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Abstract

Pinto, Marcelo Durdes Capeleiro; Klein, Silvius (Advisor).
Lyapunov Exponents of Random Linear Cocycles: Regu-
larity and Statistical Properties. Rio de Janeiro, 2025. 149p.
Tese de Doutorado — Departamento de Matematica, Pontificia Uni-
versidade Catolica do Rio de Janeiro.

This work is concerned with the study of the regularity and the statistical
properties of Lyapunov exponents of random locally constant linear cocycles.
We investigate both the case when the support of the underlying measure
consists of only invertible matrices, as well as the case when it also contains
non-invertible matrices. It turns out that these two settings exhibit strikingly
different behaviors.

In the invertible case we study the regularity of the Lyapunov exponent
as a function of the underlying measure relative to two different topologies.
We establish its Holder continuity in the generic setting with respect to the
Wasserstein distance and its analyticity with respect to the total variation
norm. In the non-invertible case, under appropriate assumptions, we obtain a
characterization of uniform hyperbolicity via multi-cones and use it to establish
a dichotomy between the analyticity and the discontinuity of the Lyapunov
exponent. We also derive large deviations estimates and a central limit theorem
for all of these models.

While there are many interesting remaining open problems, our re-
sults attempt to provide an almost complete picture in the context of two-
dimensional random locally constant cocycles with finitely supported measu-

res.

Keywords
Dynamical Systems; Ergodic Theory; Linear Cocycles; Lyapunov

Exponents; Markov Operators.



Resumo

Pinto, Marcelo Duraes Capeleiro; Klein, Silvius. Expoentes de
Lyapunov de Cociclos Lineares Aleatérios: Regularidade e
Propriedades Estatisticas. Rio de Janeiro, 2025. 149p. Tese de
Doutorado — Departamento de Matematica, Pontificia Universidade
Catolica do Rio de Janeiro.

Este trabalho estuda a regularidade e as propriedades estatisticas dos
expoentes de Lyapunov de cociclos lineares aleatorios localmente constantes.
Investigamos tanto o caso em que o suporte da medida subjacente consiste
apenas em matrizes invertiveis, quanto o caso em que também contém matrizes
nao invertiveis. Esses dois cenarios exibem comportamentos notavelmente
diferentes.

No caso invertivel, estudamos a regularidade do expoente de Lyapunov
como funcao da medida subjacente em relagao a duas topologias diferentes.
Estabelecemos sua continuidade de Hélder no caso genérico em relagao a dis-
tancia de Wasserstein e sua analiticidade em relacao a norma de variagao total.
No caso nao invertivel, sob hipdoteses apropriadas, obtemos uma caracterizagao
da hiperbolicidade uniforme por meio de multicones e a usamos para estabe-
lecer uma dicotomia entre a analiticidade e a descontinuidade do expoente de
Lyapunov. Também provamos estimativas de grandes desvios e um teorema
central do limite para todos esses modelos.

Embora existam muitos problemas interessantes ainda em aberto, nossos
resultados tentam fornecer uma imagem quase completa no contexto de
cociclos aleatérios bidimensionais localmente constantes com medidas com

suporte finito.

Palavras-chave
Sistemas Dinamicos; Teoria Ergddica; Cociclos Lineares; Expoentes de

Lyapunov; Operadores de Markov.
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1
Introduction and Statements

1.1
Lyapunov exponents and linear cocycles

Dynamical systems are an incredibly vast and active area of research in
mathematics.

A dynamical system is a pair (X, f), which consists of a (usually compact)
metric space X and a (usually continuous) transformation f: X — X. Given

any point x € X, we can consider its iterates

z, f(2), fAz) = f(f(@)),..., (@) = f(f" (@), oo

which we call the (forward) orbit of x. There are many different points of view
from which one can study a dynamical system.

One way is trying to understand it from a topological point of view, by
answering questions such as: is the orbit of a point x periodic; is the orbit
dense; are there any fixed points for f7

Another interesting approach is to try to understand the relation between
the geometry of the space X and the transformation f. If X is a manifold,
how does its curvature influence the behavior of the orbits? Does the geometry
generate any rigidity property on the dynamics?

Furthermore, one can also look at the same problem from a probabilistic
point of view, trying to understand the behavior of the orbits on average. Do
most of them share similar properties? Do they satisfy any limit laws? This
probabilistic approach is what we call ergodic theory and it lies at the heart
of this thesis.

Let us take a detour and recall some probabilistic results about random
additive processes. Consider a sequence of i.i.d. random variables {X,,},>0.
Let S, = Xo+ -+ - + X,,_1 denote their partial sums. An important question
concerns the behavior of the (arithmetic) average process %Sn as n — o0.

The law of large numbers (LLN) says that this sequence of averages
converges to the expected value of X, almost surely. In particular, it also

converges in probability.
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That is, for all € > 0,

1
]P’{’Sn — EXo
n

>8}—>0 as n — 00. (1.1)

The next natural question is whether there is an explicit rate of conver-
gence to 0 in equation (1.1). The large deviations principle (LDP) of Cramér

says that under general conditions,

1
P{‘Sn —EX,
n

> 5} = eI asn — oo, (1.2)

where c(g) & cye?, for some ¢y > 0.
Note that the previous result is of an asymptotic type. Let us now
describe Hoeffding’s inequality, an effective, non-asymptotic (or finitary) large

deviations type (LDT) estimate. If ‘Xo‘ < ¢ almost surely, then the inequality

]P’{‘lSn — EX
n

> 8} < 2e~ ()70 (1.3)
holds for all n € N.

Finally, one can ask what is the typical size of the difference .S,, — nEXj.
The central limit theorem (CLT) says that in a certain sense, S, —nEX, =< /n.
More precisely, if EXZ < oo and if X is not almost surely constant, then we

have the following convergence in law to a Gaussian distribution:

Sn — nIEXO d 2
S BN, (1.4)

Let us describe in probabilistic terms the central element of this work,
which is the multiplicative analogue of the law of large numbers. Consider a
multiplicative (semi)group of d x d matrices G, for instance SL4(R), or GL4(R)
or Matj (R), the set of d x d matrices with nonnegative determinant. Let p be
a probability measure over (G, which we will assume to have compact support.

Let go,91,...,09n,... be an i.i.d. sequence of matrices in GG, chosen ac-
cording to the distribution u. Let 1L, := ¢,_1 - - - 91 go denote the corresponding
multiplicative process and consider the geometric average ||I1,||'/™. This prod-
uct of random matrices typically grows exponentially, therefore we consider
the logarithm of this expression.

By the celebrated theorem of Furstenberg and Kesten [28], under a
general integrability condition, this average process converges almost surely

to a constant. More precisely, with full probability,

n—oo

.1
Ly(p) = lim n log|[gn—1 - g190]| (1.5)

where the almost sure limit Li(u) is called the first or the top Lyapunov

exponent of the process.
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Replacing the norm (that is, the first singular value) of the matrices II,,
by their second, their third and so on singular values, we obtain, respectively,
the second Lyapunov exponent Lsy(j), the third Lyapunov exponent Ls(p) and

so on (until de dimension d).

