Título: | LYAPUNOV EXPONENTS OF RANDOM LINEAR COCYCLES: REGULARITY AND STATISTICAL PROPERTIES | ||||||||||||
Autor: |
MARCELO DURAES CAPELEIRO PINTO |
||||||||||||
Colaborador(es): |
SILVIUS KLEIN - Orientador |
||||||||||||
Catalogação: | 29/MAI/2025 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=70678&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=70678&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.70678 | ||||||||||||
Resumo: | |||||||||||||
This work is concerned with the study of the regularity and the statistical
properties of Lyapunov exponents of random locally constant linear cocycles.
We investigate both the case when the support of the underlying measure
consists of only invertible matrices, as well as the case when it also contains
non-invertible matrices. It turns out that these two settings exhibit strikingly
different behaviors.
In the invertible case we study the regularity of the Lyapunov exponent
as a function of the underlying measure relative to two different topologies.
We establish its Hölder continuity in the generic setting with respect to the
Wasserstein distance and its analyticity with respect to the total variation
norm. In the non-invertible case, under appropriate assumptions, we obtain a
characterization of uniform hyperbolicity via multi-cones and use it to establish
a dichotomy between the analyticity and the discontinuity of the Lyapunov
exponent. We also derive large deviations estimates and a central limit theorem
for all of these models.
While there are many interesting remaining open problems, our re
sults attempt to provide an almost complete picture in the context of two
dimensional random locally constant cocycles with finitely supported measu
res.
|
|||||||||||||
|