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Abstract

Costa, Kleyton Vieira Sales da; Lopes, Hélio Côrtes Vieira (Ad-
visor); Menezes, Ivan Fabio Mota de (Co-Advisor). Learning on
Graphs via Generalized Divergence Measures. Rio de Ja-
neiro, 2025. 78p. Dissertação de Mestrado – Departamento de In-
formática, Pontifícia Universidade Católica do Rio de Janeiro.

This master dissertation investigates the effectiveness of generalized
information measures for learning on graphs (LoG). The variational graph
autoencoders framework proposed by Kipf and Welling (2016b) was modified
by generalized divergence measures as part of the learning objective to delimit
the research scope. Then, the main contributions of this work are: (i) the
κ-divergences - a unified representation for generalized divergence measures;
(ii) two novel families of divergences, δ and η; and (iii) the generalized
graph variational autoencoders (GGVA) - a variational graph autoencoders
framework based on κ-divergences. The experiments on LoG, using five citation
network datasets and a Brazilian power grid network dataset, indicate that
GGVA outperforms baseline models in node classification and link prediction,
considering time efficiency and average precision. The qualitative analysis
of the learned embeddings of GGVA indicates a good enough capacity to
distinguish classes.

Keywords
Unsupervised Learning on Graphs; Approximate Inference; Variational

Autoencoders; Generalized Divergence Measures.



Resumo

Costa, Kleyton Vieira Sales da; Lopes, Hélio Côrtes Vieira (Orien-
tador); Menezes, Ivan Fabio Mota de (Co-orientador). Aprendiza-
gem em Grafos via Medidas de Divergência Generalizadas.
Rio de Janeiro, 2025. 78p. Dissertação de Mestrado – Departamento
de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Esta dissertação de mestrado investiga a efetividade de generalizações de
medidas de informação para aprendizado em grafos. Para delimitar o escopo
de pesquisa, a função de custo do variational graph autoeconders proposto por
Kipf and Welling (2016b) foi modificada por meio da incorporação de genera-
lizações de medidas de divergência. Dessa maneira, as principais contribuições
deste trabalho são: (i) κ-divergências - uma representação unificada para gene-
ralizações de medidas de divergência; (ii) duas novas famílias de divergências,
δ e η; e (iii) o desenvolvimento do generalized variational graph autoenco-
ders (GGVA), um arcabouço de variational graph autoencoders baseado em
κ-divergências. Os experimentos realizados em tarefas de aprendizado em gra-
fos, utilizando cinco conjuntos de dados de redes de citação e um conjunto de
dados para a rede de distribuição de energia elétrica do Brasil, indicam que o
GGVA supera os modelos de referência em dois tipos de tarefas: classificação
de nós e previsão de relacionamentos, considerando tempo de execução e preci-
são média. Os resultados qualitativos para os embeddings treinados do GGVA
indicam uma capacidade satisfatória para distinguir classes.

Palavras-chave
Aprendizado Não-supervisionado em Grafos; Inferência Aproximada;

Autoencoders Variacionais; Generalizações para Medidas de Divergência .
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1
Introduction

This chapter describes this work’s motivation, objectives, and document
organization.

1.1
Motivation

1.1.1
Graphs are everywhere

A graph is a simple yet powerful mathematical structure representing
relationships in numerous natural and artificial systems. This flexible repre-
sentation appears in various domains (Newman, 2018; Easley et al., 2010;
Bullmore and Sporns, 2009) - from biological networks modeling protein in-
teractions and neural pathways to social networks depicting friendships and
collaborations to technological systems like computer networks and transporta-
tion infrastructure. The flexibility of graph structures allows them to capture
complex relationships in ways that linear or hierarchical data structures can-
not.

The mathematical foundation of graph theory, pioneered by Leonhard
Euler in 1736 with the Seven Bridges of Königsberg problem (Euler, 1741),
has evolved into a rich field with applications in computer science, operations
research, chemistry, linguistics, and numerous other disciplines. In this work,
our focus is on the intersection between deep learning and graphs. As Figure 1.2
shows, we can define three basic learning tasks on graphs: graph classification,
node classification, and link prediction. In the following, we describe the
challenges and contributions of this field based on examples extracted from
the literature.
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G = (V , E , X) = (•, •−•, xv)

v

u

yG ∈ Y
Graph Classifier

yu ∈ Y
Node Classifier

y(u,v) ∈ B
Link Predictor

v ∈ V (u, v) ∈ E

Figure 1.1: Illustration of graph tasks. A simple graph G = (V , E , X) consists
of nodes v ∈ V , edges (u, v) ∈ E , and node features X. The framework enables
multiple learning tasks: graph classification (yG ∈ Y), node classification
(yu ∈ Y), and link prediction (y(u,v) ∈ B)

1.1.2
Learning on graphs

Modern deep learning allows models with multiple processing layers to
learn data representations with several levels of abstraction (LeCun et al.,
2015). These models have been accumulating state-of-the-art performance
with architectures designed for simple sequences (Hochreiter and Schmidhuber,
1997; Vaswani et al., 2017) and grids (Fukushima, 1980; LeCun et al., 1998;
Krizhevsky et al., 2017; Dosovitskiy et al., 2020).

Working with graphs presents unique challenges due to their inherent
complexity1. As Figure 1.2 illustrates, graphs have intricate topological struc-
tures without spatial locality as a reference, with a single graph having multiple
representations, which makes the definition of effective deep learning architec-
tures challenging. In this case, a desired characteristic to define deep learning
over graphs is that they should be permutation invariant: the function that
guides the architecture does not depend on the arbitrary ordering of the graph
(Hamilton, 2020).

1Considering a Geometric Deep Learning blueprint (Bronstein et al., 2021), sequences,
grids, and graphs are functions of the same framework, only changing the domain and the
symmetry group.
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Figure 1.2: Comparison of three fundamental data structures in deep learning.
(a) sequences, (b) grids, and (c) graphs

The field of learning on graphs (LoG)2 has emerged as a powerful
framework for addressing deep learning on graphs. Some relevant applications
of LoG techniques are polypharmacy side effects prediction (Zitnik et al., 2018;
Johnson et al., 2024), drug discovery (Wieder et al., 2020; Stokes et al., 2020;
Zhang et al., 2022; Liu et al., 2023), traffic prediction (Derrow-Pinion et al.,
2021), global weather forecasting (Lam et al., 2023), flood prediction (Roudbari
et al., 2024), load forecasting in power grid networks (Hansen et al., 2022; Liao
et al., 2021), and football tactics (Wang et al., 2024).

Recent advancements in large language models also employ graph-based
approaches to improve model reasoning and decrease hallucination. Two
promising approaches involve (i) leveraging graph retrieval augmentation tech-
niques, which integrate knowledge graphs to increase the model results with
graph-structured relationships (Edge et al., 2024), and (ii) using graph neural
networks (GNN) models to enhance the quality and reliability of generated
outputs (Mavromatis and Karypis, 2024).

This literature shows the robust characteristics of LoG in addressing
solutions to complex scientific and social challenges. This aspect of learning
in complex systems motivates us to explore the connections between LoG and
non-extensive statistical mechanics.

1.1.3
Learning at the edge of chaos

In deep learning architectures generally, and LoG architectures specifi-
cally, the predominant approach relies on learning objectives derived from the
Boltzmann-Gibbs-Shannon entropic functional (e.g., cross-entropy, Kullback-
Leibler divergence, Jensen-Shannon divergence). Based on the characteristics
of weak chaotic systems described below, we argue that non-extensive statis-

2More details about LoG techniques are presented in the Appendix A.
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tical mechanics (NESM) and generalized measures of information could po-
tentially enhance the solution of LoG problems. These alternative frameworks
may better capture the complex dynamics (like long-range correlations) in-
herent in many graph-structured data, potentially leading to more robust and
accurate learning algorithms, as observed in other deep learning applications.

The Boltzmann–Gibbs (BG) statistical mechanics (Boltzmann, 1872;
Gibbs, 1902) represents one of the fundamental pillars of modern theoretical
physics. Its theoretical foundation rests upon the optimization of the BG addi-
tive entropic functional HBG = −k∑i pi ln pi, which has profound connections
to Shannon’s information theory (Shannon, 1948). Indeed, the mathemati-
cal isomorphism between thermodynamic entropy and information-theoretic
uncertainty sets a framework for understanding physical systems in terms of
their information content and statistical properties. This formalism has been
experimentally validated in numerous contexts. It remains mathematically le-
gitimate for broad classes of nonlinear dynamical systems characterized by
positive maximal Lyapunov exponents (strong chaos).. Strongly chaotic dy-
namical systems are characterized by their exponential sensitivity to initial
conditions, quantified by a positive maximal Lyapunov exponent (λmax > 0)
(Benettin et al., 1980). This exponential divergence implies that nearby tra-
jectories in phase space separate, on average, exponentially fast. A direct con-
sequence of this rapid divergence is a swift loss of information regarding the
system’s past state. This manifests statistically as a rapid decay of time corre-
lation functions, often exhibiting an exponential decrease with increasing time
lag. Consequently, the system possesses a short "memory"; its state at a given
time is significantly correlated only with its states in the very recent past, while
correlations with distant past states quickly become negligible. This behavior
defines short-range dependencies, where the system’s dynamics are effectively
influenced only by proximate events in its history, a feature distinguishing
strong chaos from weakly chaotic regimes exhibiting slower, power-law corre-
lation decay and long-range memory effects.

When applied to systems exhibiting weak chaos, the BG framework
demonstrates significant limitations where the maximal Lyapunov exponent
vanishes - a condition prevalent in complex natural, artificial, and social
systems (Tsallis, 2023). To address these limitations, a generalization was
introduced by Tsallis (1988) based on the non-additive entropic functional
Hq = k

1−
∑

i
pq

i

q−1 with q ∈ R and H1 → HBG, which extends statistical mechanics
(and information theory) beyond its conventional boundaries. This generalized
entropy, often called Tsallis entropy, introduces the entropic index q that
quantifies the degree of non-extensivity and must be calculated from first
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principles for specific classes of weakly chaotic systems. The transition from
strong to weak chaos marks the boundary where Boltzmann-Gibbs statistics
becomes inadequate and NESM become necessary (Tsallis et al., 2005; Tirnakli
et al., 2007).

The NESM paradigm has been applied in many probabilistic approaches
for deep learning. Silva et al. (2024) evaluates the performance of Tsallis
divergence as a learning objective for generative flow networks. Zhu et al. (2023)
applies Tsallis divergence in policy optimization approaches in reinforcement
learning. Zimmert and Seldin (2021) presents a general analysis of online mirror
descent algorithms regularized by Tsallis entropy.

This work investigates the connection between learning on graphs and
generalized information measures. Our intuition starts with the following
induction: If generalized measures of information (like NESM) are accurate
for modeling complex networks (Wen and Jiang, 2019; de Oliveira et al., 2021;
Robledo and Velarde, 2022; Tsallis, 2023), then can generalized measures of
information be used effectively in learning problems on graphs?

1.2
Objectives

The scope to investigate if generalized measures of information are
effective for LoG tasks is vast. Based on this, we delimited our research scope,
applying generalized divergence measures as part of the learning objective of
the variational graph autoencoders proposed by Kipf and Welling (2016b).

The main objectives of this master’s thesis are:

1. To propose a possible unified representation for generalized divergence
measures and a novel set of generalized divergence measures to be used
as part of learning objectives in LoG tasks;

2. To propose and evaluate a new unsupervised learning framework, the
generalized graph variational autoencoders. The evaluation is based on
benchmark datasets commonly used in the literature and a new dataset
extracted from the Brazilian power grid network.