An interesting question is whether there are also multiplicative analogues
of the other statistical properties, such as large deviations estimates and
a central limit theorem. Although the theory of additive processes is well
developed, our understanding of the theory of multiplicative random processes
is still much more limited. Part of this work is dedicated to exploring some new

settings where we can establish LDT estimates and central limit theorems.

A difficult and important problem in the study of multiplicative processes
concerns the regularity of the Lyapunov exponent, the limit quantity in (1.5),
as a function of the input data. More precisely, the first Lyapunov exponent
is a function of the probability measure u, so the question is how would a
small perturbation of u affect the limit L;(u). This is a very subtle question
that has motivated a lot of research from renowned mathematicians over
the last decades. It turns out that the type of perturbation considered, the

corresponding topology, will greatly influence the answer.

Some classical results in this direction are due to Furstenberg and Kifer
[29] who proved the continuity of the Lyapunov exponents under some generic
conditions, to Le Page [38], who proved a Holder modulus of continuity, also
in the generic setting and to Peres [39], who established the analyticity of
the Lyapunov exponent with respect to the transition probabilities when the
support of u is a finite set.

A recent result, considered to be a breakthrough in this theory, is due to
Avila, Eskin and Viana [3] and it establishes the continuity of the Lyapunov
exponents of random matrix products in any dimension and without any
further genericity conditions compared to the classical result of Furstenberg
and Kifer.

The concepts and problems mentioned previously were described in
probabilistic terms. It turns out that they can be studied in a much more
general, dynamical systems framework, that of linear cocycles. A linear cocycle
is a skew product transformation F': M x RY — M x R? determined by a pair
(f,A), where f: M — M is a base transformation (usually assumed to be
ergodic), A: M — G is a measurable fiber map and

F(z,v) = (f(x), Az)v).
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The n-th iterate of F'is then F™(z,v) = (f™(x), A"(x)v), where

A'(@) = A(f" (@) - A(f(2) Az).

Moreover, by Furstenberg-Kesten’s theorem (or by a more general result,

the Kingman subadditive ergodic theorem), the limit

L(F) = Jim ~ log]|A"(x)]
exists (and it is constant) for p-a.e. € M and it is called the first Lyapunov
exponent of the cocycle F.

Random products of matrices fit this general framework as follows.
Consider a measure p on a semigroup G of d X d matrices. Assume that the
support Y of this measure is compact and let M be the space of sequences 32,
equipped with the product measure p”. Let A: M — G be the projection
of a sequence g = {gn}nez to its zeroth coordinate go, let o: M — M
be the Bernoulli shift 0(g9) = {gn41}nez, and let F be the linear cocycle
corresponding to the pair (¢, A). Then the n-th iterate of the fiber map A"(g) is
exactly the random product of matrices g,,_1 ... g1 go and the limiting quantity
Lyi(F) = Ly(p). Such a cocycle will be referred to as a random linear cocycle

as its fiber iterates encode products of i.i.d. matrices.

Note that, a priori, the map A could be chosen to be much more general.
However, a celebrated theorem of Mané-Bochi [9] says that given any measure
preserving dynamical system (M, f, ) where f is an aperiodic (meaning its
set of periodic points has measure zero) homeomorphism, for any fiber map
A: M — SLy(R), either the cocycle associated with A is hyperbolic over the
support of p or else A is approximated in the C° topology by fiber maps with
zero Lyapunov exponent. Regarding the Lyapunov exponent as a function of
the fiber map, it follows that if L;(A) > 0, then the first Lyapunov exponent
is either analytic (this holds by a theorem of Ruelle [40] when A is hyperbolic)
or it is discontinuous at A in the C° topology of SLy(R)-valued cocycles. In
other words, the regularity of the first Lyapunov exponent exhibits a strongly

dichotomic behavior, analyticity versus discontinuity.

Therefore, in order to establish regularity properties of the Lyapunov
exponent (when the cocycle is not uniformly hyperbolic), the map A is often
assumed to be highly regular. That is also why we will restrict our attention
to the case when A is the projection of a sequence of matrices to the zeroth
coordinate, in other words A is a locally constant map and the corresponding

cocycle is called a random, locally constant linear cocycle. All of the results
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in this manuscript are concerned with this model, which for simplicity will be
referred to only as a random cocycle.

Another commonly assumed hypothesis is that the semigroup G where
the fiber map takes values consists only of invertible matrices. All of the three
classical results that we cited before, as well as [3], fit into this setting, that of
locally constant linear cocycles determined by invertible matrices. The reason
for this assumption is made more apparent by example 6.1, which also appears
in both [20] and [3]. In this example the support of the measure p consists
of two matrices, one hyperbolic, hence invertible and the other a projection,
which, in particular, is singular (it has zero determinant). A straightforward
computation shows that the Lyapunov exponent is discontinuous at u, when
regarded as a function of the matrices determining the fiber map. This example
will be explained in more details in chapter 6. Moreover, in [3], Avila, Eskin and
Viana stated that “there is no hope to obtain any general regularity result for
Lyapunov exponents in this more general setting” (of non invertible matrices).

Although the last paragraph suggests that we should restrict ourselves
to the classical setting of invertible matrices, this manuscript also explores the
case in which the cocycle admits singular matrices. Surprisingly, it turns out
that this setting admits a very rich theory, while at the same time we can

confirm that the previous quote is indeed correct, as it will be explained later.

1.2
Main results

We are now ready to formulate some of the main results of this
manuscript. We start with the study of the regularity of the map u +— L;i(u)
for GL4(R)-valued cocycles, relative to two different topologies: the weak star
and the one induced by the total variation norm.

We will use a certain concept of irreducibility for random linear cocycles.
Irreducibility usually refers to the non-existence of a proper, invariant sub-
bundle for the skew-product dynamics. We will need a slightly weaker property,
the quasi-irreducibility, which may allow the existence of such proper, invariant
sub-bundle, as long as the first Lyapunov exponent along it coincides with the
first Lyapunov exponent L;(u) on the entire space.

Relative to the weak star topology, we prove a more general version of
Le Page’s theorem, based on the author’s Master’s thesis [27] and on [4]. In
what follows, W7 refers to the Wasserstein’s metric, a distance in the space
of measures that metrizes the weak star topology. Precise definitions will be

given in chapter 4.
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Theorem 1.1 Let ¥ C GL4(R) be a compact set and let i € Prob(X). Assume
that p is quasi-irreducible and that Ly(p) > Lo(p). Then there exist § > 0,
C' >0 and a € (0,1] such that given py, po € Prob(X) satisfying Wi (p;, 1) < 6
for i € {1,2}, we have that

|L1(p) — La(p2)| < CWi(pa, p2)®

Relative to the total variation norm, we generalize the result of Peres [39]
proving the analyticity of the Lyapunov exponent, from probability measures
with finite support to probability measures with compact, possibly infinite
support. Precise definitions of the total variation norm and the concept of
analyticity in this setting are given in chapter 5. This theorem is part of
a joint work with Amorim and Melo [1]. We obtained two results, one that
assumes the quasi-irreducibility of the measure/cocycle, and one without this

assumption, but instead the measure has to have full support.

