Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: LEARNING ON GRAPHS VIA GENERALIZED DIVERGENCE MEASURES
Autor: KLEYTON VIEIRA SALES DA COSTA
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
IVAN FABIO MOTA DE MENEZES - Coorientador
Catalogação: 09/JUL/2025 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=71470&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=71470&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.71470
Resumo:
This master dissertation investigates the effectiveness of generalized information measures for learning on graphs (LoG). The variational graph autoencoders framework proposed by Kipf and Welling (2016b) was modified by generalized divergence measures as part of the learning objective to delimit the research scope. Then, the main contributions of this work are: (i) the kappa-divergences - a unified representation for generalized divergence measures; (ii) two novel families of divergences, delta and eta; and (iii) the generalized graph variational autoencoders (GGVA) - a variational graph autoencoders framework based on κ-divergences. The experiments on LoG, using five citation network datasets and a Brazilian power grid network dataset, indicate that GGVA outperforms baseline models in node classification and link prediction, considering time efficiency and average precision. The qualitative analysis of the learned embeddings of GGVA indicates a good enough capacity to distinguish classes.
Descrição: Arquivo:   
COMPLETE PDF