1.3
Major Contributions

1. We propose three novel divergence measures that can be used as learning
objectives in deep learning models. These divergences generalize previ-
ously used ones and allow for tuning the divergence to prior beliefs,
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considering an extra parameter. The parameter tuning increases the ex-
ploration for more flexible and accurate results. Experiment I evaluates
their behavior to approximate complex distributions based on a simple
prior. The results indicate that our divergences are mass-covering (inclu-
sive) in approximation inference scenarios;

2. We proposed an effective framework for unsupervised learning on graphs.
In Experiment II, we observe that our proposed unsupervised learning
framework for graphs achieves competitive performance - in terms of
accuracy and computational efficiency - against the baseline models when
applied for node classification tasks;

3. We present a novel dataset for learning on graphs - the Brazilian
power grid network (BPGN). In Experiment III, we show that GGVA
framework outperforms the baseline models in link prediction applied in
BPGN;

1.4
Master Thesis Organization

This master’s thesis is organized as follows:

– Chapter 2 describes the methodological basis of our work. We present
an optimization perspective of the approximate inference problem. We
describe how the literature has advanced to (i) deal with intractable joint
densities via variational inference methods, (ii) possible generalizations
proposed to these advances, and (iii) how to use these advances in LoG
using variational graph autoencoders.

– Chapter 3 describes our proposed approach for generalized divergence
measures. We propose a formal notation representing a wide class of gen-
eralized divergences, called κ-divergences. Within this class, we introduce
two novel families of divergences: δ and η divergences and the behavior
of this divergence in a variational inference problem;

– Chapter 4 presents a novel unsupervised learning framework for graphs,
named generalized graph variational autoencoder (GGVA). We apply
this LoG methodology in two experiments: (i) a benchmark for graph
problems (link prediction and node classification) to evaluate our GGVA
framework against other traditional approaches and (ii) a link prediction
task based on the Brazilian power grid network;

– Chapter 5 presents the conclusion and future work.
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– Appendix A presents a high-level overview of learning on graphs. We
describe the main architectures for graph neural networks, the traditional
tasks in LoG, and some of the theoretical aspects that support graph
neural networks;

– Appendix B presents a high-level overview of divergence measures.
Here, we describe the main divergence measures and some important
properties that support the use of these measures in theoretical and
applied setups.

– Appendix C presents detailed results for the experiments.



2
Background and Literature

A well-established approach to unsupervised LoG using generative mod-
eling is the variational graph autoencoders (VGAE) framework introduced by
Kipf and Welling (2016b). This chapter presents the background for the VGAE
framework and for our generalized approach (described in detail in Chapter
4). In summary, this chapter describes:

1. an optimization perspective of the approximate inference problem. We
describe how the literature has advanced to (i) deal with intractable joint
densities via variational inference methods, (ii) possible generalizations
proposed to these advances, and (iii) how to use these advances in a
learning setup using variational autoencoders;

2. how to use variational autoencoder for learning on graphs. We present
a seminal model that introduces how to employ an optimization per-
spective of the approximate inference problem as a tool for unsupervised
learning on graphs. This approach has three components: an inference
model, a generative model, and a loss function.

2.1
An Optimization View of Approximate Inference

2.1.1
Motivation

When we think about machine learning problems, two main schools of
thought define how the modeling process will occur: the discriminative and
the generative (or Bayesian) (Jebara, 2004). For a set of data instances X
and labels Y , the discriminative approach defines a direct attempt to map an
input-output relationship for classification or regression tasks, capturing the
conditional probability P (Y |X). For the second type of models, a generative
probabilistic model approach captures the joint probability P (X, Y ) if the
labels are available or the P (X) if not. Figure 2.1 summarizes the basic
difference between these two views considering a graph-based problem. In
essence, generative models try to model how the data is distributed in the
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latent space, and discriminative models define a clever decision boundary to
separate the data in the latent space.

Figure 2.1: Generative and discriminative models for graph-based problems

Modern Bayesian statistics depend on models for which the posterior is
challenging to compute, and algorithms are designed to approximate it (Blei
et al., 2017; Järvenpää and Corander, 2023). Historically, a well-established
family of approximate algorithms is the sampling methods, which produce
answers by repeatedly generating random numbers from a distribution of
interest. The Markov chain Monte Carlo (MCMC) (Geyer, 1992; Geman and
Geman, 1984) method is a famous example of this family. The main drawbacks
of sampling-based methods are related to running time, mainly suffering from
the curse of dimensionality. The methods are guaranteed to find a good enough
solution given a sufficient amount of time and regularity conditions. However,
given the limited time available, it is difficult to tell how close they are to a
good solution. Another point is that MCMC methods, for example, require an
appropriate sampling technique, which is challenging to build.

As a fast alternative for sampling methods, variational inference (VI)
methods (Jordan et al., 1999) approximates an intractable distribution p by a
tractable distribution q ∈ Q. With this approach, an optimization problem
is formulated to minimize information loss between p and q. Given their
significant advantages in computational efficiency and scalability (Ganguly and
Earp, 2021) compared to traditional sampling techniques, particularly for large
datasets, we explore learning methods that use VI as the backbone.

2.1.2
Problem setup of approximate inference

Let x = x1:n be a set of observed variables and z = z1:m be a set of
latent variables, with joint density p(z, x). Given the observations, the inference
problem is to compute the conditional density of the latent variables. The
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conditional can produce point or interval estimates of the latent variables and
form predictive densities of new data. We can define the conditional density
as:

p(z|x) = p(z, x)
p(x) (2-1)

where p(x) is the marginal density of the observations (the evidence). We
compute it by marginalizing out the latent variables from the joint density:

p(x) =
∫
p(z, x)dz (2-2)

This evidence integral is often unavailable in closed form or requires
exponential time to compute. The evidence is what we need to calculate
the conditional from the joint, which is why inference in such models is a
challenging task.

2.1.3
Evidence lower bound

In information theory (Cover, 1999), the Kullback-Leibler divergence
DKL is used to measure the information related within two distributions. Let
P and Q be two continuous probability distributions, DKL(P ∥ Q) is given by

DKL(P ∥ Q) =
∫

X
p(x) log

(
p(x)
q(x)

)
dx (2-3)

We define a family Q of densities over the latent variables. Each q(z) ∈ Q
represents a candidate approximation to the exact conditional distribution.
The objective is to identify the optimal candidate, which minimizes DKL to the
same conditional. Through this approach, the inference problem is formulated
as the following optimization problem:

q∗(z) = arg min
q(z)∈Q

DKL(q(z) ∥ p(z|x)) (2-4)

After being determined, q∗(·) constitutes the most accurate approxima-
tion of the conditional within the family Q - the structural complexity of the
family determines the computational complexity of this optimization. How-
ever, this objective function is not directly computable because it necessitates
calculating the logarithm of the evidence. The DKL divergence is expressed as:

DKL(q(z) ∥ p(z|x)) = E[log q(z)] − E[log p(z|x)], (2-5)
where all expectations are taken for q(z).

Expanding the conditional probability, we obtain:

DKL(q(z) ∥ p(z|x)) = E[log q(z)] − E[log p(z, x)] + log p(x). (2-6)
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Equation 2-6 demonstrates the explicit dependence on log p(x). An
alternative approach is to optimize an objective function equivalent to the
DKL up to an additive constant. This function is called the evidence lower
bound (ELBO), defined as:

ELBO(q) = E[log p(z, x)] − E[log q(z)] (2-7)
where the ELBO is the negative DKL from Equation 2-6 plus log p(x), which
remains constant to q(z)1. We can decompose the ELBO as the sum of the
expected log-likelihood of the data and the negative DKL between the prior
p(z) and q(z):

ELBO(q) = E[log p(z)] + E[log p(x|z)] − E[log q(z)]
= E[log p(x|z)] −KL(q(z) ∥ p(z))

(2-8)

where the first term represents an expected likelihood that favors densities
that concentrate their mass on configurations of the latent variables that
effectively explain the observed data. The second term constitutes the negative
divergence between the variational density and the prior distribution. Then,
the variational objective reflects the fundamental balance between likelihood
and prior characteristics of Bayesian inference.

As already mentioned, the complexity of the variational family Q deter-
mines the complexity of the optimization problem. In mean-field variational
family, the latent variables are mutually independent, each governed by a dis-
tinct factor in the variational density. We can have more complex families
adding dependencies between variables (Saul and Jordan, 1995; Barber and
Wiegerinck, 1998) or consider mixtures of the variational family (Bishop et al.,
1997).

2.1.4
Possible generalizations of variational inference

A limitation of the DKL arises from its sensitivity to tail behavior.
If the approximating distribution Q assigns a vanishingly small probability
q(x) ≈ 0 to events or regions where the true or target distribution P with non-
negligible probability mass p(x) > 0, the ratio p(x)

q(x) becomes extremely large.
Consequently, the logarithmic term log(p(x)

q(x)) contributes a disproportionately
large positive value to the divergence, even if p(x) itself is not large. This means
that the DKL heavily penalizes models (Q) that fail to cover the probability
mass of the target (P ), especially in the tails. In the extreme case where
q(x) = 0 for some x where p(x) > 0, the DKL becomes infinite, reflecting

1In this context, we have the duality that maximizing the ELBO is mathematically
equivalent to minimizing the DKL.
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its strict requirement for the absolute continuity of P for Q.
We argue that generalized information measures, emphasizing divergence

measures, offer a flexible framework for learning in complex networks with
long-range correlations (Tsallis, 2009; Liang et al., 2025). Our analysis of
VI literature reveals promising directions for these generalized approaches,
demonstrating their theoretical and empirical advantages for optimization in
high-dimensional spaces.

Blei et al. (2017) describes that a promising avenue of research is to
develop VI methods that optimize other measures, such as α-divergence.
Following the same intuition, the literature proposed approaches to address
other divergence measures in the VI problem. Based on our current knowledge,
the literature presents reasonable generalization approaches for VI (Li and
Turner, 2016; Minka, 2005; Knoblauch et al., 2019; Regli and Silva, 2018;
Hernández-Lobato et al., 2016; Wang et al., 2021). Following, we briefly
comment on three of these approaches.

Alpha-Beta VI Regli and Silva (2018) introduced an extended sAB diver-
gence (Cichocki et al., 2011) and its relationship with VI. One advantage is
that the minimization directly via the divergence, without any extra definition
of an equivalent lower bound. The formulation of a αβ divergence presented
in Regli and Silva (2018) is,

Dα,β
AB(p||q) = − 1

αβ

∫ (
p(θ)αq(θ)β − α

α + β
p(θ)α+β − β

α + β
q(θ)α+β

)
dθ.

(2-9)
The ELBO associated with this divergence is defined as,

Dα,β
AB(q(θ)||p(θ|X)) = − 1

αβ

∫ (
q(θ)αp(θ|X)β − α

α+β
q(θ)α+β − β

α+β
p(θ|X)α+β

)
dθ

= − 1
αβ

∫ (
q(θ)α

(
p(θ,X)
p(X)

)β
− α

α+β
q(θ)α+β − β

α+β

(
p(θ,X)
p(X)

)α+β
)
dθ

= − 1
αβ

[p(X)−β
∫
q(θ)αp(θ,X)βdθ − α

α+β

∫
q(θ)α+βdθ − β

α+β

p(X)−(α+β) ∫ p(θ,X)α+βdθ]
(2-10)

Generalized VI Knoblauch et al. (2019) introduces a novel framework that
extends traditional Bayesian inference by addressing key limitations of the
standard approach. The first step is reframe the Bayesian inference as an
infinite-dimensional optimization problem where the posterior q∗

B(θ) minimizes
Eq(θ)[

∑n
i=1 ℓ(θ, xi)] + KLD(q∥π) over all probability measures P(Θ). Building

on this insight, they developed the Rule of Three (RoT), defined as
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q∗(θ) = arg min
q∈Π

{Eq(θ)[
n∑

i=1
ℓ(θ, xi)] + D(q∥π)} def= P (ℓ,D,Π), (2-11)

where ℓ is a loss function, D is a divergence measuring uncertainty, and Π is a
feasible space of posteriors. This formulation provides modularity to address
three challenges in traditional Bayesian inference: misspecified priors, misspec-
ified likelihood models, and computational constraints. GVI is a tractable case
where Π = Q = {q(θ|γ) : γ ∈ Γ} ⊂ P(Θ) is a parameterized subset. They
prove several theoretical properties for GVI, including frequentist consistency
and an interpretation as an approximate evidence lower bound for certain
divergences. Empirical evaluations on Bayesian Neural Networks and Deep
Gaussian Processes demonstrate that appropriately chosen GVI posteriors can
significantly outperform standard VI and alternative approximation methods,
particularly in handling misspecified models and prior distributions.

f-divergence VI Wan et al. (2020) introduces f -divergence VI (f -VI), which
generalizes VI to all f -divergences. Starting with a surrogate f -divergence that
shares statistical consistency with the original f -divergence, the framework
unifies existing VI methods like KL-VI, Rényi’s α-VI, and χ-VI while providing
a standardized toolkit for VI with arbitrary f -divergences. The authors derive
a general f -variational bound Lf (q,D) = Eq(z)

[
f ∗
(

p(z,D)
q(z)

)]
≥ f ∗(p(D))

that serves as a sandwich estimate of marginal likelihood. They develop
optimization schemes using reparameterization tricks, importance weighting,
and Monte Carlo approximation, formalized as

∇θL
rep
f (qθ, D) = ∇θEp(ε)

[
f ∗
(
p(gθ(ε), D)
qθ(gθ(ε))

)]
(2-12)

Additionally, they propose a mean-field approximation that generalizes
coordinate ascent VI (CAVI) for f -VI, with update rules depending on
whether f ∈ F0 or f ∈ F1. The paper demonstrates the effectiveness of
f -VI through experiments on synthetic data, Bayesian neural networks, and
variational autoencoders, showing that it sometimes outperforms state-of-the-
art variational methods while offering greater flexibility in choosing divergence
measures.

