Título: | ON OSCULATING CONICS IN THE REAL PROJECTIVE PLANE | ||||||||||||
Autor: |
FILIPE BELLIO DA NOBREGA |
||||||||||||
Colaborador(es): |
MARCOS CRAIZER - Orientador ÉTIENNE GHYS - Coorientador |
||||||||||||
Catalogação: | 23/JUN/2025 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=71188&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=71188&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.71188 | ||||||||||||
Resumo: | |||||||||||||
We investigate how the osculating conics of a regular curve in the real projective
plane evolve as one traverses the curve. The Tait-Kneser Theorem states that if
the curve has no inflection or vertex, then the osculating circles do not intersect
and are nested, that is, the smaller osculating circle is contained in the bounded
region defined by the larger circle. We generalize this result by proving that
if the curve has no inflection or sextactic point, then its osculating conics are
convexly nested.
In addition, we compute the first and second terms of the power series of
the J-invariant of the binary quartic related to a pair of osculating conics of
an arbitrary curve. Finally, we show that given a pair of harmonically nested
conics u,v, there exists a zero projective curvature logarithmic spiral that has
u and another conic of the pencil generated by u and v as its osculating conics.
|
|||||||||||||
|