Theorem 1.2 Let ¥ C GLy4(R) be a compact set, let g € Prob(X) and
assume that Ly(po) > La(po).

(1) If po is quasi-irreducible, then the map Prob(X) > p +— Ly(u) is real

analytic with respect to the total variation norm in a neighborhood of 1.

(2) If supp(po) = X, then the map Prob(X) > u +— Li(n) is real analytic

with respect to the total variation norm in a neighborhood of .

The next results are part of two projects with Duarte, Graxinha and
Klein: [18] and [19]. We study cocycles in Mat; (R)*, the semigroup of two
dimensional matrices with non-negative determinant. The starting point of
these projects is a generalization of the works of Yoccoz [44] and Avila, Bochi
and Yoccoz [2] providing a characterization of the dominated splitting property
(also referred to as projective uniform hyperbolicity) in terms of multi-cones.
We extend the scope of the results in [44], [2] from SLy(R)-valued cocycles to
Mat; (R)-valued cocycles.

We fix a probability vector p = (p,...,pp) with ¥ p; = 1 and p; > 0
for all indices ¢ and consider random linear cocycles with finitely supported
measures, thus determined by a k-tuple A = (Ay,..., Ay) € Mat] (R)* and
by the probability vector p. We identify the cocycle with the tuple A that
determines it.

Let P(R?) denote the real projective line. An invariant multi-cone for
such a cocycle A is an open subset of M C P(R?) such that M # P(R?) and
A;M C M for every index 1 <i < k.
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Theorem 1.3 Given a random linear cocycle A = (A, ..., Ay) € Maty (R)F,
A is projectively uniformly hyperbolic if and only if A admits an invariant

multi-cone.

This characterization is one of the main tools in the study of rank one
cocycles. We say that A = (Ay,..., Ay) € Matd (R)* has rank 1 if there is at
least one index j such that A; is singular (i.e. non-invertible) and there are no

null words (i.e. finite products of matrices).

The next theorem has the flavor of Mané-Bochi’s dichotomy. Surprisingly,
this dichotomy holds in the high regularity setting of locally constant random

linear cocycles, rather than the C°-topology of Maiié-Bochi’s celebrated result.

Theorem 1.4 Let A € Maty (R)* be a locally constant random linear cocycle
of rank 1. Then either A is projectively uniformly hyperbolic or else there exists
a sequence of random linear cocycles { A, }n — A such that A,, has a null word

and, in particular, L(A4,) = —oco for every n € N.
Moreover, using Ruelle’s theorem [40], we conclude the following.

Corollary 1.1 Given A € Mat] (R)* with at least one singular and one
invertible component, if Li(A) > —oo then the following dichotomy holds:

either the Lyapunov exponent Ly is analytic at A or it is discontinuous at A.

An argument involving subharmonic functions (see Corollary 6.3) shows
that in fact L;(A) > —oo holds for Lebesgue almost every A € Mat] (R)* with
at least one singular and one invertible component. Therefore, the previous
corollary applies to almost every cocycle and the aforementioned quote from
[3] proves to be very accurate: if the cocycle is not projectively uniformly
hyperbolic, then it is a discontinuity point of the Lyapunov exponent.

Furthermore, using a topological argument, the set of continuity points
of L, is a Baire residual subset of Mat; (R)F.

Putting together other recent results on random two dimensional cocycles
in finite symbols, we obtain the following almost complete picture on the
regularity of their first Lyapunov exponent L.

At any invertible cocycle A, L; is a continuous function on GL4(R)* (an
open set in Maty(R)*) and, moreover, its regularity varies from log-Hélder
continuous® to analytic (see [40], [11], [35], [41], [25], [22], [24]).

In the algebraic variety

Ry = {A € Matf (R)": rank(4;) = 1 V1 <i <k}

1Given a metric space (M, d), a function ¢: M — R is said to be log-Holder continuous

~1
if ‘gzb(x) — ¢(y)| <C (log m) for some C' < oo and all z,y € M.
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the map L, is always continuous. Moreover, every A € R; is a continuity point
of the Lyapunov exponent L; in Maty (R)*. Furthermore, (see Theorem 6.4) a
cocycle A € Ry is projectively uniformly hyperbolic if and only if L;(A) > —o0,
which is equivalent to the absence of null words (i.e. vanishing finite products
of components of A). This latter condition holds for almost every such cocycle.
Therefore L is analytic at Lebesgue almost every A € R;.

In the remaining case, given a cocycle A € Maty (R)* with at least
one invertible and one non-invertible component, either I, is analytic or it

is discontinuous at A.

Consider now the problem of statistical properties (large deviations and
the central limit theorem) in the singular setting. We obtain the following

results.

Theorem 1.5 For Lebesgue almost every cocycle A € Maty (R)* with at least

one singular and one invertible component and for every € > 0 it holds that

1/3

1
P{‘n 10gHA”H - L1(A)‘ > g} < C e—coE)n

where C' < 00, co(e) > 0 is an explicit function of € and P = p” refers to the

Bernoulli measure on the space of sequences of matrices.

Theorem 1.6 For Lebesgue almost every cocycle A € Maty (R)* with at least
one singular and one invertible component, there exists o > 0 such that the

following convergence in distribution to the normalized Gaussian holds:

log||A™[] —n L, (4)

P~ 4 N(0,1).

We note that these statistical properties are sensitive to perturbations
of the cocycle, that is, the parameters appearing in these estimates are not
uniform in a neighborhood of A. This is unlike the case of invertible matrices,
where the LDT estimates are uniform in the data, something that can be
used directly to deduce a modulus of continuity of the Lyapunov exponent,
see [21, 22].

The table below summarizes what it is known regarding the minimal

regularity of the Lyapunov exponent (R-LE), namely its modulus of continuity?

2Given a metric space (M, d), a function ¢: M — R is said to be weak-Holder continuous
if |p(x) — ¢(y)| < Cexp (—a log® - ) for some C' < co,a,b € (0,1] and all z,y € M.

d(w,y)
When b = 1, this corresponds to a-Hoélder continuity.
Moreover, if |¢(a) fqb(ac)| < Cd(a,x)* holds for a given point a and all z, we call ¢ pointwise
Holder at a.
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or whether it is discontinuous (Disc.) as well as the availability of large
deviations type (LDT) estimates and of a central limit theorem (CLT) for
invertible or Mat] (R)-valued Bernoulli cocycles A € Maty (R)*, k > 2. For
the purpose of this table, we assume that L; > Ly (so L1 > —oo as well).
There are three possibilities for such a given cocycle A: rank = 2, meaning
its components are all invertible; rank = 1, meaning its components are all
singular; rank = 1&2, where some components are singular and some are
invertible with positive determinant. The last two cases are treated in chapters
6 and 7.

| I R-LE [ obr | cir |
rank = 2 || (Weak) Holder® Yes®) Yes(©
rank = 1 C¥ (Cor. 6.4) Yes (Rmk. 7.6) | Yes (Rmk. 7.6)
rank = 1&2 Disc. (Cor. 1.1) Yes (Thm. 1.5) | Yes (Thm. 1.6)

(@) Locally Holder for quasi-irreducible cocycles [38], [21]; locally weak-
Holder in the remaining case [24]; pointwise Holder always [41].