These three approaches demonstrate that applying generalized diver-
gence measures provides a principled theoretical foundation for VI while en-
hancing flexibility, robustness, and performance. These frameworks enable
tailored inference procedures that adapt to model misspecification, complex
posterior geometries, and computational constraints by decoupling the opti-
mization objective from specific divergence metrics. Our work explores these
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insights into learning on graph-structured data.
In the next section, we present the backbone of our proposed method for

unsupervised learning on graphs using variational autoencoders.

2.2
Learning on Graphs via Variational Autoencoders

Variational autoencoders (VAE) are a practical implementation and
extension of VI principles within a neural network framework. This section
briefly introduces the VAE framework and how to use it to learn graph-
structured data using the node’s structure and associated features.

2.2.1
Motivation

The VAE framework (Kingma and Welling, 2013; Rezende et al., 2014)
provides a method for jointly learning deep latent-variable models and corre-
sponding inference models using gradient-based optimization methods. Figure
2.2 represents the VAE framework (Kingma and Welling, 2019). A VAE learns
stochastic mappings between an observed space X - in many cases, X have
a complicated empirical distribution q(X ) - and a latent space Z - where Z
have a simple distribution. The generative model learns a joint distribution
p(X,Z) that is in general factorized as p(X , Z) = p(Z)p(X |Z), with a prior
distribution over latent space p(Z), and a stochastic decoder p(X |Z). The
inference model q(Z,X ), or stochastic encoder, approximates the generative
model’s true (and intractable) posterior p(Z|X ).

Figure 2.2: A simplified representation of the learning process in a VAE
framework

2.2.2
Three learning components

Kipf and Welling (2016b) introduced the extension of VAE in unsuper-
vised learning for graphs. As presented in Figure 2.3, VGAE is a framework
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with three learning components: an inference model based on a graph convolu-
tional network (GCN)(Kipf and Welling, 2016a) encoder, a generative model
based on a simple inner product decoder, and a learning objective based on a
variational lower bound.

Figure 2.3: A simplified representation of the three learning components in a
VGAE framework. The inference mode, the generative model, and the learning
objective

To apply the VGAE framework, we consider a graph G along with its
adjacency matrix A and degree matrix D. The basic definitions of these
concepts are presented below.

Definition 2.1 (Undirected Graph) An undirected graph G = (V , E , X)
consists of a set of nodes V = {v1, v2, . . . , vn}, a set of edges E ⊆ {{u, v} |
u, v ∈ V , u ̸= v}, and a feature matrix X ∈ Rn×d where each row xi corresponds
to a d-dimensional feature vector of node vi.

Definition 2.2 (k-Neighborhood) The k-neighborhood of a node u, de-
noted as N (k)

u , is the set of all nodes that are exactly k hops away from u.
Formally:

N (1)
u = {v ∈ V | {u, v} ∈ E} (2-13)

N (k)
u = {v ∈ V | shortest path from u to v has length k} (2-14)

Definition 2.3 (Adjacency Matrix) The adjacency matrix A ∈ Rn×n of G
represents the connectivity pattern between nodes, where:

auv =

1, if {u, v} ∈ E (or equivalently, if v ∈ N (1)
u )

0, otherwise
(2-15)

For an undirected graph, A is symmetric, i.e., auv = avu ∀u, v ∈ V.
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Definition 2.4 (Degree Matrix) The degree matrix D ∈ Rn×n of G is a
diagonal matrix where each diagonal element dii represents the degree of node
vi, i.e., the number of edges incident to vi:

dii =
n∑

j=1
aij = |N (1)

vi
| (2-16)

All off-diagonal elements of D are zero: dij = 0 for i ̸= j.

Considering a two-layer GCN that parametrizes the inference model in
VGAE,

q(Z|A,X) =
N∏

i=1
q(zi|A,X) (2-17)

where q(zi|A,X) = N (zi|µi, diag(σ2
i )), µ = GCNµ(A,X) is the matrix of

mean vector µi, and log σ = Ψσ(A,X). The two layer GCN is defined as
GCN(X,A) = ÃReLU(ÃXW0W1) with weight matrices Wi.

There are some considerations about the implementation of this inference
model. First, GCNµ and GCNσ share the first layer parameters W0. The
activation function follows the traditional formulation ReLU(x) = max(0, x).
And Ã = D− 1

2AD− 1
2 is the symmetrically normalized adjacency matrix.

The generative model learns the latent variables by an inner product
defined as

p(A|Z =
N∏

i=1

N∏
i=1

p(Aij|zi, zj), (2-18)

where p(Aij = 1|zi, zj) = σ(z⊤
i zj), Aij are the elements of A and σ(·) is the

logistic sigmoid function.
Finally, the framework defines a learning objective based on the varia-

tional lower bound of the variational parameter Wi. This formulation can be
defined as

L(p, q) = Eq(Z|A,X) [logP (A|Z)] −DKL(q(Z|A,X) ∥ p(Z)) (2-19)

where we can take the Gaussian prior p(Z) = ∏
i N (zi|0, I).

2.3
Summary

This chapter presents the background for understanding unsupervised
learning on graphs using generative models, specifically leading up to the
variational graph autoencoders framework, the backbone of our proposed
framework described in Chapter 4. We present the challenge of approximate
Bayesian inference as an optimization problem. We explain how VI deals with
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intractable posterior calculations by introducing a simple prior distribution
and maximizing the evidence lower bound, equivalent to minimizing the KL
divergence. The chapter notes potential VI generalizations using alternative
divergence measures. The next chapter will describe a proposed representation
for generalized divergence measures and novel divergences.



3
κ-Generalized Divergence Measures

This chapter presents:

1. A generalized representation of divergence measures called κ-divergences,
which nests all of the f -divergences;

2. A comprehensive summary of generator functions for various κ-
divergences found in literature, demonstrating their mathematical re-
lationships and properties; and two novel families of divergences: δ-
divergences and η-divergences, which we propose as specific instantia-
tions within the κ-divergence framework;

3. A evaluation of κ-divergences in a distribution approximation problem
for a mixture of Gaussians. This experiment aims to observe the behavior
of the divergences in terms of mode-seeking and mass-covering.

3.1
Introduction

Divergence measures between distributions are crucial in machine learn-
ing. Some examples of its use are deep generative models based on variational
inference (Song et al., 2020; Ho et al., 2020), generative adversarial networks
(Nowozin et al., 2016), and mutual information neural estimation (Belghazi
et al., 2018). Many of these applications use the class of f -divergence as
the default. This class has well-established divergence measures with strong
properties and empirical results, like DKL, Dα, DJS (Jensen-Shannon), DHD

(Hellinger distance), and DT V (total variation).
In this work, we propose a representation for generalized divergence mea-

sures, including the non-additive divergence family based on Tsallis statistics
(Tsallis et al., 1998; Tsallis and Cirto, 2013), f -divergences (Csiszár, 1967;
Morimoto, 1963), and others.
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3.2
A κ-Parameterized Generalization of Divergence Measures

The κ-divergence represents a possible generalization that unifies many
classical generalized divergence measures through a parameterized approach
(Figure 3.1). By modulating the parameter κ, we control the sensitivity of
the divergence to different aspects of distributional differences - emphasizing
either the tails, central mass, or specific regions of interest. The κ-divergence
framework encompasses several well-known parametrized divergence measures
while maintaining desirable mathematical properties such as convexity, mono-
tonicity, and adherence to the data processing inequality.

This section formalizes the definition of κ-divergences, establishes their
theoretical foundations, and explores their mathematical properties.

Definition 3.1 (κ-divergence) Let P and Q be probability measures on a
measurable space X with density functions p and q, respectively. The κ-
divergence family is defined as:

Dκ(P ∥ Q) =
∫

X
q(x)f

(
p(x)
q(x) ;κ

)
dx, κ ∈ [1,∞) (3-1)

where f(·;κ) is a convex function of the likelihood ratio ϕ(x) = p(x)
q(x) that

satisfies f(1;κ) = 0 for all κ ∈ [1,∞). The parameter κ modulates how the
function f transforms the likelihood ratio, allowing different sensitivities to
various regions of distribution discrepancy.

Figure 3.1: A simplified representation of κ-divergence space
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Theorem 3.2 (Non-negativity) For any probability measures P and Q and
any κ ∈ [1,∞), Dκ(P ∥ Q) ≥ 0 with equality if and only if P = Q almost
everywhere.

Proof. Since f(·;κ) is convex for a given κ and f(1;κ) = 0, by Jensen’s
inequality:

Dκ(P ∥ Q) =
∫

X
q(x)f

(
p(x)
q(x) ;κ

)
dx (3-2)

≥ f

(∫
X
q(x) · p(x)

q(x)dx;κ
)

(3-3)

= f

(∫
X

p(x)q(x)
q(x) dx;κ

)
(3-4)

= f
(∫

X
p(x)dx;κ

)
(3-5)

= f (1;κ) (3-6)

Since f is convex with f(1;κ) = 0, we have Dκ(P ∥ Q) ≥ 0 with equality
if and only if P = Q almost everywhere. ■

The literature presents some divergences that follow our definition of a κ-
divergence. Table 3.1 summarizes a subset of these functions for a more detailed
evaluation of their convex behavior. The divergences choose are: q-divergence
(Tsallis et al., 1998), Rényi divergence (Rényi, 1961), α-divergence (Amari,
1985), β-divergence (Basu et al., 1998), γ-divergence (Fujisawa and Eguchi,
2008), and sAB-divergence (Cichocki et al., 2011). The last three divergences
- cδ, sδ, and η divergences - are proposed in this work and described in Section
3.3.

First, we write the generator function of these divergences using a
standard κ parameter.
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Table 3.1: Overview of κ generalized divergences generator functions. For
each divergence, the generator function f(ϕ, κ) and the first derivative of the
generator function f ′(ϕ, κ)

Divergence f(ϕ, κ) f ′(ϕ, κ)

Tsallis (q-divergence) ϕκ−ϕ
κ−1

κϕκ

ϕ
−1

κ−1

Rényi ϕκ−1
κ−1

κϕκ

ϕ(κ−1)

α-divergence ϕκ−κϕ+κ−1
κ(κ−1)

−κ+ κϕκ

ϕ

κ(κ−1)

β-divergence ϕ(1−κ) + (κ− 1)ϕ κ− 1 + ϕ(1−κ)(1−κ)
ϕ

γ-divergence ϕκ−ϕ
κ(κ−1)

κϕ(κ−1)−1
κ(κ−1)

sAB-divergence ϕκ1+κ2
κ2(κ1+κ2) + 1

κ1(κ1+κ2) − ϕκ1
κ1κ2

(κ1+κ2)ϕκ1+κ2−1

κ2(κ1+κ2) − κ1ϕκ1−1

κ1κ2

η-divergence ϕκ − log(ϕ) − 1 κϕκ−1 − 1
ϕ

cδ-divergence ϕ[log(c+ ϕ)]κ κϕ log(c+ϕ)κ−1

c+ϕ
+ log(c+ ϕ)κ

sδ-divergence ϕ([log(ϕ)]2)κ
(
log ϕ

)2κ−1 (
log ϕ+ 2κ

)

Figure 3.2 shows how the generator function value varies with ϕ for
different κ values (ranging from 1.1 to 3.0, indicated by the color gradient).
The figure illustrates the characteristic behaviors of each divergence family,
including minima positions, growth rates, and asymptotic properties. Lighter
blue curves represent smaller κ values, while darker blue curves indicate larger
values, as shown in the color bar. All divergences exhibit unique functional
forms while maintaining the common property of minimum value near ϕ = 1.
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Figure 3.2: Visualization of κ-divergence generator functions across varying
parameter values

3.3
Introducing the δ and η Divergences

While many divergence measures, like the DKL, have been extensively
studied, they often suffer from limitations such as sensitivity to outliers, lack
of scale invariance, or poor behavior when distributions have limited overlap.
This section introduces two novel families of divergence measures - δ and
η divergences - each designed to address specific analytical challenges while
maintaining desirable mathematical properties.

