0822060	0,09149	25,01	0,00029	2,32	8,3E-08	0,000539
56,50	32,27	0,1217995	0,16028	40,79	0,00068	8,52	4,6E-07	0,007257
80,75	46,55	0,1884488	0,22907	54,18	0,00050	7,63	2,5E-07	0,005824
105,00	63,03	0,2822886	0,29786	65,39	0,00015	2,36	2,2E-08	0,000555
				Somatória dos	erros ao quad	rado	3,4E-06	0,015517
T=1373K				Media dos erro	os ao quadrado)	5,7E-07	0,002586
tempo de	Model	o reação na interf	ase (simetria e	sférica)	desvio	padrão	(desvio p	adrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,983538	$1 - (1 - k't)^3$	e _k	e _α	e _k ²	e _a ²
t, min.	α	0,0040189	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	12,91	0,0450307	0,03215	9,34	-0,00161	-3,57	2,6E-06	0,001276
32,25	25,94	0,0952514	0,12961	34,06	0,00107	8,12	1,1E-06	0,006595
56,50	49,11	0,2016179	0,22707	53,82	0,00045	4,71	2E-07	0,002221
80,75	61,60	0,2731518	0,32453	69,18	0,00064	7,58	4E-07	0,005746
105,00	85,85	0,4789027	0,42198	80,69	-0,00054	-5,16	2,9E-07	0,002664
				Somatória dos	erros ao quad	rado	4,6E-06	0,018503
				Media dos erro	os ao quadrado)	7,7E-07	0,003084

T=1073K	75%CO	- 25%CO ₂		Zn⊦e₂O₄				
tempo de	Model	o reação na inte	erfase (simetri	a esférica)	desvio	padrão	(desvio	padrão) ²
redução	Redução	1-(1-α) ^{1/3} =k't	0,9870529	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,000353714	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	1,29	0,0043186	0,00283	0,85	-0,00019	-0,44	3,464E-08	1,967E-05
32,25	3,70	0,0124887	0,01141	3,38	-0,00003	-0,32	1,124E-09	1,003E-05
56,50	5,23	0,0177464	0,01998	5,88	0,00004	0,65	1,57E-09	4,179E-05
80,75	6,40	0,0218054	0,02856	8,33	0,00008	1,93	7,002E-09	0,0003711
105,00	7,89	0,0270237	0,03714	10,73	0,00010	2,84	9,283E-09	0,0008084
				Somatória dos e	rros ao quadra	do	5,362E-08	0,001251
T=1173K				Media dos erros	ao quadrado		8,936E-09	0,0002085
tempo de	Model	o reação na inte	erfase (simetri	a esférica)	desvio	padrão	(desvio	padrão) ²
redução	Redução	1-(1-α) ^{1/3} =k't	0,9876176	1-(1-k´t) ³	e _k	e _α	e _k ²	e_{α}^{2}
t, min.	α	0,000688477	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	2,73	0,0091841	0,00551	1,64	-0,00046	-1,09	2,112E-07	0,0001181
32,25	12,62	0,0439719	0,02220	6,51	-0,00067	-6,11	4,556E-07	0,0037281
56,50	16,68	0,0590142	0,03890	11,22	-0,00036	-5,46	1,268E-07	0,0029794
80,75	21,66	0,0781480	0,05559	15,77	-0,00028	-5,89	7,801E-08	0,0034712
105,00	25,48	0,0933821	0,07229	20,16	-0,00020	-5,32	4,035E-08	0,0028334
			do	9,119E-07	0,0131301			
T=1223K	Media dos erros ao quadrado						1,52E-07	0,0021884
tempo de	Model	Modelo reação na interfase (simetria esférica) desvio padrão					(desvio	padrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9750397	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,001364442	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	4,20	0,0142007	0,01092	3,24	-0,00041	-0,96	1,686E-07	9,234E-05