(®) Locally uniform LDT of exponential type in the quasi-irreducible
case [21]; locally uniform LDT of sub-exponential type in the remain-
ing case [24]; non-uniform LDT of exponential type holds always [24].

(©) See [37] and [6].

Table 1.1: Random two dimensional cocycles.

Recall that in the remaining cases, if the cocycle is projectively uniformly
hyperbolic then the Lyapunov exponent is analytic, while when L; = Ly the
Lyapunov exponent is automatically continuous and in fact pointwise log-

Holder continuous (see [41]) in the invertible case.

Moreover, in chapter 8, we state that the results on the second and third
lines of the table also hold for the more general setting of mixing Markov
cocycles. Furthermore, in this setting, the results on the first line are available
only in the generic (irreducible) case (see [21, Chapter 5]), but we expect
their analogues from the Bernoulli setting to still hold without the generic
assumption.

Finally, it is also worth mentioning theorems 8.1 and 8.3, which are
part of a joint work with Cai, Klein and Melo, where we prove a Markovian
analogue of both Furstenberg-Kifer’'s multiplicative ergodic theorem and Le
Page’s theorem. In the interest of the readability of the manuscript, we chose

to present all the results of this manuscript and their proofs in the i.i.d.
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(rather than the Markovian) setting, therefore the proofs of these theorems

were omitted, but they can be found in [15].

The work presented in this manuscript uses concepts, methods and tools
from many different fields, including hyperbolic dynamics, ergodic theory,
probabilities, spectral theory, holomorphic functions in Banach spaces, po-
tential theory (the theory of subharmonic functions), as well as parameter

elimination arguments.

The rest of this manuscript is organized as follows. In chapter 2 we
introduce some of the main elements present in the text: the Markov operators
and the stationary measures, as well as classical results that will be used
all throughout. In chapter 3 we give a detailed proof of Furstenberg-Kifer’s
multiplicative ergodic theorem, also known as Furstenberg-Kifer’s non-random
filtration. This is a key result in the study of random linear cocycles, which
appears in essentially every work related to the regularity of the Lyapunov
exponents of random linear cocycles. In chapter 4 we prove theorem 1.1. For
completion, we also included a section with the proof of statistical properties
for this model. In chapter 5 we prove theorem 1.2. In chapter 6 we study
the regularity of the Lyapunov exponents for cocycles in Maty (R) and we
prove theorems 1.3 and 1.4. In chapter 7 we study the statistical properties
for cocycles in Maty (R) and we prove theorems 1.5 and 1.6. In chapter 8 we
discuss how we can generalize the results in the previous chapters to Markov
cocycles and we also formulate some further problems and questions related

to the singular setting.



2
Markov Operators and Stationary Measures

In this chapter we introduce the main elements that will appear through-
out the text: the Markov operator and the stationary measure. They are the
foundation for all the results in this thesis.

In section 2.1 we define the Markov operator and explain why it is an
essential tool in the study of the Lyapunov exponents of random linear cocycles.
In section 2.2 we study three types of dynamics related to linear cocycles, one
deterministic and two stochastic, and explain the relation between the invariant
measure (for the deterministic dynamics) and the stationary measure (for the
stochastic dynamics). This will be very useful later, since we will be able to
switch between these settings and choose which one is more adequate to work
with, according to the specific problem. In section 2.3 we present two abstract
theorems that are used to establish statistical properties (large deviations and
central limit theorem) for Lyapunov exponents. Therefore, whenever we plan to
prove such properties, we have to verify that the hypotheses of those theorems
are fulfilled.

2.1
The Markov operator

2.1.1
Stochastic dynamical systems and Markov kernels

A deterministic dynamical system (DDS) is defined by a pair (M, f),
where M is a compact metric space and f: M — M 1is a continuous
transformation that acts on M. In this setting, for each point x € M, the

law f determines its trajectory:

We denote by Prob(M) the set of all probability measures over M.
Endowed with the weak-star topology, Prob(M) is a compact, metrizable
topological space.

A probability measure u € Prob(M) is called f-invariant if fiu = p,
where f,ju is the push-forward measure defined by f.u(E) = u(f~'(E)) for
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all Borel sets E C M. It is easy to verify that p is f-invariant if and only if
1= Jar Of(w) dp().

A stochastic dynamical system (SDS) is a pair (M, K'), where M is still
a compact metric space and K: M — Prob(M) is a continuous map which
associates to each point x € M a probability measure K, € Prob(M). This
map is called a Markov (or a transition) kernel. Given any Borel set E C M,
the number K, (F) denotes the probability that x transitions to F.

One can also consider the iterated kernels K": M — Prob(M) defined
inductively for every n € N as follows. K} = K,, K2 = [, K, dK,(y) and
K = [ K" dK,(y). An intuitive meaning of K7'(E) is that it represents the
probability that z transitions to E in n steps.

Remark 2.1 Note that given any DDS (M, f) one can define an SDS wvia
the following Markov kernel: K, = 0. Thus every deterministic dynamical

system is also a stochastic dynamical system.
Definition 2.1 A measure u € Prob(M) is called K-stationary if it satisfies

i :/ K, du(z).
M
We also write the equation above as = K * .

It is important to note that stationary measures do exist. Let m €

Prob(M) and consider

Tyt =

n
ZKi * T
j=1

which belongs to Prob(M). Since we assume M to be compact, Prob(M) is
weak star compact, thus there exists a subsequence {7, }; that converges to
some measure p € Prob(M) which, by construction, is K-stationary.

The triplet (M, K, i), where M is a compact metric space, K a continu-

ous Markov kernel and p a K-stationary measure is called a Markov system.

2.1.2
Markov operators

Let L>°(M) denote the set of measurable and bounded functions. Given

a Markov kernel K, we associate to it a Markov operator () = (g, defined as

Q: L>(M) — L>=(M)
Qo) = [ oy) I, ()

Note that @) satisfies the following properties:
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(i) Constant functions are invariant under Q).
(ii) @ is a bounded linear operator.
(iii) If ¢ > 0, then Qp > 0.

Operators that satisfy the third property are called positive, so the Markov
operator is a positive operator taking constant functions to constant functions.

Moreover, note that u is a K-stationary measure if and only if

/Qcpdu:/ @ dp for every ¢ € L=(M). (2.1)
M M

This characterization is very useful and will be used many times throughout
the text.

Lemma 2.1 Given a Markov kernel K : M — Prob(M), the following relation
holds

Qn = Q.

Proof. Let ¢ € L*>°(M). The relation is trivial when n = 1. For n = 2

Qkp(a) = [ [ o) ak, () (y)
= [ ¢(2) dK2(=) = Q)

The proof follows by induction. |

2.1.3
Random linear cocycles

Consider the quadruple (M, f, B, 1), where M is a compact metric space,
B is a sigma algebra, f: M — M is a measurable transformation and pu
is a probability measure. We say that (M, f,B, ) is a measure preserving
dynamical system if u(f~*(F)) = u(E) holds for every E € B.