These divergence families offer varying degrees of flexibility through
their parameterization, allowing practitioners to tailor the measures to specific
applications. The cδ-divergence provides robustness through its adjustable
constant parameter, making it particularly suitable for comparing distributions
with regions of low density. The sδ-divergence, focusing on squared logarithmic
differences, offers enhanced discrimination for distributions with similar means
but different variances. Meanwhile, the η-divergence generalizes the scale-
invariant properties of the Itakura-Saito distance Itakura (1968).

Following this, we formally define each divergence measure and establish
its key mathematical properties.
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3.3.1
δ-entropy and a possible δ-divergence

A non-additive entropic functional specialized for black holes is the δ-
entropy (Tsallis, 2009; Tsallis and Cirto, 2013). Below, we briefly describe
δ-entropy and propose a direct corresponding δ-divergence function.

Definition 3.3 (δ-entropy) The δ-entropy hδ(X) of a continuous random
variable X with probability density function p(x) is defined as

hδ(X) = −
∫

X
p(x) [log p(x)]δ , δ > 0 (3-7)

where X is the support set of X.

Definition 3.4 (δ-divergence) Let P and Q be two distributions with prob-
ability density functions p(x) and q(x). For lnδ(x) ≡ [log(x)]δ, the δ-divergence
with δ ∈ N \ {0} is given by

Dδ(P ∥ Q) =
∫

X p(x)
[
log p(x)

q(x)

]δ
dx

=
∫

X p(x) lnδ

(
p(x)
q(x)

)
dx

(3-8)

where the integral is taken over regions where p(x)
q(x) > 0.

Lemma 3.5 δ-divergence satisfies the following properties:

– Non-negativity: For δ ≥ 1, Dδ(P ∥ Q) ≥ 0 with equality if and only if
P = Q almost everywhere.

– Generality: As δ → 1, δ-divergence reduces to the DKL:

lim
δ→1

Dδ(P ∥ Q) =
∫

X
p(x) log p(x)

q(x)dx = DKL(P ∥ Q). (3-9)

Proof.

1. Non-negativity: For δ ≥ 1, the function f(t) = [log(t)]δ is convex for
t > 0. By Jensen’s inequality, we have

EP

[
lnδ

(
p(X)
q(X)

)]
≥ lnδ

(
EP

[
p(X)
q(X)

])
(3-10)

Since EP

[
p(X)
q(X)

]
=
∫

X p(x) · p(x)
q(x)dx =

∫
X

p2(x)
q(x) dx ≥ (

∫
X p(x)dx)2 = 1, we

have lnδ(1) = 0.

Therefore, Dδ(P ∥ Q) = EP

[
lnδ

(
p(X)
q(X)

)]
≥ 0 with equality if and only if

p(x)
q(x) = 1 almost everywhere, which implies P = Q almost everywhere.
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2. Generality (Limit to DKL): Taking the limit as δ → 1:

lim
δ→1

Dδ(P ∥ Q) = lim
δ→1

∫
X
p(x)

[
log p(x)

q(x)

]δ

dx (3-11)

=
∫

X
p(x) log p(x)

q(x)dx (3-12)

= DKL(P ∥ Q) (3-13)

■

3.3.1.1
Limitations of δ-divergence

The δ-divergence exhibits several fundamental limitations that constrain
its practical applicability. First, when the likelihood ratio p(x)

q(x) < 1, the term
[log(p(x)

q(x))]
δ produces complex-valued results for any non-integer real values of

δ (where δ ∈ R \ N). These complex outputs significantly compromise the
interpretability of δ-divergence as a statistical distance measure.

Second, for δ-divergence to be properly classified within the class of κ-
divergences, the generating function f(t, κ) = [log(t)]κ must satisfy necessary
convexity conditions.

Theorem 3.6 (Convexity of δ-divergence) The δ-divergence with gener-
ating function f(t, κ) = [log(t)]κ satisfies the convexity requirements of a proper
divergence if and only if δ ∈ N.

Proof. For Dδ(P ∥ Q) to qualify as a proper κ-divergence, its generating
function f(t, κ) = [log(t)]κ must be convex on R+. This constraint necessitates
the second derivative f ′′(t) ≥ 0 for all t > 0.

We compute the first derivative:

f ′(t) = κ[log(t)]κ−1 · 1
t

(3-14)
The second derivative is given by:

f ′′(t) = κ(κ− 1)[log(t)]κ−2 · 1
t2

− κ[log(t)]κ−1 · 1
t2

(3-15)

= κ

t2

[
(κ− 1)[log(t)]κ−2 − [log(t)]κ−1

]
(3-16)

We analyze the convexity in two regions:
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Case 1: For t > 1, we have log(t) > 0. The convexity condition requires:

(κ− 1)[log(t)]κ−2 − [log(t)]κ−1 ≥ 0 (3-17)

(κ− 1) − log(t) ≥ 0 (3-18)

log(t) ≤ κ− 1 (3-19)

This inequality cannot be satisfied for all t > 1 unless κ− 1 = ∞, which
is impossible for finite κ.

Case 2: For 0 < t < 1, we have log(t) < 0. The analysis differs based on
the value of κ:

– When κ ∈ N (positive integers):

– The function [log(t)]κ is well-defined for all t > 0
– For even κ, f ′′(t) > 0 for all t ̸= 1
– For odd κ ≥ 3, convexity holds on specific intervals

– When κ ∈ R+ \ N (positive non-integers):

– The function [log(t)]κ yields complex values when t < 1
– Even when restricted to domains where t > 1, the function fails to

satisfy global convexity conditions

Therefore, the δ-divergence satisfies the convexity requirements of a
proper κ-divergence if and only if κ ∈ N. ■

Corollary 3.7 The parameter space of the δ-divergence as a proper statistical
distance measure is restricted to the discrete set of positive integers rather than
the continuous domain of positive real numbers.

Third, the numerical computation of δ-divergence encounters significant
instability in regions where p(x) or q(x) approaches zero. This computational
instability is exacerbated with increasing values of δ, as higher powers amplify
the effect of near-zero probabilities in the likelihood ratio.

To address these limitations, we propose two variations of the δ-
divergence: (1) the cδ-divergence, which incorporates a stability parameter
c to regularize the computation, and (2) the sδ-divergence, which employs a
squared likelihood ratio to mitigate the analytical and computational chal-
lenges.
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3.3.2
cδ-divergence
Definition 3.8 (cδ-divergence) The adjusted δ-divergence with parameter
δ ∈ R and constant c ≥ 1 is defined as

Dcδ
δ (P ∥ Q) =

∫
X
p(x)

[
log

(
c+ p(x)

q(x)

)]δ

dx (3-20)

where p and q are the density functions of non-negative measures P and Q,
respectively, defined on a measurable space X .

Theorem 3.9 (Non-negativity) For any non-negative measures P and Q

defined on X , any δ > 0, and constant c > 0, the adjusted δ-divergence satisfies
Dcδ

δ (P ∥ Q) ≥ 0, with equality if and only if P = Q almost everywhere.

Property 1 (Asymmetry) In general,

Dcδ
δ (P ∥ Q) ̸= Dcδ

δ (Q ∥ P ) (3-21)

Property 2 (Relation to DKL) When δ = 1 and c = 0, the adjusted δ-
divergence reduces to the DKL:

Dcδ
1 (P ∥ Q)|c=0 =

∫
X
p(x) log

(
p(x)
q(x)

)
dx = DKL(P ∥ Q) (3-22)

Lemma 3.10 (Convexity in First Argument) For δ ≥ 1 and c ∈ N\{0},
the function P 7→ Dcδ

δ (P ∥ Q) is convex for any fixed Q.

Property 3 (Robustness with c > 0) The presence of the constant c > 0
in the logarithm makes the cδ-divergence more robust to situations where p(x)

q(x)

approaches zero, as compared to standard δ-divergence.

3.3.3
sδ-divergence
Definition 3.11 (sδ-divergence) The squared δ-divergence with parameter
δ ∈ R is defined as

Dsδ
δ (P ∥ Q) =

∫
X
p(x)

[log
(
p(x)
q(x)

)]2
δ

dx (3-23)

where p and q are the density functions of non-negative measures P and Q,
respectively, defined on a measurable space X .

Theorem 3.12 (Non-negativity) For any non-negative measures P and Q
defined on X and any δ > 0, the squared δ-divergence satisfies Dsδ

δ (P ∥ Q) ≥ 0,
with equality if and only if P = Q almost everywhere.
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Proof. For any x where p(x) > 0 and q(x) > 0, the term log
(

p(x)
q(x)

)
equals zero

if and only if p(x)
q(x) = 1, which means p(x) = q(x).

Since the square of a non-zero real number is always positive,[
log

(
p(x)
q(x)

)]2
> 0 whenever p(x) ̸= q(x).

For δ > 0, raising a positive number to the power of δ preserves positivity.
Moreover, multiplying by p(x) > 0 maintains the sign.

Therefore, the integrand is non-negative everywhere and strictly positive
where p(x) ̸= q(x). This implies Dsδ

δ (P ∥ Q) ≥ 0, with equality if and only if
P = Q almost everywhere. ■

Property 4 (Symmetry) For all values of δ, the squared δ-divergence is
symmetric:

Dsδ
δ (P ∥ Q) = Dsδ

δ (Q ∥ P ) (3-24)
when defined with appropriate reference measures.

Property 5 (Relation to Rényi’s Divergence) When δ = 1, the squared
δ-divergence relates to the second-order entropy of the log-likelihood ratio:

Dsδ
1 (P ∥ Q) =

∫
X
p(x)

[
log

(
p(x)
q(x)

)]2

dx (3-25)

which corresponds to the variance of the log-likelihood ratio under distribution
P .

Lemma 3.13 (Convexity in First Argument) For δ ≥ 0, the function
P 7→ Dsδ

δ (P ∥ Q) is convex for any fixed Q.

Property 6 (Strong Discrimination) Due to the squared logarithm, the
sδ-divergence can provide more substantial discrimination between distribu-
tions with similar means but different variances compared to standard diver-
gences based on first-order log-likelihood ratios.

3.3.4
η-divergence
Definition 3.14 (η-divergence) Let P and Q be non-negative measures
defined on a measurable space X . The η-divergence (or generalized Itakura-
Saito distance) with parameter η ∈ R is defined as:

Dη(P ∥ Q) =
∫

X

(
p(x)η

q(x)η
− log

(
p(x)
q(x)

)
− 1

)
dx (3-26)

where p and q are the density functions of P and Q, respectively. For conven-
tion, we will consider η = κ.
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Theorem 3.15 (Non-negativity) For any non-negative measures P and Q
defined on X and any η ∈ R, the generalized Itakura-Saito divergence satisfies
Dη(P ∥ Q) ≥ 0, with equality if and only if P = Q almost everywhere.

Proof. Let f(t) = tκ − log(t) − 1 for t > 0. Taking the derivative, we get
f ′(t) = κtκ−1 − 1

t
. Setting f ′(t) = 0 yields κtκ−1 = 1

t
, thus κtκ = 1, which gives

t =
(

1
κ

) 1
κ .