32,25	15,14	0,0532521	0,04400	12,63	-0,00029	-2,51	8,225E-08	0,0006307
56,50	20,95	0,0753715	0,07709	21,39	0,00003	0,44	9,262E-10	1,938E-05
80,75	24,21	0,0882608	0,11018	29,55	0,00027	5,34	7,367E-08	0,0028468
105,00	27,52	0,1017317	0,14327	37,12	0,00040	9,60	1,565E-07	0,0092091
				Somatória dos e	rros ao quadra	do	4,82E-07	0,0127984
T=1273K				Media dos erros	ao quadrado		8,033E-08	0,0021331
tempo de	Model	o reação na inte	erfase (simetri	a esférica)	desvio	padrão	(desvio	padrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9800557	1-(1-k´t) ³	e _k	e_{α}	e _k ²	e_{α}^{2}
t, min.	α	0,001640812	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	4,90	0,0166076	0,01313	3,89	-0,00044	-1,01	1,893E-07	0,0001027
32,25	18,56	0,0661454	0,05292	15,05	-0,00041	-3,51	1,683E-07	0,0012323
56,50	24,04	0,0875796	0,09271	25,31	0,00009	1,27	8,232E-09	0,0001621
80,75	26,83	0,0988903	0,13250	34,71	0,00042	7,88	1,732E-07	0,0062169
105,00	35,67	0,1367475	0,17229	43,29	0,00034	7,62	1,146E-07	0,0058099
				Somatória dos e	rros ao quadra	do	6,536E-07	0,0135239
T=1373K				media dos erros	ao quadrado		1,089E-07	0,002254
tempo de	Model	o reação na inte	erfase (simetri	a esférica)	desvio	padrão	(desvio	padrão) ²
redução	Redução	1-(1-α) ^{1/3} =k't	0,9904972	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,003339855	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	12,07	0,0419702	0,02672	7,80	-0,00191	-4,27	3,634E-06	0,0018204
32,25	23,57	0,0857016	0,10771	28,96	0,00068	5,39	4,657E-07	0,0029026
56,50	46,63	0,1888539	0,18870	46,60	0,00000	-0,03	7,247E-12	9,017E-08
80,75	54,89	0,2330667	0,26969	61,05	0,00045	6,16	2,057E-07	0,0037936
105,00	61,02	0,2695106	0,35068	72,62	0,00077	11,60	5,977E-07	0,0134658
				Somatória dos e	rros ao quadra	do	4,904E-06	0,0219825
				Media dos erros	ao quadrado		8,173E-07	0,0036638

T=1073K	50%CO	- 50%CO ₂		$ZnFe_2O_4$				
Tempo de	Model	o reação na interf	ase (simetria	esférica)	desvio	padrão	(desvio	padrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9934238	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,000262869	= k ; kt	α΄	k - k'	α–α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	1,06	0,0035459	0,00210	0,63	-0,00018	-0,43	3,253E-08	1,853E-05
32,25	2,40	0,0080649	0,00848	2,52	0,00001	0,12	1,637E-10	1,483E-06
56,50	3,68	0,0124203	0,01485	4,39	0,00004	0,71	1,853E-09	5,038E-05
80,75	4,60	0,0155746	0,02123	6,23	0,00007	1,63	4,899E-09	0,0002669
105,00	6,42	0,0218750	0,02760	8,05	0,00005	1,63	2,974E-09	0,000267
				Somatória dos	s erros ao qua	idrado	4,242E-08	0,0006043
T=1173K	r			Media dos erre	os ao quadrao	ob	7,07E-09	0,0001007
Tempo de	Model	o reação na interf	ase (simetria	esférica)	desvio	padrão	(desvio	padrão) ²