Moreover, an ergodic dynamical system is a measure preserving dynam-
ical system such that if £ is an f-invariant set (meaning that f~'(E) = E)
then pu(E) =0or u(E) = 1.

Given an ergodic dynamical system (M, f, B, i), we recall the concept of
Birkhoff sums. Let p: M — R be a bounded observable and let n > 1. The
n-th Birkhoff sum of ¢, which we denote by 5, is defined as follows:

Spp: M — R
Sup(z) = () + o(f(2)) + - + o (f" (2)).
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Furthermore, by Birkhoft’s ergodic theorem,

1
— ncp—>/ pdu p—a.e.
n M

We will introduce the stochastic analogue of Birkhoff sums, but in order
to present this concept, we recall the notion of Markov chains. Let (€, B,P)
be a probability space. A Markov chain is a sequence {Z,},>o of random
variables with values in M that satisfy the Markov property. More precisely,
Z, . Q — M is such that for every E € B,

P(Zpi1 € E|Zn, ... Zo) =P(Zyi1 € E|Zy).

Given a Markov kernel K': M — Prob(M) and a probability measure
7 € Prob(M), we say that {Z,},>0 is a Markov chain with transition K and
initial distribution 7 if VE € B, Vo € M and Vn € N the following hold:

() P(Zo € E) = 7(E),
(il) P(Zpy1 € E|Zn = 2) = K, (E).

Given a Markov chain {Z,},>0 and an observable ¢: M — R, we define
the n-th stochastic Birkhoff sum of ¢ as

Spp=poZot+poli+ - +pol, 1.

An important example that illustrates the previous concept is the study
of the stochastic dynamical system associated to a linear cocycle.

Let 1 € Prob(GL4(R)) be a probability measure, where supp(u) = X is a
compact set. The measure p determines the random linear cocycle (that is, the
locally constant linear cocycle over the Bernoulli shift) F: N x R4 — YN x R?
given by

F(g,v): = (0g, gov),

where g = {gy }nen is a sequence in I and o: ¥V — IV is the Bernoulli shift.
The iterates of F' are given by F"(g,v) = (6"g, gn-1- - - gov).

A natural SDS associated to this linear cocycle is obtained by choosing
M =%YxS" ! and K: xS — Prob(XxS*!) such that Ky, ,) = X6 _av .

llgovll

This Markov kernel induces the following Markov chain:

Jgov g190v
Zo(g,v) = (go,v) — Zl(g, U) = (.gla ngvu> — ZQ(Q’U) - <927 “gingH) oo
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Moreover, once we have the Markov kernel, we can explicitly write the
associated Markov operator Q: L>®(X x S¢°1) — [*°(3 x §471)

gov
Qp(g0,v) = / P (917 ) dp(g1)-
M lgov]
An important observable in this setting is ®: ¥ x S~! — R given by
®(g0,v) = log||gov]l-

Let us describe the stochastic Birkhoff sum S,®(g, v):

v n—1--- v
Sn¢(g7 U) = @(907,0) _|_ (p (gl; Hizyﬂ) + “e. _l_ @ <gn_1’ glgo)

Hgnfl...govH
v n—1 - - - v
= log||gov|| + log 91900 + -+ log HQI—QOH
lgov]] [ gn—2 - - gov||

= log|lgn—1- - - govl-

Therefore, we conclude that the study of the properties of random linear
cocycles and their Lyapunov exponents can be reduced to the study of an

associated Markov system.

2.2
Stationary measures

We denote by Probg (M) the set of K-stationary measures on M. Since
to each Markov kernel K we can also associate a Markov operator (), we also
use the notation Probg(M) to denote this set.

2.2.1
The three levels of dynamics

Consider the linear cocycle that was introduced in the previous section
F: YN x R? — ¥ x R? such that

F(g,v) := (ag, gov),

where g = {g, }nen is a sequence in XN and o : ¥ — XN is the Bernoulli shift.

This is an example of a DDS. We already discussed an example of a
natural SDS associated to it, that will be very useful in the study of Lyapunov
exponents. We will introduce other natural dynamical systems associated to

this linear cocycle, which we divide into three different levels.
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(i)

(iii)

In the first level, more similar to the original cocycle, we have the pro-
jective (or projectivized) cocycle, which is also a deterministic dynamical
system (DDS). It is important to note that it acts on XN x P(R?), a com-
pact space, where P(R?) is the projective space over R? and we denote
by © the projective point corresponding to the nonzero vector v € R

This skew-product dynamical system is defined as

F: 2V x P(RY) — 2N x P(RY)

where given a matrix (linear map) g € GL4q(R), § denotes the induced

o~

projective map on P(R?), namely g0 = go.

In the second level we define a stochastic dynamical system (SDS) as
follows. The ambient compact space is ¥ x P(R?) and the transition

kernel is

K: X x P(R?) — Prob(X x P(R?))

(90?@) = uX 5@017'
Its corresponding Markov operator is

Q: L=(X x P(RY) — L=(X x P(R?Y))

Q¥(go,7) = / ©(91, §o0) dp(gr).
TxP(R)

Moreover, consider the Markov chain {Z,},>o given by:

Zn: EN X P(RY) — X x P(RY)

Zn(ga @) = (gmgnfl .- glﬁoﬁ)

It is easy to verify that the transition kernel of this Markov chain is
precisely the kernel K defined above. As an initial distribution of this
chain one may choose the (not necessarily stationary) measure p X g, in
order to begin in a specific direction 9, or a stationary measure, which
turns out to always be of the form u x n, for some measure 7 on the

projective space.

The third level is also an SDS, but it acts on the smaller space P(R?),
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therefore it is usually easier to deal with. It is defined by

K : P(RY) — Prob(P(R%))

U — /E(Sgof, d/L(g())
Its corresponding Markov operator is

Q: L%(P(RY)) — L*(P(R?))

) = o) dpa(go)-
Qp(0) /P (gey ¥ 007 diilgo)
Furthermore, the associated K-Markov chain {Z, },>¢ is given by
Zn: N x P(RY) — P(RY)
Zn(ﬂy ZA)) = gn,1 . glgo’f}.

Similarly to the second level, natural choices for the initial distribution

are 0, or a stationary measure 7.

Moreover, this three levels of dynamics are closely related in regards to
their Markov operators, Markov kernels, and stationary measures. In what

follows we will describe some of these relations.
Proposition 2.1 Given n € Probg(P(R?)), the following are equivalent:
(i) n is a Q-stationary measure.
(ii) 1 x 1 is a Q-stationary measure.
(iii) pN x n is F-invariant.
Proof. We start by proving that (i) <= (ii). Note that 7 is Q-stationary if and
only if n = K*n. Moreover, 1 xn is Q-stationary if and only if uxn = K*(uxn).

Hence, it is enough to prove that K * (1 x 1) = p x (K % n). In other words,
it is sufficient to prove that for every ¢ € C%(X x P(R?))