For the second derivative, f ′′(t) = κ(κ− 1)tκ−2 + 1
t2 . For κ ≥ 1 or κ < 0,

we have f ′′(t) > 0 for all t > 0. For 0 < κ < 1, we have κ(κ− 1)tκ−2 < 0, but
1
t2 dominates for sufficiently small or large values of t, ensuring f(t) remains
strictly convex.

Since f(t) is strictly convex and attains its minimum at t =
(

1
κ

) 1
κ , we

have f(t) ≥ f
((

1
κ

) 1
κ

)
for all t > 0, with equality if and only if t =

(
1
κ

) 1
κ .

Setting t = p(x)
q(x) and integrating, we get:

Dη
κ(P ∥ Q) =

∫
X
f

(
p(x)
q(x)

)
q(x)dx (3-27)

≥
∫

X
f

((1
κ

) 1
κ

)
q(x)dx (3-28)

= f

((1
κ

) 1
κ

)∫
X
q(x)dx (3-29)

For normalized distributions (i.e., probability measures),
∫

X q(x)dx = 1.
Now, observe that f(1) = 1κ − log(1) − 1 = 1 − 0 − 1 = 0. Since f attains
its minimum at t =

(
1
κ

) 1
κ and not at t = 1 (except when κ = 1), we have

f
((

1
κ

) 1
κ

)
< 0.

However, equality in Dκ(P ∥ Q) = 0 is achieved if and only if p(x)
q(x) = 1

for almost all x, which means P = Q almost everywhere. ■

Property 7 (Asymmetry) In general, for κ ̸= 1,

Dκ(P ∥ Q) ̸= Dκ(Q ∥ P ) (3-30)

Property 8 (Special Case) When κ = 1, the generalized divergence reduces
to the standard Itakura-Saito divergence:

Dη
1(P ∥ Q) =

∫
X

(
p(x)
q(x) − log

(
p(x)
q(x)

)
− 1

)
dx (3-31)

Lemma 3.16 (Convexity in First Argument) For κ ≥ 1, the function
P 7→ Dκ(P ∥ Q) is convex for any fixed Q.
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Proof. For κ ≥ 1, the function g(x) = xκ

qκ is convex in x for any fixed q > 0.
This can be verified by taking the second derivative:

d2

dx2 g(x) = κ(κ− 1)x
κ−2

qκ
≥ 0 for κ ≥ 1 (3-32)

The function h(x) = − log
(

x
q

)
− 1 is also convex in x, as its second

derivative is d2

dx2h(x) = 1
x2 > 0.

Since the sum of convex functions is convex, g(x)+h(x) is convex, which
implies that Dκ(P ∥ Q) is convex in P . ■

Lemma 3.17 (Convexity in Second Argument) For 0 ≤ κ ≤ 1, the
function Q 7→ Dκ(P ∥ Q) is convex for any fixed P .

Proof. We need to analyze the convexity of the function j(q) = pκ

qκ − log
(

p
q

)
−1

with respect to q for fixed p.
Taking the first derivative:

d

dq
j(q) = −κ pκ

qκ+1 + 1
q

(3-33)

And the second derivative:
d2

dq2 j(q) = κ(κ+ 1) pκ

qκ+2 − 1
q2 (3-34)

For this to be non-negative (ensuring convexity), we need:

κ(κ+ 1) pκ

qκ+2 ≥ 1
q2 (3-35)

Simplifying:
κ(κ+ 1)p

κ

qκ
≥ 1 (3-36)

This condition is satisfied for all p, q > 0 when 0 ≤ κ ≤ 1, which
establishes the convexity of Dκ(P ∥ Q) in the second argument Q for this
range of κ. ■

Theorem 3.18 (Generalized Scale Relation) For any scalar α > 0 and
non-negative measures P and Q:

Dκ(αP ∥ αQ) = Dκ(P ∥ Q) (3-37)
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Proof.

Dκ(αP ∥ αQ) =
∫

X

(
(αp(x))κ

(αq(x))κ
− log

(
αp(x)
αq(x)

)
− 1

)
dx (3-38)

=
∫

X

(
ακp(x)κ

ακq(x)κ
− log

(
p(x)
q(x)

)
− 1

)
dx (3-39)

=
∫

X

(
p(x)κ

q(x)κ
− log

(
p(x)
q(x)

)
− 1

)
dx (3-40)

= Dκ(P ∥ Q) (3-41)

This computation shows that the generalized Itakura-Saito divergence is
scale-invariant for all values of κ. ■

Property 9 (Relation to Bregman Distance) The generalized Itakura-
Saito divergence is a Bregman distance generated by the function f(x) =
xκ − log(x) − 1, satisfying:

Dκ(P ∥ Q) = f(P ) − f(Q) − ⟨∇f(Q), P −Q⟩ (3-42)

where ∇f denotes the gradient of f and ⟨·, ·⟩ represents the appropriate inner
product.

Corollary 3.19 (Scale Invariance) The generalized Itakura-Saito diver-
gence is scale-invariant for all values of κ:

Dκ(αP ∥ αQ) = Dκ(P ∥ Q) (3-43)

for any scalar α > 0.

Proof. This follows directly from the Generalized Scale Relation theorem. ■

3.4
Experiment I: Exploring the Behavior of κ-divergences

3.4.1
Problem setup

We explore our three proposed divergences - cδ, sδ, and η - within a vari-
ational inference framework to approximate a target probability distribution.
The goal is to find the optimal parameters θ = (µ, σ) for a distribution qθ(x)
from a prior1, such that qθ(x) closely approximates a target distribution p(x)

1For all experiments, the approximating distribution qθ(x) is chosen from the family of
Gaussian distributions qθ(x) = N (x|µ, σ2)
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by minimizing a divergence Dκ(p||qθ)2. This experimental setup focuses on a
one-dimensional problem with a known target distribution p(x) defined as a
mixture of two Gaussian distributions with probability density function as,

p(x) = w1N (x|µ1, σ
2
1) + w2N (x|µ2, σ

2
2) (3-44)

where N (x|µ, σ2) denotes the probability density function of a Gaussian
distribution with mean µ and variance σ2. The specific parameters used are
mixture weights w1 = 0.7 and w2 = 0.3, component means µ1 = −1.0 and
µ2 = 1.5, and component standard deviations σ1 = 0.5 and σ2 = 0.5.

Minka (2005) defines that "If two identical Gaussians are separated
enough, an exclusive divergence prefers to represent only one of
them, while an inclusive divergence prefers to stretch across both.".

We use these two concepts to define the behavior of divergence measures
considering an approximate inference problem (as described in Chapter 2).
The first concept is the mode-seeking (or exclusive divergence). A specific
divergence measure is defined as mode-seeking if it tends to represent only
the mode with the highest mass. The second concept is the mass-covering (or
inclusive divergence). In this case, the divergence tends to cover as much of
the distribution p as possible.

3.4.2
Mixture of Gaussians approximation with δ and η divergences

The Figures 3.3, 3.4, and 3.5 present the results of the approximation
of a mixture of Gaussians p using a simple distribution q for sδ, cδ, and
η, respectively. The results show that all three divergences present a mass-
covering behavior. As empirically observed by Poole et al. (2016), mass-
covering divergences can increase sample diversity without losing sample
quality. This behavior can prevent "mode collapse" and potentially introduce
lower-probability samples.

2The optimization objective minimizes a selected κ-divergence measure between p(x)
and qθ(x). The distributions are evaluated over a discrete grid of 1000 points uniformly
spaced between −4 and 4. Let the resulting density vectors be p and qθ. Before calculating
the divergence, both vectors are normalized to sum to one, effectively treating them as
probability mass functions over the discrete grid. We use Adam optimizer with a learning
rate of 0.01 over 2000 epochs.
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Figure 3.3: The Gaussian (gray area) which minimizes sδ-divergence to p (a
mixture of two Gaussians) considering a prior q, for varying κ = {0.5, 1.5, 2}
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Figure 3.4: The Gaussian (gray area) which minimizes cδ-divergence to p (a
mixture of two Gaussians) considering a prior q, for varying κ = {0.5, 1.5, 2}
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Figure 3.5: The Gaussian (gray area) which minimizes η-divergence to p (a
mixture of two Gaussians) considering a prior q, for varying κ = {0.5, 1.5, 2}

3.5
Summary

This chapter presented a new class of divergences - the κ-divergences.
This class can be observed as a generalization of f -divergence with more
flexible convex functions that can be effectively used in learning scenarios. We
summarize some of the parameterized divergences found in the literature that
are cases of κ-divergence and propose two novel families of divergences: δ and
η. Analyzing the behavior of these novel divergences, we observe a dominance
of mass-covering behavior.



4
Generalized Variational Graph Auto-Encoders

This chapter presents:

1. A generalization of the variational graph autoencoder (VGAE) model.
In this generalization, we employ the three components of a VGAE
(inference model, generative model, and learning objective), but our
objective is a generalized approach based on the κ-divergences presented
in Chapter 3;

2. A sensitive analysis based on the parameter κ for link prediction and
node classification tasks. We look for the optimal κ parameter value for
each κ-divergence measure applied in GGVA;

3. Experiments: in Experiment II, we evaluate the GGVA framework in
link prediction and node classification in five academic citation networks;
in Experiment III, we propose a link prediction application for GGVA
framework in a novel real-world dataset (the Brazilian power grid sys-
tem);

4.1
Introduction

We propose a generalized graph variational autoencoders (GGVA) that
extends the traditional VGAE framework by incorporating κ-divergences as
a learning objective. Our model employs a GCN encoder architecture to
learn latent representations of graph-structured data while utilizing various
divergence measures to capture the information loss between the approximate
posterior and prior distributions.

4.2
A Generalized Latent Variable Model for Graph-structured Data

Graphs present unique challenges for representation learning due to the
complex interdependencies between nodes and the heterogeneity of connectiv-
ity patterns. The GGVA framework addresses these challenges by formulating
a generalized latent variable model that captures local and global structural
properties while maintaining computational tractability.
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Given an undirected graph G = (V , E) with node features X ∈ R|V |×d,
where d is the feature dimension, we aim to learn a low-dimensional latent
representation Z ∈ R|V |×h. The generative process assumes that the observed
graph structure arises from interactions between latent node representations.
Specifically, the probability of an edge existing between nodes i and j is
modeled as p(Aij = 1|zi, zj) = fθ(zi, zj), where fθ is a parameterized similarity
function and A is the adjacency matrix.

The GGVA model differs from standard graph VAEs by employing a more
flexible regularization scheme based on a family of κ-divergences parameterized
by κ > 1 (see details in Chapter 3). We argue this generalization allows for
more nuanced control over the trade-off between reconstruction accuracy and
latent space regularity, adapting to the specific characteristics of the input
graph.

The overall structure of our approach is similar to a traditional VGAE
implementation with three learning components: an inference model, a gener-
ative model, and a learning objective based on an evidence lower bound. Next,
we briefly describe these components in the context of GGVA.

4.2.1
Three learning components

Figure 4.1: The Generalized Graph Variational Autoencoder (GGVA) frame-
work.

In summary, our method consists of three key components: (1) an in-
ference model q(Z|A,X) encoding graph structure and node features, (2) a
generative model p(A|Z) that reconstructs graph adjacency from latent repre-
sentations through a decoder, and (3) a learning objective L(p, q) combining
positive and negative reconstruction terms with a divergence regularize.

The inference model in GGVA, denoted as q(Z|X,A), approximates the
true posterior distribution over latent variables, given the observed graph struc-
ture and node features. This model is implemented as an encoder architecture
that leverages GCN architecture (Kipf and Welling, 2016a). Considering a
two-layer GCN that parametrizes the inference model in GGVA is,
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q(Z|A,X) =
N∏

i=1
q(zi|A,X) (4-1)

where q(zi|A,X) = N (zi|µi, diag(σ2
i )), µ = GCNµ(A,X) is the matrix of

mean vector µi, and log σ = GCNσ(A,X). The two layer GCN is defined as
GCN(X,A) = ÃReLU(ÃXW0W1) with weight matrices Wi.

