Título: | LEARNING ON GRAPHS VIA GENERALIZED DIVERGENCE MEASURES | ||||||||||||
Autor: |
KLEYTON VIEIRA SALES DA COSTA |
||||||||||||
Colaborador(es): |
HELIO CORTES VIEIRA LOPES - Orientador IVAN FABIO MOTA DE MENEZES - Coorientador |
||||||||||||
Catalogação: | 09/JUL/2025 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=71470&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=71470&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.71470 | ||||||||||||
Resumo: | |||||||||||||
This master dissertation investigates the effectiveness of generalized
information measures for learning on graphs (LoG). The variational graph
autoencoders framework proposed by Kipf and Welling (2016b) was modified
by generalized divergence measures as part of the learning objective to delimit
the research scope. Then, the main contributions of this work are: (i) the
kappa-divergences - a unified representation for generalized divergence measures;
(ii) two novel families of divergences, delta and eta; and (iii) the generalized
graph variational autoencoders (GGVA) - a variational graph autoencoders
framework based on κ-divergences. The experiments on LoG, using five citation
network datasets and a Brazilian power grid network dataset, indicate that
GGVA outperforms baseline models in node classification and link prediction,
considering time efficiency and average precision. The qualitative analysis
of the learned embeddings of GGVA indicates a good enough capacity to
distinguish classes.
|
|||||||||||||
|