Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ON OSCULATING CONICS IN THE REAL PROJECTIVE PLANE
Autor: FILIPE BELLIO DA NOBREGA
Colaborador(es): MARCOS CRAIZER - Orientador
ÉTIENNE GHYS - Coorientador
Catalogação: 23/JUN/2025 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=71188&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=71188&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.71188
Resumo:
We investigate how the osculating conics of a regular curve in the real projective plane evolve as one traverses the curve. The Tait-Kneser Theorem states that if the curve has no inflection or vertex, then the osculating circles do not intersect and are nested, that is, the smaller osculating circle is contained in the bounded region defined by the larger circle. We generalize this result by proving that if the curve has no inflection or sextactic point, then its osculating conics are convexly nested. In addition, we compute the first and second terms of the power series of the J-invariant of the binary quartic related to a pair of osculating conics of an arbitrary curve. Finally, we show that given a pair of harmonically nested conics u,v, there exists a zero projective curvature logarithmic spiral that has u and another conic of the pencil generated by u and v as its osculating conics.
Descrição: Arquivo:   
COMPLETE PDF