The generative model in GGVA, denoted as p(A|Z), defines the proba-
bility distribution over graph structures given the latent representations. As
in traditional VGAE architecture, we employ a simple inner product decoder.

p(A|Z =
N∏

i=1

N∏
i=1

p(Aij|zi, zj), (4-2)

where p(Aij = 1|zi, zj) = σ(z⊤
i zj), Aij are the elements of A and σ(·) is the

logistic sigmoid function.
The learning objective of GGVA extends the traditional variational lower

bound by replacing the DKL term with a more general κ-divergence regulariza-
tion. This modification provides greater flexibility in balancing reconstruction
accuracy and distribution matching, allowing the model to adapt to the specific
characteristics of the input graph.

The overall loss function can be defined as follows:

L(p, q) = Lpos + Lneg + λLdiv. (4-3)
The first component, Lpos, is the negative log-likelihood for positive edges

(edges that exist in the graph):

Lpos = −Eq(Z|X,A)

 ∑
(i,j)∈E

log p(Aij = 1|zi, zj)
 . (4-4)

The second component, Lneg, is the negative log-likelihood for negative
edges (edges that do not exist in the graph), sampled using a structure-aware
negative sampling strategy:

Lneg = −Eq(Z|X,A)

 ∑
(i,j)∈N

log(1 − pθ(Aij = 1|zi, zj))
 , (4-5)

where N is the set of sampled negative edges.
The third component, Ldiv, is the divergence regularization term, which

depends on the chosen κ-divergence:

Ldiv = Dκ(q(Z|X,A)∥p(Z)). (4-6)
The parameter λ controls the strength of the regularization, balancing

the trade-off between reconstruction accuracy and distribution matching. The
choice of κ-divergence and its parameter κ significantly influences the model’s
behavior. Lower values of κ (closer to 1) tend to produce more mass-covering
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behavior, capturing a broader range of the data distribution. Higher values of
κ lead to more mode-seeking behavior, focusing on high-density regions of the
data distribution.

The reparametrization trick (Z = µ+σ⊙ϵ, ϵ ∼ N (0, 1)) is an alternative
method for generating samples from the encoder q(z|x) (Kingma and Welling,
2013) for training via stochastic gradient descent. Let z be a continuous random
variable, and z ∼ q(z|A,X) be some conditional distribution. It is possible to
express the z as a determinist variable z = g(ϵ, x), where ϵ is an auxiliary
variable with independent marginal p(ϵ) and gθ(·) is a vector-valued function
parameterized by θ.

4.3
Experiment II: Benchmark Learning on Graphs

4.3.1
Problem setup

We evaluate the GGVA framework1 based on five benchmark datasets
for link prediction and node classification (Table 4.1) (Yang et al., 2016).
Each data set consists of academic citation networks as nodes and citation
relationships as edges, and the features are a bag of words in each document.

Name Classes Nodes Edges Features Task
Cora 7 2708 10.556 1.433 LP/NC
CoraML 7 2.995 16.316 2.879 LP/NC
Citeseer 6 3.327 9.104 3.703 LP/NC
PubMed 3 19.717 88.648 500 LP/NC
DBLP 4 17.716 105.734 1.639 LP/NC

Table 4.1: Summary of the datasets used for link prediction and node classifica-
tion tasks. Note: LP - link prediction, NC - node classification, AD - anomaly
detection

Figure 4.2 summarizes information about the datasets. For better visu-
alizations, we only consider 2000 nodes per graph. The bottom row presents
the degree distributions in linear scale (histogram bars) and logarithmic scale
(upper right dotted line), showing that most nodes have relatively few connec-
tions. In contrast, a small number of nodes have many connections, suggesting
scale-free properties typical in citation networks and a power-law distribution.

1For all models, we consider a similar value of hyperparameters with 32 hidden channels,
16 output channels, 0.01 learning rate, and training with Adam optimizer.
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DBLP Network
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Figure 4.2: Visualization and analysis of five academic citation networks. The
figure shows the network topology (top) and the degree distribution (bottom).

We compare our results with three baseline models - GAT (Veličković
et al., 2018), GraphSAGE (Hamilton et al., 2017), and the VGAE - using the
same environment for a fair evaluation. The metric chosen for comparison was
the average precision (AP) metrics2.

4.3.2
Node classification and link prediction

First, we employ a brute force sensitivity analysis for each dataset to se-
lect a good guess value for κ, considering node classification and link prediction
tasks. Table 4.2 summarizes the results showing the best-performing κ values
identified through this comparative analysis. Each value was determined by
conducting two independent training runs with a small number of 50 epochs,
each using the GGVA framework and considering a discrete set of 19 candidate
values κ = {1.1, 1.15, 1.2, . . . , 2}.

2AP summarizes a precision-recall curve as the weighted mean of precisions achieved at
each threshold: AP =

∑
n(Rn −Rn−1)Pn. We use the implementation available in Pedregosa

et al. (2011).
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Table 4.2: Optimal κ parameters for node classification and link prediction
across divergence types and datasets.

Task/Model
Cora CiteSeer PubMed DBLP CoraML

κ AP κ AP κ AP κ AP κ AP

Node classification

GGVA-Tsallis 1.60 0.8486 1.10 0.6274 1.45 0.7891 1.15 0.8666 1.95 0.9414
GGVA-Renyi 1.65 0.8333 1.65 0.6303 1.70 0.6669 1.55 0.8578 1.90 0.9282
GGVA-sAB 1.65 0.8332 1.45 0.6610 1.10 0.7994 1.50 0.8651 1.65 0.9202
GGVA-γ 1.40 0.8252 1.20 0.6325 1.75 0.7686 1.70 0.8679 1.85 0.9396
GGVA-β 1.10 0.7393 1.10 0.6133 1.50 0.7736 1.10 0.8402 1.15 0.8638
GGVA-η 1.15 0.7425 1.30 0.5190 1.50 0.7533 1.75 0.6953 1.55 0.6266
GGVA-cδ 1.65 0.8425 1.75 0.6488 1.90 0.7748 1.75 0.8690 2.00 0.9414
GGVA-sδ 2.00 0.8261 1.85 0.6399 1.10 0.7696 1.35 0.8633 1.65 0.9423
GGVA-α 1.90 0.8346 1.65 0.6051 1.85 0.7379 2.00 0.8625 1.80 0.9292
Link prediction

GGVA-Tsallis 1.25 0.7315 1.50 0.7537 1.85 0.8865 1.90 0.8263 1.85 0.8000
GGVA-Renyi 1.15 0.7404 2.00 0.7279 1.45 0.8851 1.45 0.8326 1.15 0.7904
GGVA-sAB 1.75 0.7331 1.90 0.7723 1.95 0.8940 1.45 0.8217 1.30 0.8112
GGVA-γ 1.70 0.7386 1.60 0.7585 1.40 0.8887 1.90 0.8296 1.50 0.8133
GGVA-β 1.60 0.7422 1.30 0.7488 1.45 0.8826 1.10 0.8138 1.50 0.8282
GGVA-η 1.40 0.7368 1.15 0.7401 1.85 0.8805 1.15 0.8045 1.10 0.8169
GGVA-cδ 1.45 0.7344 1.45 0.7502 1.75 0.8866 1.60 0.8209 1.80 0.7911
GGVA-sδ 1.90 0.7374 1.90 0.7469 1.45 0.8860 1.90 0.8318 1.10 0.7843
GGVA-α 1.30 0.7362 1.40 0.7624 1.55 0.8871 1.75 0.8189 1.75 0.7925

Figure 4.3 presents the efficiency-accuracy trade-off for node classifica-
tion. The results demonstrate that the GGVA framework consistently achieves
competitive AP while maintaining reasonable computational requirements
across different network structures and sizes. GGVA framework consistently
outperforms (or at least has similar results) its backbone model (VGAE) across
all tested datasets, demonstrating the effectiveness of incorporating general-
ized information measures. The figure also shows that η and β have the worst
results compared with the other κ-divergences.

Analysing the same efficiency-accuracy trade-off for link prediction (Fig-
ure 4.4, we observe that GGVA consistently outperforms GAT and Graph-
SAGE. However, the average results match those of VGAE in most cases. As
observed in the node classification task, the divergence with the worst results
in GGVA is η.
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Figure 4.3: Efficiency-accuracy trade-off for node classification. Accuracy is
measured as average precision (AP) and efficiency in seconds. Numbers show
mean results for 10 runs with random initializations on fixed dataset splits.
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Figure 4.4: Efficiency-accuracy trade-off for link prediction. Accuracy is mea-
sured as average precision (AP) and efficiency in seconds. Numbers show mean
results for 10 runs with random initializations on fixed dataset splits.
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4.3.3
Qualitative analysis for node embeddings

For clarity, we focus our analysis on the Cora dataset. Consistent with
the quantitative results, 2D projections of the learned embeddings exhibit
distinct clusters that align with Cora’s seven topic classes. This projection
achieves a Silhouette score3 comparable to VGAE’s, although the resulting
visual clustering patterns differ.

As quantitative results show, the η-divergence doesn’t have good average
precision w.r.t the other generalized divergences in GGVA. This behavior is
more explicit when we observe the embeddings of η, which show imprecise
clusters and a negative silhouette score.

GGVA-Tsallis
Silhouette: 0.093

GGVA-cδ-divergence
Silhouette: 0.116

GGVA-sδ-divergence
Silhouette: 0.101

GGVA-η-divergence
Silhouette: -0.104

GGVA-α-divergence
Silhouette: 0.092

GGVA-γ-divergence
Silhouette: 0.112

GGVA-sαβ-divergence
Silhouette: 0.115

VGAE
Silhouette: 0.118

Figure 4.5: t-SNE embeddings of the nodes in the BPGN dataset from trained
GGVA and VGAE

4.4
Experiment III: Learning in Power Grid Networks

4.4.1
Brazilian power grid network

The applications of LoG in electrical power grid networks have potential
in monitoring and planning (Liao et al., 2021; Ringsquandl et al., 2021;
Hansen et al., 2022). In this experiment, we investigate the link prediction
capacities of GGVA and baseline models applied in the Brazilian power grid
network (BPGN) (ONS, 2024). Some motivations for this problem are: (i)
link prediction can assist in designing new transmission lines by suggesting

3The silhouette score (Rousseeuw, 1987) measures how similar a point is to its cluster
(cohesion) compared to other clusters (separation). The metric range is (1, −1). 1 represents
the best result, and -1 represents the worst result. Values near 0 indicate overlapping clusters.
Negative values generally indicate that a sample has been assigned to the wrong cluster, as
a different cluster is more similar.
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optimal connections based on historical data and power demand patterns; (ii)
link prediction can help detect anomalies by identifying missing, unexpected,
or spurious connections. If a model predicts a high probability for a link that
does not exist, it may indicate an unauthorized or malfunctioning connection.

We define the BPGN as a graph where nodes represent electricity substa-
tions. The distance weights the connection between two substations4. Figure
4.6 shows the topology of this network considering communities detected us-
ing the Clauset-Newman-Moore greedy modularity maximization algorithm
(Clauset et al., 2004).

BPGN (Substation Level)
N=872, E=1516
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Figure 4.6: Brazilian power grid network by substations. (Left) The node colors
represent the communities detected. (Right) The degree distribution and the
logarithmic scale.

Table 4.3 shows the optimal κ values. As we do in the citation networks
experiment, each value was determined by conducting two independent train-
ing runs with a small number of 50 epochs, each using the GGVA framework
and considering a discrete set of 19 candidate values κ = {1.1, 1.15, 1.2, . . . , 2}.
We observe that the optimal value differs for each divergence, with the unique
exception of γ and η with κ∗ = 1.65.

4We compute 53 features for the BPGN - 5 centrality measures: degree, squared degree,
betweenness, closeness, and eigenvector; and 48 edge attribute features like length, resistance,
reactance, and operational capacity for different contexts.
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Table 4.3: Optimal κ values by divergence type for BPGN

Model κ∗ AP

GGVA-Tsallis 1.85 0.6877 ± 0.0001
GGVA-Renyi 2.00 0.6864 ± 0.0007
GGVA-sAB 1.60 0.6868 ± 0.0006
GGVA-γ 1.65 0.6873 ± 0.0018
GGVA-β 1.10 0.6841 ± 0.0013
GGVA-η 1.65 0.6722 ± 0.0063
GGVA-cδ 1.90 0.6876 ± 0.0009
GGVA-sδ 1.25 0.6865 ± 0.0003
GGVA-α 1.75 0.6877 ± 0.0006

Results show the optimal κ value that maximizes average precision (AP) for
each divergence type.