redução	Redução	1-(1-α) ^{1/3} =k't	0,9946699	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,000713832	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	1,36	0,0045540	0,00571	1,70	0,00014	0,34	2,09E-08	1,179E-05
32,25	7,88	0,0269885	0,02302	6,75	-0,00012	-1,13	1,513E-08	0,000128
56,50	12,65	0,0440813	0,04033	11,62	-0,00007	-1,03	4,405E-09	0,0001065
80,75	16,29	0,0575483	0,05764	16,31	0,00000	0,02	1,345E-12	6,227E-08
105,00	19,66	0,0703690	0,07495	20,84	0,00004	1,18	1,905E-09	0,0001398
				Somatória dos	s erros ao qua	idrado	4,235E-08	0,0003862
T=1223K				Media dos erre	os ao quadra	do	7,058E-09	6,437E-05
Tempo de	Modelo reação na interfase (simetria esférica) desvio padrão				padrão	(desvio	padrão) ²	
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9858505	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,000987075	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	3,36	0,0113278	0,00790	2,35	-0,00043	-1,01	1,84E-07	0,0001019
32,25	9,85	0,0339745	0,03183	9,25	-0,00007	-0,60	4,409E-09	3,61E-05
56,50	14,68	0,0515445	0,05577	15,82	0,00007	1,14	5,592E-09	0,0001289
80,75	19,06	0,0680605	0,07971	22,06	0,00014	3,00	2,08E-08	0,000898
105,00	20,76	0,0746313	0,10364	27,98	0,00028	7,22	7,634E-08	0,0052152
				Somatória dos	s erros ao qua	idrado	2,911E-07	0,0063801
T=1273K	[Media dos erre	os ao quadrao	ob	4,852E-08	0,0010633
Tempo de	Modelo %	o reação na interf I	ase (simetria	esférica)	desvio	padrão	(desvio	padrão) ²
redução	Redução	1-(1-α) ^{1/3} =k't	0,9926285	1-(1-k´t) ³	e _k	eα	e _k ²	e _α ²
t, min.	α	0,001366541	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	3,91	0,0132070	0,01093	3,24	-0,00028	-0,67	8,084E-08	4,436E-05
32,25	14,94	0,0525089	0,04407	12,65	-0,00026	-2,29	6,846E-08	0,0005257
56,50	19,58	0,0700605	0,07721	21,42	0,00013	1,84	1,601E-08	0,0003387
80,75	25,49	0,0934227	0,11035	29,59	0,00021	4,10	4,393E-08	0,0016776
105,00	32,19	0,1214538	0,14349	37,16	0,00021	4,97	4,403E-08	0,002475
				Somatória dos	s erros ao qua	idrado	2,533E-07	0,0050614
T=1373K				Media dos erro	os ao quadrao	do	4,221E-08	0,0008436
Tempo de	Modelo %	o reação na interf	ase (simetria	esférica)	desvio	padrão	(desvio	padrão) ⁻
redução	Redução	1-(1-α) ^{1/3} =k't	0,9859719	1-(1-k´t) ³	e _k	eα	e _k ²	e _α ²
t, min.	α	0,002811754	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	10,57	0,0365532	0,02249	6,60	-0,00176	-3,97	3,088E-06	0,001578
32,25	20,68	0,0743200	0,09068	24,81	0,00051	4,13	2,573E-07	0,0017069
56,50	40,87	0,1606638	0,15886	40,49	-0,00003	-0,38	1,015E-09	1,453E-05
80,75	46,00	0,1856747	0,22705	53,82	0,00051	7,82	2,625E-07	0,006115
105,00	51,52	0,2144252	0,29523	64,99	0,00077	13,47	5,923E-07	0,0181566
				Somatória dos	s erros ao qua	Idrado	4,202E-06	0,0275711
				Media dos erre	os ao quadrao	do	7,003E-07	0,0045952

T=1073K	100% CO			PAE	VILLARES			