[ o d(R s xm) = [ ¢ dud(K +7). (2.2)

Therefore, let us expand both sides using the definitions of K and K. First
note that

R« (o xn) = [ Kooy duloo)dn(0) = [ 1x 8500 dp(go)dn(d)  and

Kwn= [ Kodn(®) = [ 345 du(go)dno)
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Now we substitute the previous computation in equation (2.2) as follows.

[0 A&« (uxm) = [ olg1.300) dnlgr)dia(go)dn(5)

= /gp dud(K = n).

Now we prove that (i) <= (iii). Note that N x 7 is F-invariant if and only
if for every ¢ € CO(XN x P(R?))

/so d(p" xn) = /sooF d(p" xn) = /so(ago,ﬁo@) ™ (g0, g1, - )dn(). (2.3)

Consider the map ¥: P(R?Y) — R, such that U(d) = [ (g, 0) du™(g').
Since ¢ is arbitrary, so is ¥. Note that the left-hand side of equation (2.3) is
equal to [W dn, while its right hand side is equal to [ W(§o0) du(go)dn(?),
which can be written as [ QU(9) dn(d). Therefore N x 7 is F-invariant if and
only if [W dn = [QWU(D) dn(v), which is equivalent to n being @Q-stationary.
|

2.2.2
Ergodic stationary measures

By equation (2.1), stationary measures are fixed points of Q*, the dual
of the Markov operator (). Therefore Probg(M) is closed, thus compact in
the weak-star topology. Moreover, Probg (M) is also convex. Indeed, given two

different Q-stationary measures 7; and 7, and ¢t € (0, 1),

| Qe dtn+(—-tm)=t [ Qedm+0 1) [ Qpdn
M M M
Zt/Msodn1+(1—t)/Ms0dnz

= /M @ d(tm + (1 —t)n),

showing that tn; + (1 — t)n, is also @Q-stationary.

Let X be a topological vector space which is Hausdorff and locally convex.
Given aset V C X, we say that p is an extremal point of V' if whenever z,y € V'
and ¢t € (0,1) are such that p =tz + (1 — ¢)y, we necessarily have that = = y.

Theorem 2.1 (Krein-Milman) If K C X is compact, convex and non empty,
then K has at least an extremal point. Moreover, the closed convex hull of the

extreme points of K is equal to K.

Let X be the topological vector space of signed measures on M and let
K = Probg(M). Since Probg(M) is compact, convex and non empty, the
Krein-Milman theorem is applicable, therefore there exist extremal stationary

measures.
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Definition 2.2 Let (M, K,n) be a Markov system. A function ¢ € L>(M) is
called Q-stationary if Q¢ = ¢ n-a.e. Moreover, a Borel set F' C M is called

Q-stationary if its indicator function 1p is QQ-stationary.

The next result (which should be well known but we could only find
a version thereof in a more particular setting, see [42, Proposition 5.11])

characterizes the ergodicity of a Markov system.

Proposition 2.2 Let n € Probg (P(R?)). The following are equivalent:

(i) n is an extremal point of Proby (P(R?)).

(ii) If a Borel set F C P(RY) is Q-stationary, then n(F) =0 or n(F) = 1.
(iii) If ¢ € L=(P(RY)) is Q-stationary, then ¢ is constant n-a.e.

(iv) The projective cocycle F: ¥V x P(RY) — IN x P(RY) is an ergodic

dynamical system when endowed with the invariant measure ¥ x 7.

Proof. We start with (i) = (ii). Assume that there exists a ()-stationary Borel
set I/ C P(RY) such that n(F) = ¢t € (0,1). Then F*¢ := P(R?) \ F is also
Q-stationary and n(F°) = 1 —t € (0,1). Let ng and nge be the probability
measures on P(R?) given by np(E) = % and npe(F) = "(WE(QF)) Note that
g # Npe and n = tnp + (1 — t)npe.

We show that ng and nge are QQ-stationary, which will imply that 7 is

not an extremal point of Probg(P(R?)). Indeed, since the indicator function
1 is stationary, Vo € P(R?), it holds that

1e(0) = QUr(9) = [ Lr(300) dia(go)

so 1p(0) = 1p(go0) for p-a.e. go € X. This combined with the fact that 7 is
Q-stationary shows that V¢ € L>®°(P(R?)),
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Therefore ng is a Q-stationary probability measure. Similarly, ng. is also
Q-stationary, therefore 7 is not an extremal point of Probg(P(R?)).

Now we prove that (ii) implies (iii). Let ¢ € L= (P(R?)) be a @ stationary
function. Fix ¢ € R and consider the set £ = {0: ¢(0) < c}. It is enough to
prove that E is @) stationary, because then, by (ii), either n(E) = 0 or n(F) = 1;
since c is arbitrary, this would imply the existence of a constant ¢* such that

@ = c* n-a.e. Let
S = {w c L®(P(RY)): ¢ is Q—stationary} :

It is clear that S is a linear space. We show that S is a lattice, i.e if
» €S, |pl €S andif ¢,9 € S, then min{p,?} € S and max{¢,} € S. Let
@ € S. Then p(0) = Q(0) n-a.e 0. Hence for n almost every 9,

2(8)] = 1Q¢(0)] = | [ #(305) dia(gn)

< [ I(@00)] dpa(g0) = Qleol(0).

Thus |p| < Qlp| for n-a.e. & € P(RY). Since n € Probg(P(R?)), it follows
that [Q|e| dn = [|e| dn and we conclude that |p| = Q|p| n almost
everywhere, hence |¢| € S. Moreover, since min{¢, 9} = ¢£¥ — @
max{¢p, P} = # + @, using the linearity of S we conclude that S is a

lattice.

and

Now consider ¢, () = min{l, n max{c — ¢(0),0}}. Note that for every
0, € S and o € P(RY), ¢, — 1p as n — oo. Hence Qp, — Qlg and
Qen = ¢n — 1g. We conclude that Q1g = 1g which means that F is Q-

stationary.

We now suppose that (iii) is true and prove that uN x n is F-ergodic. Let
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¥ € L®(EN x P(RY)) be a F-invariant function, so v (F(g,9)) = (g, ) for
N x n almost every (g,0). We have to show that 1) is constant N X n-a.e.
Let ¢: P(R?) — R, ¢(d) = [¢(g,0)) du(g). We start by showing that
it is constant n-a.e. By (ii4), it is enough to prove that ¢ is @)-stationary.
For all © € P(R?),

o(0) = [0(g.0) di'(g) = [ ¥(F(g,0))dn"(g)

= /@Z} {gn}tn>1:God) d'u (g)
= [ ¥(g',500) du" (g dia(0)
= [ 6(a00) diu(g0) = (Q0) ().

It follows that ¢ is constant -a.e., that is, there are c € R and £ C P(R?)
with n(£) = 0 such that

6(0) = /z/;(g, 0 dpN(g) =c Yo E.

This shows that 1) does not depend 7n-a.s. on the variable v. We will show that
it also does not depend pMN-a.s. on g.