Table 4.4 summarizes the results for link prediction in BPGN. We ob-
serve that VGAE has the best AP (0.8728), closely followed by several GGVA
variants (e.g., GGVA-cdelta, GGVA-gamma, GGVA-sab), which achieve APs
around 0.86-0.87. These models significantly outperform GAT (0.5682) and
GraphSAGE (0.6538) in accuracy. GGVA-η is an exception with lower perfor-
mance (0.7455).

Table 4.4: Link prediction performance on BPGN

Model AP Time (s)

GGVA-Tsallis 0.8650 ± 0.0056 4.23 ± 0.42
GGVA-Renyi 0.8659 ± 0.0046 5.50 ± 0.55
GGVA-sAB 0.8669 ± 0.0050 4.26 ± 0.43
GGVA-γ 0.8709 ± 0.0047 5.89 ± 0.59
GGVA-β 0.8679 ± 0.0057 4.85 ± 0.49
GGVA-η 0.7455 ± 0.0088 5.30 ± 0.53
GGVA-cδ 0.8707 ± 0.0057 4.29 ± 0.43
GGVA-sδ 0.8667 ± 0.0033 4.87 ± 0.49
GGVA-α 0.8611 ± 0.0057 4.23 ± 0.42
GAT 0.5682 ± 0.0100 17.48 ± 1.75
GraphSAGE 0.6538 ± 0.0111 2.48 ± 0.25
VGAE 0.8728 ± 0.0057 5.18 ± 0.52

Results show mean ± standard deviation across runs. The best AP result is in
bold.
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4.4.2
Qualitative analysis for node embeddings

Due to the absence of ground-truth labels for BPGN, we employ K-
Means (Macqueen, 1967) clustering (k = 10) on the learned embedding
space to generate proxy labels. Subsequently, we evaluate the quality of these
embeddings by calculating the silhouette score based on the resulting clusters.
Figure 4.7 shows that the learned embeddings using GGVA - emphasis in sδ

and γ - have reasonably distinguishable clusters.
VGAE

Silhouette: 0.149
GGVA-Tsallis

Silhouette: 0.146
GGVA-cδ-divergence

Silhouette: 0.148
GGVA-sδ-divergence

Silhouette: 0.162

GGVA-η-divergence
Silhouette: 0.132

GGVA-α-divergence
Silhouette: 0.139

GGVA-γ-divergence
Silhouette: 0.155

GGVA-sαβ-divergence
Silhouette: 0.139

Figure 4.7: t-SNE embeddings of the nodes in the BPGN dataset from trained
GGVA and VGAE

4.5
Discussion

The results from Experiment II demonstrate the efficacy of the proposed
GGVA framework on benchmark citation networks. Across the five datasets
(Cora, CoraML, Citeseer, PubMed, DBLP), the GGVA based on different κ-
divergences consistently achieved competitive performance in node classifica-
tion, as measured by average precision (AP). Figures 4.3 and 4.4 illustrate the
efficiency-accuracy trade-off, revealing that GGVA models often surpass or
match the performance of the baseline VGAE in link prediction, upon which
they are built, while maintaining reasonable computational times, generally
outperforming the baseline models GAT and GraphSAGE in efficiency. Fur-
thermore, the sensitivity analysis presented in Table 4.2 highlights a crucial
aspect: the optimal hyperparameter κ varies considerably depending on the
specific dataset, the task (node classification vs. link prediction), and the cho-
sen κ-divergence measure. This variability underscores the flexibility of the
GGVA framework. It suggests that different generalized divergences, with ap-
propriately tuned parameters, can capture distinct structural or feature-based
information important for different learning objectives on graphs.
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Considering Experiment III, the link prediction task was evaluated on
the BPGN. The results, summarized in Table 4.4, present a nuanced picture.
While several GGVA variants (notably GGVA-cδ, GGVA-sAB, and GGVA-γ)
achieved high AP scores, very close to the top performer, the baseline VGAE
model registered the highest AP (0.8818 ± 0.0047). This indicates that for
this specific infrastructure network and feature set, the standard VGAE was
effective, slightly outperforming the generalized divergences explored within
the GGVA framework on average. However, the differences were marginal for
the best GGVA variants. All GGVA variants and VGAE significantly outper-
formed GAT and GraphSAGE for AP. The optimal κ values determined for
BPGN (Table 4.3) also differed from those found optimal for citation networks,
indicating the problem-dependent nature of hyperparameter tuning. Although
GGVA did not distinctly outperform VGAE on BPGN as consistently ob-
served in Experiment II for link prediction, its strong performance confirms its
viability for real-world graph learning tasks beyond citation networks, offer-
ing flexible divergence options that perform competitively with the established
baseline.

The selection of the hyperparameter κ requires careful attention. Our
findings demonstrate that the optimal κ is highly sensitive, varying substan-
tially across datasets, learning tasks, and the specific generalized divergence
employed. This sensitivity offers a key advantage: it endows the framework with
flexibility, allowing it to potentially capture diverse structural or feature-based
nuances by appropriately tuning κ alongside the divergence choice. Otherwise,
this dependency introduces a practical challenge, as identifying the optimal κ
typically necessitates an additional hyperparameter search (e.g., grid search),
consequently increasing the computational overhead required for model opti-
mization and deployment, which is suggestive for future research directions.
An efficient method for choosing optimal κ values for robust learning objectives
becomes a desirable goal to achieve.

4.6
Summary

Variational methods are a powerful tool for learning on graph-structured
data. This chapter investigated using flexible divergences as learning objec-
tives in setting variational graph autoencoders. This framework is called gen-
eralized variational graph autoencoders (GGVA). We employ nine different
κ-divergences for node classification and link prediction tasks in citation net-
works and link prediction in the Brazilian power grid network.

The results indicate that GGVA outperforms the baseline models —
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GAT, GraphSAGE, and VGAE — in all scenarios, with emphasis on node
classification tasks. A qualitative analysis employed in learned embeddings,
where the GGVA variants show a reasonable silhouette score, was used to help
explain this performance.



5
Conclusion and Future Work

5.1
Conclusion

The classical variational methods in graph-structured data apply an ev-
idence lower bound based on Kullback-Leibler divergence to minimize the in-
formation loss in an autoencoder setup. In this work, we investigate the use of
generalized divergence measures for unsupervised learning on graphs via vari-
ational autoencoders. We propose a comprehensive collection of parametrized
divergences, which we unify in the class of κ-divergences and investigate their
behavior for mode-seeking or mass-covering in a mixture of Gaussians approx-
imation problems.

Taking these generalized measures, we build the generalized graph vari-
ational autoencoders (GGVA) framework and evaluate their results for link
prediction and node classification tasks considering a benchmark with five aca-
demic citation networks (Cora, CiteSeer, PubMed, DBLP, CoraML) and three
baseline models (VGAE, GAT, GraphSAGE). Using the Brazilian power grid
network, we also evaluate our framework in a novel dataset for link prediction.

Main findings

– Based on a variational inference problem for approximating a mixture of
Gaussians using a simple prior, our three novel divergence measures - cδ,
sδ, and η - show a mass-covering behavior;

– For node classification, GGVA outperforms the baseline models in the
five academic citation networks considering time efficiency and average
precision;

– For link prediction in academic citation networks, GGVA outperforms
GAT and GraphSAGE considering time efficiency and average precision.
And the results are similar with VGAE;

– For link prediction in the Brazilian power grid network, we observe that
GGVA outperforms GAT and GraphSAGE and has competitive results
aligned with VGAE.
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5.2
Future Work

Some research directions for our current work are:

– A key methodological challenge involves establishing a rigorous frame-
work for optimal parameter selection κ. Developing an approach for tun-
ing κ ensures model robustness and maximizes performance across di-
verse datasets and tasks.

– Extending the theoretical underpinnings of our approach presents a
significant opportunity. We want to explore the integration of generalized
measures of information and principles from non-extensive statistical
mechanics, particularly within the context of Temporal Graph Neural
Networks (TGNNs).

– Finally, improving the explainability of the learned representations is
essential for building trust and extracting actionable insights. We aim
to develop methods specifically designed to enhance the explainability
of the latent space generated by graph neural networks, exploring how
a generalized mutual information in GNNExplainer-inspired methods
could improve explainability.
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A
An Overview of Learning on Graphs

Following, we present an overview of graph neural networks (GNN), the
main architectures, and theoretical aspects. In summary, a GNN is a general
framework for deep learning on graph-structured data. The main idea behind
this architecture is to employ deep encoder that generates representations of
nodes based on the graph structure and any relevant node feature information.

A.1
Graph Neural Networks

Graph Neural Networks (GNNs) are an effective framework for LoG
and the most general class of deep learning architectures, considering that
most other deep learning architectures can be viewed as a special case of
GNNs with additional geometric structure Bronstein et al. (2021). GNNs use a
messaging passing in which vector messages are exchanged between nodes and
updated using neural networks - for example, multilayer perceptron (Gilmer
et al., 2017). In a simple form, the GNNs update a hidden embedding hk

v by
the following message-passing rule with neighbourhood aggregation for each
iteration,

hk+1
v = ϕ(hk

v ,
⊕

u∈Nv

ψ(hk
u)) (A-1)

where ⊕ is a permutation invariant function aggregator, ψ is a neighbour
aggregation function, and ϕ is a propagation function. With this basic form,
we can observe that the message depends only on the current state hu and
it depends on the entire state. Any notion of local information has to be
implemented by ψ. Another aspect of this architecture is that nodes never
stop transmitting their state, so there is no easy way to define termination
conditions. In this case, not only does ψ need to learn to return zero, but ϕ
also has to learn the identity function on those zero messages.

The intuition of Equation A-1 is that for each iteration, every node
aggregates information from its local neighbourhood, and as these iterations
progress, each node embedding contains more information from further reaches
of the graph. This information can be described as (i) structure and (ii) feature
information. For structure information, after k iterations of GNN message-
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passing, the hk
v might encode information about the degrees of all nodes in

N k
v . And after k iterations, the hk

v encode feature information of all nodes in
N k

v .

A.1.1
Three possible variations of GNN Layers

There are different forms to compute how the information is transmitted
from N k

v to v. According to Bronstein et al. (2021), the GNNs layers design
observed in the literature can be divided into three variations - convolutional,
attentional, and message-passing - that guide the extent to which ϕ change Nv

features. Following we describe these three variations and present a simplified
representation (Figure A.1).

A message-passing layer involves computing arbitrary vectors - the
messages - across the edges of a graph using a neighborhood aggregation
function ψ. Some examples in literature are interaction networks (Battaglia
et al., 2016), Message-passing Neural Networks (MPNN) (Gilmer et al., 2017),
and relational inductive biases (Battaglia et al., 2018). We can define these
variations following Equation A-1 as

hk
v = ϕ(xv,

⊕
u∈Nv

ψ(xu)) (A-2)

A convolutional layer involves aggregating the features of the neigh-
borhood nodes based on fixed weights. Some examples in literature are the
Graph Convolutional Network (GCN) (?), ChebyNet (Defferrard et al., 2016),
and simple-GCN (Wu et al., 2019). We can define this variation as

hk
v = ϕ(xv,

⊕
u∈Nv

cvuψ(xu)) (A-3)

where cvu represents the importance of u to node v′s representation.
The attentional layer involves weighing the neighborhood influence

during the aggregation. Some examples in literature are the Graph Attention
Network (GAT) (Veličković et al., 2018), MoNet (Monti et al., 2017), and the
GATv2 (Brody et al., 2021). We can define this variation as

hk
v = ϕ(xv,

⊕
u∈Nv

δ(xv,xu)ψ(xu)) (A-4)

where δ is a learnable self-attention mechanism used to compute the impor-
tance coefficients αv,u. We can achieve the importance coefficients via

αv,u = exp(δ⊤[xv
⊕xu])∑

ũ∈Nv
exp(δ⊤xv

⊕xũ) (A-5)
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Figure A.1: Comparison of three neural network architectures for graph
processing. Message-Passing (left), Convolutional (center), and Attentional
(right). Each diagram illustrates how information flows between nodes in the
network with their respective mathematical formulations.