Tempo de	Modelo re	ação na interfa	se (simetria	esférica)	desvio	padrão	(desvio	padrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,99128	1-(1-k´t) ³	e _k	ea	e _k ²	e_{α}^{2}
t, min.	α	0,00242159	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	7,25	0,0247754	0,01937	5,70	-0,00068	-1,55	4,6E-07	0,00024
32,25	23,19	0,0841889	0,07810	21,65	-0,00019	-1,54	3,6E-08	0,000238
56,50	35,77	0,1371950	0,13682	35,69	-0,00001	-0,08	4,4E-11	7,03E-07
80,75	39,42	0,1538583	0,19554	47,94	0,00052	8,52	2,7E-07	0,007258
105,00	52,00	0,2170265	0,25427	58,53	0,00035	6,53	1,3E-07	0,004262
	,	,		Somatória do	s erros ao quad	rado	8.8E-07	0.011999
T=1173K				Media dos er	ros ao quadrado)	1.5E-07	0.002
Tempo de	Modelo re	acão na interfa	se (simetria	esférica)	desvio	padrão	(desvio	padrão) ²
redução	% Redução	$1-(1-\alpha)^{1/3}=k't$	0 993267	$1 - (1 - k't)^3$	e.	e.	e ²	e. ²
t min	a	0.00476473	= k · kt	a'	k - k'	a–a,	$(k - k')^2$	$(\alpha - \alpha')^2$
8.00	11 49	0.0398684	0.03812	11.01	-0.00022	-0.48	4.8F-08	2.35E-05
32.25	32 25	0 1217130	0.15366	39.38	0,00099	7 13	9.8E-07	0.005081
56 50	56.89	0 2445727	0,10000	60.97	0.00044	4.08	1.9E-07	0,0000001
80,75	80.02	0 4153915	0.38475	76 71	-0.00038	-3.31	1,0E 07	0.001095
105.00	92.97	0.5872836	0.50030	87.52	-0.00083	-5.45	6.9E-07	0.002968
	02,01	0,007 2000	0,00000	Somatória do	s erros ao quad	rado	2E-06	0.010833
T=1223K				Media dos er	ros ao quadrado)	3 4E-07	0.001805
Tempo de	Modelo re	ação na interfa	se (simetria	esférica)	desvio	, nadrão	(desvio	$nadrão)^2$
redução	% Redução	$1 - (1 - \alpha)^{1/3} = k't$	0 996334	$1 - (1 - k^{2})^{3}$	<u> </u>	ραιασ	e. ²	ρααιασ) ρ ²
t min	70 Neddçao	0.00733443	$= k \cdot kt$	α'	د. لا ـ لا'	α_α΄	$(\mathbf{k} - \mathbf{k}')^2$	$(\alpha - \alpha')^2$
8.00	12.24	0.0425880	0.05868	16 59	0.00201	4 35	4E-06	0.001802
32.25	49.27	0,0423000	0,03000	55 50	0,00201	+,00 6,23	4L-00	0,001032
56 50	83.92	0.4562132	0,23034	79 92	-0.00074	-4 00	5.5E-07	0,00000
80.75	98.04	0,7303801	0 59226	93.22	-0.00171	-4 82	2.9E-06	0.002322
105.00	99.55	0.8349036	0,00220	98 79	-0.00062	-0.76	3.8E-07	5.85E-05
100,00	00,00	0,0040000	0,11012	Somatória do	s erros ao quad	rado	9E-06	0.009755
T=1273K				Media dos er	ros ao quadrado		1 5E-06	0.001626
Tempo de	Modelo re	ação na interfa	se (simetria	esférica)	desvio	, nadrão	(desvio	$nadrão)^2$
redução	% Redução	$1_{-}(1_{-}\alpha)^{1/3} = k't$		$1_{-}(1_{-}k't)^{3}$	0.0000		0.2	0 ²
t min		$1-(1-\alpha) = R(1-\alpha)$	- k · kt	1-(1-K t)			$(k k')^2$	$(\alpha, \alpha')^2$
<u>ر, ۱۱۱۱۱.</u> ۲۰۵۹	16.02	0,00914789	- K , KL	20.30	0.00208	4 37	(K-K) 4 3E 06	(u-u)
0,00 32.25	10,02 50,57	0,0505501	0,07310	20,39	0,00208	4,37 5 30	4,3E-00	0,001907
56 50	39,37 89,16	0,2003029	0,29502	88 72	-0.000107	-0.44	1,1L-00	0,002900
30,30 80,75	99,10	0,9535841	0,31000	98.22	-0,00266	-0,44	7.1E-06	0.000315
105.00	100.00	1 0000000	0,75005	99,22	-0.00038	-0.01	1 4E-07	3 78E-09