For every k € N let F; be the o-algebra generated by cylinders Cy C
YN x P(R?), where C}, is a cylinder in the coordinates (go, g1, - - -, gx_1, 0). This
sequence of g-algebras forms a filtration which generates the Borel o-algebra of
YN x P(RY). We show that the conditional expectation (with respect to u™ x 1)
E(|F},) is constant ' x n-a.e. for all k& € N. Indeed, given any k € N,

E(|F) = [ (g, 0) di’  n({gn}uzr, 0)

_/ W(E*(g, 0)) dp™ X n({gn}nzk, ©) = ¢(Godn - - - Gx10) = c.

provided that §og ... gr_10 ¢ E.
Let m denote the projection 7 : Prob(X x P(R%)) — Prob(P(R?)). Since
Fis puN x p-invariant and pN x n projects to 1, (7). (i x ) = 7, it holds that
N O SN _ N Py =1 _—1
uxn{(g,0): Go - Grad € B =y s (F) 7N (n ' E))
= xn (7' E) = n(E) =0,

hence E(|F)) = c holds u x n-a.e. Therefore, given any k € N and any
F € F}, by the definition of the conditional expectation we conclude that

/wduNXUI/E(wl’fk)duanz/cduan.
F F F
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Since Uypeny Fr generates the Borel o-algebra of ¥ x P(R?), we then conclude
that ¢ = ¢ holds p" x n-a.e.

It remains to prove that (iv) implies (i). Assume by contradiction that
n is not an extremal point of Probg(P(R?)), so there are ¢t € (0,1) and 7; #
12 € Probg(P(R?)) such that n = tn; + (1 — t)ny. Since 0,72 € Probg (P(R?)),
both uN x n; and pY x 1, are F-invariant. Then the F-invariant measure
N o = t(uN x ny) + (1 —t) (e x 1) is not an extremal point for the set of

invariant measures over ¥ x P(R?), hence p™ x 7 is not F-ergodic. [

2.3
Mixing and statistical properties

2.3.1
Abstract LDT and CLT

Let L>°(M) denote the Banach space of all measurable and bounded func-
tions from M to R, which is endowed with the norm ||¢||cc = sup,cy, ()]
Let (&, ]]]l¢) be a Banach subspace of (L™, ||| ) that satisfies the following

properties:

(1) llelleo < llelle-

(i) It is invariant under the Markov operator: Q(€) C €&.
(iii) @Qle is a bounded operator.

(iv) The constant function 1 belongs to &.

Definition 2.3 A Markov system (M,K,v) is called strongly mizing in
(&, I"lle) if there exist constants ¢ € R and o € (0,1) such that

1" = [ ¢ dvle < co™lplle Ve

This property will play a central role throughout the text, because it is
closely related to the statistical properties of the Lyapunov exponents, as we
will show in the remaining of this section. It turns out that it is also related
to the regularity of the Lyapunov exponents.

The next theorem is due to Cai, Duarte, Klein [13]. It is an abstract
result that guarantees large deviations type estimates under much more
general assumptions than the commonly used spectral gap property of the
transfer /transition operators. The exponential rate of convergence of Q"¢ to

J ¢ dv in definition 2.3 is not strictly necessary, any rate will do.
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Theorem 2.2 Let (M, K, v) be a strongly mizing Markov system on (€, ||-||¢)-
Then, for all ¢ € € and € > 0 there are ¢(¢) > 0 and n(e) € N such that for

alln > n(e) , 1
]P{ —Spp — / @ dv

n M
The rate function c(e) is essentially of order €% ||¢]||¢>.

> 5} < 8e~clEm, (2.4)

Next we state an abstract central limit theorem (CLT) theorem due to
Gordin-Livsic [31].

Let ¢ € L?(M, v) be an observable with [ ¢ dv = 0.If 32 [|Q"¢||2 < oo
then we can define g € L*(M,v) by

g:=> Q"¢
n=0

Then ¢ = g — Qg. Let o2(¢) = ||9]15 — Qg3

Theorem 2.3 (Gordin-Livsic) Let (M, Q,v) be an ergodic Markov system and
let o € L*(M) with [ ¢ dv = 0. Assume that

YllQ¢lls < 00 and a*(p) € (0,00).
n=0

Then the following central limit theorem holds:

Spp
o\/n

— N(0,1).

We note that this result holds not only relative to the Markov probability with

initial distribution n, but also with initial distribution o, for v-a.e. x € M.

A version of this abstract result, more immediately applicable to dynam-

ical systems was derived in [13]. We formulate it below.

Proposition 2.3 Let (M,K,v) be a strongly mizing Markov system in
(&, Ille), where € is a dense subspace of C°(M). Assume that for every open
set U C M with v(U) > 0, there exists ® € £ such that 0 < & < 1y and
J® dv > 0.

Then given any observable ¢ € & such that it is not v-a.e constant, it
follows that o*(¢) > 0 and theorem 2.3 holds:

Spp
o\/n

— N(0,1).

Theorems 2.2 and 2.3 are abstract in the sense that they hold for very

general Markov chains and so they are applicable in principle to a wide class



Chapter 2. Markov Operators and Stationary Measures 34

of dynamical systems. In order to apply them to our setting, that of random
linear cocycles, and prove statistical properties for the Lyapunov exponent, we

need to consider the special observable

~ v
O: 2 x P(RY,  ®(go, ) = log “ﬁa"'. (2.5)

This observable is relevant because its stochastic Birkhoff average associated

to the K-Markov chain define above is (easily show to be) given by

1 1 1
—S,®(g,0) = —logllgn-1. .. g190v]| — — log|v]]
n n n

which converges almost surely to the top Lyapunov exponent Li(p).

In particular, in order to prove statistical properties for the Lyapunov
exponent we will need to prove that under appropriate hypotheses, the Markov
system (X xP(R?), K) is strongly mixing in a suitable Banach space & such that
® € £. This is how we will proceed in chapter 4. Later, in chapter 7, we will
deal with non invertible matrices, hence this observable becomes unbounded

and the approach is much more delicate.

2.3.2
The reduction from the second to the third level

Now we show that in order to prove that the Markov system on the
second level (X x P(RY), K, i x n) is strongly mixing, it suffices to prove that
the Markov system on the third level (P(R?), K, ) is strongly mixing. Here 7 is
a K-stationary measure, that always exists, and under the various additional
assumptions we will eventually impose, it will be unique. Since the third level

is simpler to deal with, we will thus work with a smaller degree of complexity.
Lemma 2.2 Consider the following projection map
mi L¥(E x PRY) = LX(PRY), mo(0) = [ ¢(g0,0) diu(go).
Then for every o € L=(X x P(RY)), the following hold:
(i) ToQ=Qor.
(it) Qp(g0,0) = (7)(go0).
(iti) Q"p(g0,0) = Q"' (m)(God) for every n € N.

Proof. Items (i) and (ii) are straightforward computations. Note that

Qp(90,) = [ 9(91,000) dugn) = (o)
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Item (iii) follows by induction, where the base case is item (ii). For the

induction step, assume that item (iii) holds for n = k. Then
Q" (90, 9) = Q"Qp(g0,0) = Q7 (1Qy)(900) = Q" (m)(900).
[

Proposition 2.4 The Markov system in the second level (X xP(R?), K, juxn)
1s strongly mizing in a Banach space € if and only if the Markov system in the
third level (P(R?), K, n) is strongly mizing in 7 (E).