A.1.2
Traditional tasks in learning on graphs

Figure A.2: Illustration of tasks in learning on graphs. The figure shows three
fundamental graph learning tasks: node classification (zv = f(hv)), graph
classification (zG = f(⊕v∈V hv)), and edge prediction (zu,v = f(hu, hv)).

Figure A.2 illustrates a GNN framework for learning on graph-structured
data. The left side depicts an input graph with nodes containing features
(x1, x2, etc.). After processing through the GNN, the right side shows the
transformed graph with learned node representations (ha, hb, etc.) that capture
both node features and structural information. These learned embeddings are
then utilized for three fundamental graph learning tasks, as indicated by the
different output pathways.

Each task leverages the GNN embeddings in a distinct manner: node
classification predicts labels for individual nodes using their respective embed-
dings; graph classification aggregates all node embeddings (using some pooling
operation ⊕) to make predictions about the entire graph; and edge predic-
tion evaluates potential connections between node pairs by combining their
representations. This unified architecture demonstrates how GNNs provide a
versatile framework for various LoG applications, from molecular property pre-
diction to social network analysis and recommender systems.
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A.1.3
Theoretical aspects of GNNs

Given any graph G with an adjacency matrix A, a deep encoder that
generates embeddings based on A should ideally satisfy permutation invariance
or permutation equivariance.

Definition A.1 (Permutation invariance and equivariance) Let A ∈
Rn×n be the adjacency matrix of a graph G, and let P ∈ {0, 1}n×n be a permu-
tation matrix. We say that a function f : Rn×n → Rd is permutation invariant
if:

f(PAP⊤) = f(A) ∀P (A-6)
Similarly, a function g : Rn×n → Rn×d is permutation equivariant if:

g(PAP⊤) = Pg(A) ∀P (A-7)

Intuitively, permutation invariance means that the output of f does not
depend on the specific ordering of the entries in A. In contrast, permutation
equivariance means that the output of f is permuted consistently when we
permute the A.

These properties are crucial for GNNs as they ensure that the learned
representations depend only on the graph structure and not an arbitrary node
ordering.



B
An Overview of Divergence Measures

We present an overview of the literature’s main divergence measures and
families of divergences. We focus on the f -divergences, the α, β, γ families,
and the non-additive divergences families. By convention, we consider two
probability distributions P and Q with probability density functions p(x) and
q(x), respectively.

B.1
Foundational f-divergences

The generator function f(ϕ) of an f -Divergence is a convex function that
defines the divergence between two probability distributions P and Q through
the following general equation,

Df (P ∥ Q) =
∫

X
f

(
p(x)
q(x)

)
q(x) dx (B-1)

where p(x) and q(x) are the probability densities (or mass functions) of the
distributions P and Q, respectively; X is the support set of X; f(ϕ) : R+ → R
is a convex function that satisfies f(1) = 0, and p(x)

q(x) is the likelihood ratio or
the Radon-Nikodym derivative of P w.r.t Q.

We can derive the corresponding f(t) function for an f -divergence using
the integral expression of a known divergence formula. A common formulation
that satisfies f is the Kullback-Leibler divergence (DKL).

Definition B.1 (Kullback-Leibler divergence) Given two distributions P
and Q, DKL(P ∥ Q) is given by

DKL(P ∥ Q) =
∫

X
p(x) log

(
p(x)
q(x)

)
dx (B-2)

B.2
α, β, and γ divergence families

The families of α, β, and γ divergences are well-established in literature
considering their flexibility and robust characteristics (Cichocki and Amari,
2010).
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Definition B.2 (Rényi divergence) The Rényi α-divergence (Rényi, 1961)
with α > 0 and α ̸= 1 is defined as

DR
α (P ∥ Q) = 1

1 − α
log

∫
X
pα(x)q1−α(x)dx (B-3)

Definition B.3 (α-divergence) The α-divergence (Amari, 1985; Cichocki
et al., 2008) with α ∈ R[0, 1] is defined as

Dα(P ∥ Q) = 1
α(1 − α)

[
1 −

∫
X
pα(x)q1−α(x)dx

]
(B-4)

Definition B.4 (β-divergence) The β-divergence (Basu et al., 1998; Mi-
hoko and Eguchi, 2002) with β ∈ R[0, 1] is defined as

Dβ(P ∥ Q) = 1
β(β − 1)

∫
X
p(x)βdx+ 1

β

∫
X
q(x)βdx− 1

β − 1

∫
X
p(x)q(x)β−1dx

(B-5)

Definition B.5 (γ-divergence) The γ-divergence (Fujisawa and Eguchi,
2008) with γ ∈ R[0, 1] is defined as

Dγ(P ∥ Q) = 1
γ(γ − 1) log (

∫
X p(x)γdx)(

∫
X q(x)γdx)γ−1

(
∫

X p(x)q(x)γdx)γ
(B-6)

Definition B.6 (sAB-divergence) The scale invariant sAB-divergence in-
troduced by Cichocki et al. (2011) is defined as

Dα,β
sAB(P ∥ Q) ≡ 1

β(α+β) log
∫

X p(x)α+βdx

+ 1
α(α+β) log

∫
X q(x)α+βdx

− 1
αβ

log
∫

X p(x)αq(x)βdx,

(B-7)

for (α, β) ∈ R2 such that α ̸= 0, β ̸= 0 and α + β ̸= 0.
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B.3
Non-additive divergences

Non-extensive statistical mechanics introduce powerful measures and
novel perspectives for modeling complex systems, systems at the edge of
chaos. The Tsallis q-entropy represents a seminal approach in this field, pro-
viding a well-established entropic functional that generalizes the conventional
Boltzmann-Gibbs-Shannon entropy (Tsallis, 1988) with many desirable prop-
erties. This generalization is defined as:

Sq = k
1 −∑W

i=1 p
q
i

q − 1 (B-8)

where q is the entropic index, capture a broader spectrum of correlations within
systems exhibiting non-additive properties (Gell-Mann and Tsallis, 2004).
Unlike traditional statistical mechanics that assume short-range interactions
and ergodicity, the Tsallis framework effectively addresses systems where long-
range interactions dominate the dynamic, long-term memory effects influence
system behavior, and multifractal or hierarchical structures emerge naturally.

The parameter q serves as a measure of non-extensivity, with q = 1
recovering the standard Boltzmann-Gibbs entropy as a special case (Tsallis,
2009). For q ̸= 1, the formalism captures complex correlation structures
manifesting in numerous natural and artificial complex systems, from plasma
physics and turbulent flows to financial markets and biological networks
(Abe and Okamoto, 2001). This approach has proven particularly valuable
in characterizing systems at the edge of chaos, where traditional statistical
methods often fail to provide adequate descriptions of emergent behaviors and
critical phenomena (Plastino and Plastino, 1995; Tsallis, 2023).

B.3.1
Tsallis q-divergence
Definition B.7 (Tsallis divergence) The q-divergence (Tsallis et al., 1998)
with q ∈ R is defined as

DT
q (P ∥ Q) = 1

1 − q

(∫
X
p(x)qq(x)1−qdx− 1

)
(B-9)



C
Detailed experiments results for citation networks

Table C.1: Average precision (AP) by model and dataset for node classification

Model Cora Citeseer CoraML PubMed DBLP

GAT 0.8201 ± 0.0075 0.6195 ± 0.0084 0.9338 ± 0.0027 0.8236 ± 0.0046 0.8874 ± 0.0016
GraphSAGE 0.8308 ± 0.0116 0.5773 ± 0.0073 0.9380 ± 0.0014 0.8041 ± 0.0070 0.8747 ± 0.0027
VGAE 0.7373 ± 0.0098 0.4525 ± 0.0203 0.8992 ± 0.0063 0.8165 ± 0.0070 0.8816 ± 0.0013
GGVA-alpha 0.8656 ± 0.0091 0.6497 ± 0.0133 0.9528 ± 0.0034 0.8277 ± 0.0047 0.8832 ± 0.0016
GGVA-beta 0.8642 ± 0.0103 0.6447 ± 0.0182 0.9425 ± 0.0036 0.8085 ± 0.0243 0.8769 ± 0.0017
GGVA-cdelta 0.8700 ± 0.0083 0.6479 ± 0.0099 0.9549 ± 0.0022 0.8282 ± 0.0054 0.8831 ± 0.0011
GGVA-eta 0.8415 ± 0.0237 0.5988 ± 0.0479 0.8457 ± 0.0596 0.8190 ± 0.0168 0.8504 ± 0.0208
GGVA-gamma 0.8674 ± 0.0085 0.6533 ± 0.0080 0.9538 ± 0.0039 0.8278 ± 0.0063 0.8827 ± 0.0009
GGVA-renyi 0.8684 ± 0.0096 0.6441 ± 0.0121 0.9548 ± 0.0035 0.8290 ± 0.0056 0.8842 ± 0.0015
GGVA-sab 0.8688 ± 0.0066 0.6520 ± 0.0103 0.9542 ± 0.0033 0.8267 ± 0.0063 0.8822 ± 0.0014
GGVA-sqdelta 0.8696 ± 0.0065 0.6527 ± 0.0085 0.9557 ± 0.0046 0.8275 ± 0.0047 0.8830 ± 0.0011
GGVA-tsallis 0.8671 ± 0.0086 0.6519 ± 0.0100 0.9535 ± 0.0041 0.8276 ± 0.0054 0.8834 ± 0.0012

Results show mean ± standard deviation across runs. The best results in each
column are in bold.

Table C.2: Average Precision (AP) by model and dataset for link prediction

Model Cora CiteSeet CoraML PubMed DBLP

GAT 0.7019 ± 0.0175 0.7769 ± 0.0265 0.6430 ± 0.0319 0.7561 ± 0.0045 0.7819 ± 0.0016
GraphSAGE 0.7142 ± 0.0268 0.7365 ± 0.0214 0.7387 ± 0.0134 0.7450 ± 0.0235 0.7803 ± 0.0085
VGAE 0.8850 ± 0.0150 0.8653 ± 0.0170 0.8981 ± 0.0153 0.9430 ± 0.0036 0.9320 ± 0.0056
GGVA-alpha 0.7927 ± 0.0451 0.8536 ± 0.0185 0.8826 ± 0.0141 0.9348 ± 0.0097 0.9299 ± 0.0094
GGVA-beta 0.7594 ± 0.0159 0.8043 ± 0.0090 0.8421 ± 0.0110 0.8799 ± 0.0085 0.9005 ± 0.0059
GGVA-cdelta 0.8729 ± 0.0121 0.8501 ± 0.0260 0.8727 ± 0.0276 0.9310 ± 0.0112 0.9283 ± 0.0081
GGVA-eta 0.7735 ± 0.0058 0.7939 ± 0.0104 0.8382 ± 0.0115 0.8734 ± 0.0070 0.8207 ± 0.0050
GGVA-gamma 0.8721 ± 0.0183 0.8568 ± 0.0197 0.8835 ± 0.0127 0.9368 ± 0.0080 0.9317 ± 0.0047
GGVA-renyi 0.8451 ± 0.0101 0.8430 ± 0.0358 0.8342 ± 0.0360 0.9169 ± 0.0249 0.9243 ± 0.0104
GGVA-sab 0.8809 ± 0.0109 0.8626 ± 0.0137 0.8956 ± 0.0151 0.9416 ± 0.0085 0.9324 ± 0.0047
GGVA-sqdelta 0.8807 ± 0.0122 0.8564 ± 0.0189 0.8815 ± 0.0191 0.9374 ± 0.0104 0.9300 ± 0.0063
GGVA-tsallis 0.8816 ± 0.0174 0.8569 ± 0.0175 0.8833 ± 0.0128 0.9353 ± 0.0071 0.9302 ± 0.0078

Results show mean ± standard deviation across runs. The best results in each
column are in bold.
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