100,00	100,00	1,0000000	0,00000	Somatória do	s erros ao quad	rado	1.3E-05	0.005149
T=1373K				Media dos er	ros ao quadrado	1000	2 1E-06	0.000858
tempo de	Modelo re	ação na interfa	se (simetria	esférica)	desvio	, nadrão		0,000000
rodução	% Podução	$1 (1 \propto)^{1/3} - k''$	0.007203	$1 (1 k')^{3}$	0		0 2	0 ²
t min		$1-(1-\alpha) = Kt$	- k · kt	1-(1-K t)		eα	$(k k')^2$	$(\alpha, \alpha')^2$
ι, mm.	26.40	0,0110784	- K , KI	α 25.40	K - K	1 00		
0,00	20,49 68.07	0,0914901	0,09343	20,49 75 79	-0,00001	7 71	2,00-07	9,90⊑-03 0.005030
56 50	00,07	0,3103007	0,57003	06.06		-3.24		0,000939
80.75	100 00	1 0000000	0,00900	00,00 00 08	-0,00200	-0,04	5E-07	3 42 - 08
105.00	100,00	1 0000000	1 22623	101 16	0.00215	1 16	4 6E-06	0,720-00
100,00	100,00	1,000000	1,22020	Somatória do		rado	1 7E-05	0.007286
				Jonatoria du	s shos ao quau		1,7 -03	0,001200

Media dos erros ao quadrado

2,8E-06 0,001214

T=1073K	75%CO	- 25%CO ₂		PAE	VILLARES				
Tempo de	Modelo r	eação na interfa	ase (simetria e	esférica)	desvio	padrão	(desvio padrão) ²		
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9412097	1-(1-k´t) ³	e _k	e _α	e _k ²	e_{α}^{2}	
t, min.	α	0,001075082	= k ; kt	α΄	k - k'	α–α΄	(k - k') ²	$(\alpha - \alpha')^2$	
8,00	4,05	0,0136865	0,00860	2,56	-0,00064	-1,49	4,041E-07	0,0002226	
32,25	13,26	0,0463117	0,03467	10,04	-0,00036	-3,22	1,303E-07	0,0010337	
56,50	13,97	0,0489209	0,06074	17,14	0,00021	3,17	4,378E-08	0,0010037	
80,75	14,71	0,0516557	0,08681	23,85	0,00044	9,14	1,896E-07	0,0083509	
105,00	21,09	0,0759176	0,11288	30,19	0,00035	9,10	1,239E-07	0,0082739	
				Somatória de	os erros ao qua	drado	8,917E-07	0,0188848	
T=1173K				Media dos er	ros ao quadrad	0	1,486E-07	0,0031475	
Tempo de	Modelo r	reação na interfa	ase (simetria e	esférica)	desvio	padrão	(desvio	padrão) ²	
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9690049	1-(1-k´t) ³	e _k	e _α	e _k ²	e_{α}^{2}	
t, min.	α	0,00386599	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$	
8,00	10,53%	0,0364096	0,03093	8,99%	-0,00069	-1,54%	4,695E-07	0,0002358	
32,25	21,77%	0,0785797	0,12468	32,93%	0,00143	11,16%	2,043E-06	0,0124632	
56,50	27,79%	0,1028485	0,21843	52,26%	0,00205	24,47%	4,185E-06	0,0598653	
80,75	33,53%	0,1272794	0,31218	67,46%	0,00229	33,93%	5,243E-06	0,1151197	
105,00	36,31%	0,1396198	0,40593	79,03%	0,00254	42,72%	6,433E-06	0,1825342	
				Somatória do	os erros ao qua	drado	1,837E-05	0,3702182	
T=1223K	Media dos erros ao quadrado						3,062E-06	0,061703	
tempo de	Modelo r	reação na interfa	ase (simetria e	esférica)	desvio	padrão	(desvio	padrão) ²	
redução	% Redução	1-(1-α) ^{1/3} =k't	0,98223	1-(1-k´t) ³	e _k	e _α	e _k ²	e_{α}^{2}	
t, min.	α	0,003803832	= k ; kt	α΄	k - k'	α–α΄	(k - k') ²	$(\alpha - \alpha')^2$	
8,00	13,63	0,0476696	0,03043	8,85	-0,00215	-4,78	4,643E-06	0,0022808	
32,25	23,23	0,0843479	0,12267	32,47	0,00119	9,24	1,412E-06	0,0085415	
56,50	54,47	0,2306938	0,21492	51,61	-0,00028	-2,86	7,798E-08	0,0008174	
80,75	62,01	0,2757479	0,30716	66,74	0,00039	4,73	1,513E-07	0,0022389	
105,00	67,07	0,3094466	0,39940	78,34	0,00086	11,27	7,34E-07	0,0126909	
				Somatória de	os erros ao qua	drado	7,019E-06	0,0265696	
T=1273K				Media dos el	ros ao quadrad	0	1,17E-06	0,0044283	
Tempo de	Modelo r	reação na interfa	ase (simetria e	esférica)	desvio	padrão	(desvio	padrão) ²	
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9879472	1-(1-k´t)°	e _k	eα	e _k ²	e _α ²	
t, min.	α	0,005622097	= k ; kt	α΄	k - k'	α–α΄	(k - k') ²	$(\alpha - \alpha')^2$	
8,00	17,00	0,0602204	0,04498	12,90	-0,00191	-4,10	3,631E-06	0,0016849	
32,25	32,14	0,1212380	0,18131	45,13	0,00186	12,99	3,47E-06	0,0168677	
56,50	67,99	0,3159384	0,31765	68,23	0,00003	0,24	9,161E-10	5,735E-06	
80,75	84,78	0,4660857	0,45398	83,72	-0,00015	-1,06	2,246E-08	0,000112	
105,00	92,23	0,5732826	0,59032	93,12	0,00016	0,89	2,633E-08	7,993E-05	
				Somatoria de	os erros ao qua	drado	7,15E-06	0,0187503	
T=1373K		~		Media dos ei	ros ao quadrad	0	1,192E-06	0,003125	
Tempo de		eaçao na interfa	ase (simetria e	esterica)	desvio	padrao		padrao) ⁻	
redução	% Redução	1-(1-α) ^{//3} =k't	0,9897866	1-(1-k´t) ³	e _k	e _α	e _k ²	e _α ²	
t, min.	α	0,008277166	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$	
8,00	26,47	0,0974148	0,06622	18,58	-0,00390	-7,89	1,521E-05	0,0062271	
32,25	50,48	0,2088475	0,26694	60,61	0,00180	10,13	3,245E-06	0,0102552	
56,50	77,58	0,3925015	0,46766	84,91	0,00133	7,33	1,77E-06	0,0053791	
80,75	93,87	0,6057060	0,66838	96,35	0,00078	2,48	6,024E-07	0,0006166	
105,00	99,78	0,8699409	0,80910	99,78	-0,00001	U,UU	0,3/6E-11	1,834E-09	
				Somatoria de	os erros ao qua		2,082E-05	0,022478	
				iviedia dos el	tos ao quadrad	0	3,471E-06	0,0037463	

T=1073K	50%CO	- 50%CO ₂		PAE	VILLARES			
tempo de	Modelo r	eação na interfas	e (simetria es	férica)	desvio	padrão	(desvio	padrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9066197	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,000826094	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	3,12%	0,0105101	0,00661	1,97%	-0,00049	-1,15%	2,378E-07	0,0001324
32,25	10,25%	0,0354054	0,02664	7,78%	-0,00027	-2,47%	7,385E-08	0,0006094
56,50	11,85%	0,0411719	0,04667	13,36%	0,00010	1,51%	9,485E-09	0,0002277
80,75	12,69%	0,0442272	0,06671	18,71%	0,00028	6,02%	7,75E-08	0,0036203
105,00	13,30%	0,0464583	0,08674	23,83%	0,00038	10,53%	1,472E-07	0,0110883
				Somatória	dos erros ao qu	ladrado	5,458E-07	0,015678
T=1173K				Media dos	erros ao quadra	ado	9,097E-08	0,002613
tempo de	Modelo r	eação na interfas	e (simetria es	férica)	desvio	padrão	(desvio	padrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9921618	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,00128449	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	5,02%	0,0170214	0,01028	3,05%	-0,00084	-1,97%	7,11E-07	0,0003876
32,25	12,33%	0,0429154	0,04142	11,92%	-0,00005	-0,41%	2,136E-09	1,683E-05
56,50	15,55%	0,0547793	0,07257	20,23%	0,00031	4,68%	9,919E-08	0,0021905
80,75	22,58%	0,0817709	0,10372	28,00%	0,00027	5,42%	7,39E-08	0,0029386
105,00	27,85%	0,1030971	0,13487	35,25%	0,00030	7,40%	9,157E-08	0,0054755
				Somatória	dos erros ao qu	ladrado	9,778E-07	0,011009
T=1223K				Media dos	erros ao quadra	ado	1,63E-07	0,0018348
tempo de	Modelo reação na interfase (simetria esférica)				desvio	padrão	(desvio	padrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9973473	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,001922594	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8.00	7.23%	0.0247053	0.01538	4.54%	-0.00117	-2.69%	1.359E-06	0.0007217
32,25	15,69%	0,0553019	0,06200	17,47%	0,00021	1,78%	4,318E-08	0,0003174
56,50	24,78%	0,0905522	0,10863	29,18%	0,00032	4,40%	1,023E-07	0,0019327
80,75	34,46%	0,1313687	0,15525	39,72%	0,00030	5,26%	8,746E-08	0,002765
105,00	41,98%	0,1659491	0,20187	49,16%	0,00034	7,18%	1,171E-07	0,0051533
				Somatória	dos erros ao qu	ladrado	1,709E-06	0,0108901
T=1273K				Media dos	erros ao quadra	ado	2,848E-07	0,001815
tempo de	Modelo r	eação na interfas	e (simetria es	férica)	desvio	padrão	(desvio	padrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9943317	$1 - (1 - k't)^3$	e _k	ea	e _k ²	e _a ²
t, min.	α	0,002352932	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8.00	8.25%	0.0282929	0.01882	5.54%	-0.00118	-2.71%	1.401E-06	0.0007336
32,25	18,47%	0,0658015	0,07588	21,08%	0,00031	2,61%	9,77E-08	0,0006817
56,50	30,12%	0,1126037	0,13294	34,82%	0,00036	4,70%	1,296E-07	0,0022045
80,75	40,62%	0,1594826	0,19000	46,86%	0,00038	6,24%	1,428E-07	0,0038885
105,00	54,89%	0,2330667	0,24706	57,31%	0,00013	2,42%	1,776E-08	0,0005876
				Somatória	dos erros ao qu	ladrado	1,789E-06	0,0080959
T=1373K				Media dos	erros ao quadra	ado	2,982E-07	0,0013493
tempo de	Modelo r	eação na interfas	e (simetria es	férica)	desvio	padrão	(desvio	padrão) ²
redução	% Redução	1-(1-α) ^{1/3} =k't	0,9965443	1-(1-k´t) ³	e _k	eα	e _k ²	e_{α}^{2}
t, min.	α	0,002761587	= k ; kt	α΄	k - k'	α-α΄	(k - k') ²	$(\alpha - \alpha')^2$
8,00	9,54%	0,0328685	0,02209	6,48%	-0,00135	-3,06%	1,814E-06	0,0009349
32,25	22,41%	0,0810993	0,08906	24,41%	0,00025	2,00%	6,095E-08	0,0003998
56,50	33,87%	0,1287700	0,15603	39,89%	0,00048	6,02%	2,328E-07	0,0036182
80,75	47,95%	0,1955972	0,22300	53,09%	0,00034	5,14%	1,151E-07	0,0026419
105,00	59,60%	0,2607458	0,28997	64,20%	0,00028	4,60%	7,745E-08	0,0021195
				Somatória	dos erros ao qu	ladrado	2,301E-06	0,0097143
				Media dos	erros ao quadra	ado	3,834E-07	0,001619