Proof. Consider an arbitrary ¢ € L®(P(R?)). Let ¢ € L>(X x P(R?)) be such
that 7¢ = ¢ and ||¢||le = [|7@]|x&). Then

dy= [ wpdy= / 5. dp %
/]P’(Rd)sp 7 P(Rd)mp " ExP(Rd)SO pe
Therefore, by lemma 2.2, we conclude that

1Q°e— [ @duxile < col@lls
T xP(R4)

Q" mp) — [ il < co” e
P(R?)

which concludes the proof. |



3
Furstenberg-Kifer’'s Multiplicative Ergodic Theorem

The goal of this chapter is to introduce Furstenberg-Kifer’s Multiplicative
Ergodic Theorem, which is one of the main tools in the study of random linear
cocycles. This theorem was first proved in [29], then generalized by Kifer in
his monograph [34]. In this chapter we provide a detailed proof of this classical
result, which we believe to benefit the reader, as the argument in Kifer’s
monograph may be found rather difficult to read. In a joint work [15] with
Cai, Klein and Melo we further extend this result to a more general context
which we will discuss in chapter 8.

This type of result, also referred to as Furstenberg-Kifer’s non-random
filtration, is used in essentially every proof of continuity of the Lyapunov ex-
ponents of random linear cocycles, e.g.: in the original result in the generic,
i.i.d. setting of Furstenberg and Kifer [29]; in the more recent results, eliminat-
ing this generic condition, by Avila, Eskin and Viana, see [43] and [3]; in the
quantitative results like the ones in [12], [21, Chapter 5] and chapters 4 and 5
of this manuscript; in the study of other types of random-type linear cocycles
(e.g. mixed random-quasiperiodic) as in [14] and related works.

This chapter is organized as follows. In section 3.1 we prove the classical
Furstenberg’s Formula and we also introduce some important elements of
the proof of Furstenberg-Kifer’s multiplicative ergodic theorem, which is then
derived in section 3.2. In section 3.3 we formally introduce the concept of

irreducible random cocycle and relate it to the main result of the chapter.

3.1
Furstenberg’s formula

3.1.1
Martingale construction

Consider a probability space (2, F, i), where € is a compact set, F is a
o-algebra and p is a probability measure on 2. For every n € N, let £,: Q2 — R

be a random variable. A martingale is a sequence {(&,, Fn)}n>1 that satisfies
(i) {Fn}n>1 is a filtration of o-algebras with F,, C F,41 for every n € N.

(i) E|&,| < oo for all n.
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(iii) &, is F,-measurable for all n.
(iv) E(&ni1|Fn) = &, for all n.

Recall that given any random variable £: 0 — R, the sigma algebra
generated by ¢ is defined as o(§) = {¢71(B): B € F}. This is the smallest

sigma algebra relative to which ¢ is a measurable function.

Example 3.1 (The random walk) Let {&,}, be a sequence of i.i.d real random
variables satisfying E(&1) = 0 and E|&| < oco. Let S, = & + -+ + &, and let
Fon = 0(&,...,&), the sigma algebra generated by {&;: 1 < ¢ < n}. Then
{Sn, Fnln is a martingale.

Indeed, properties (i)-(iii) are clearly satisfied and we only verify (iv):

E(Sn+1’fn> = E(£n+1 + Sn|]:n) = E(£n+1|}-n) + E(Sn’}-n) =0+ E<Sn>

Theorem 3.1 (Doob’s martingale convergence theorem) Let {(&,, Fn)}n be
a martingale in (Q,F,u) such that sup, E(|(,|) < oo. Then there exists
£oo € LY (1) such that

(i) & — Eo a5

(i) E(€o|Fn) = &n

(111) € 15 Foo measurable, where Foo = 0(Up>1Fy).
A proof of this theorem can be found at [26].

The following result is due to Furstenberg and Kifer, see [29].

Theorem 3.2 Let (2, F, 1) be a probability space. Let M be a compact metric
space and let K: M — Prob(M) be a continuous Markov kernel. Given a K -
Markov chain {Z,: Q@ — M },>0, for any observable ¢ € C°(M), the following
hold for p-almost every w € €):

1 n—1
(i) lim_}sup - > ¢(Z;) < max {/M pdn:ne ProbK(M)}.

(ii) If for some B € R, / @ dn =B for all n € Probg (M), then
M

n—1

Jim = o(Z;) = B,

=0
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Proof. Note that since Probg (M) is compact and the map n — / @ dn is
continuous, there exists the maximum of the set {[,, ¢ dn:n € Préwa(M )}
which we will denote by /.

Let @@ be the Markov operator of the transition kernel K, that is,

Qp(a) = [ o) A, (y).

We split the proof of item (i) into two steps. In the first step, we prove
the claim for co-boundary observables, which are observables ¢ that satisfy
the hypothesis that ¢ = Qg — ¢ for some g € C°(M). Then we extend the
result to any observable p € C(M).

Note that when ¢ is a co-boundary, [, ¢ dn = [, Qg dn— [, 9 dn =0
for all n € Probg(M). We will then have to prove that

n

1 n-1
lim — Y ¢(Z;) =0 as.
7=0

n—oo n, “

Consider the sequence of random variables &, : Q2 — M,

Y

¢ = z”: Q9(Zj1) — 9(Z))

=1 J

which depends on Zy, 71, ..., Z,. Let F,: = o0(Zy, Z1,...,2y).

We claim that {(§,,F,)} is a martingale which, moreover, satisfies the
assumptions of Doob’s martingale convergence theorem above.

We begin with the proof of the fourth item of the martingale definition

(the other items are obvious). Note that

b = 60t - [Q0(2,) — g(Zui)]

Therefore, applying the conditional expectation to both sides,
E(6ualF) = &+ — [E(Q0(Z)|F) — E(g(Zusn) 1)
Note that E(Qg(Z,)|F,) = Qg(Z,). Moreover,
E(9(Zn1)|Fn) = E(9(Zni1)| 20, 21, - -, Zn) = B(g(Zns1)| Zn),

where the last equality is due to the Markov property. By the definition of a
K-Markov chain, given any F € F, we get u(Z,41 € E|Z, = x) = K, (F).
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Thus,
E(9(Zu)|Z0) = | g dEz, = Qo(Z).

We conclude that E(&,41|F,) = &, hence {(&,, F,)} is a martingale.

Let us now check that sup,, E(|€,|) < oo. In order to prove this, we start

with the following lemma which was explained to the author by P. Duarte.

Lemma 3.1 Let f € C°(M). Consider the random variables

A =(Qf)(Zn) — [(Zn) = E(f(Z0)|Zn-1) — f(Z2)
= E(f(Zn)|Fn) - f(Zn)>

where F, = o0(Zy,Z1,...,%Z,). Then these random wvariables are pairwise

uncorrelated, that is,
E(ArA,) =0 forall0 <k <n.

Proof. Let 1 be a K-stationary measure and let B be the Borel sigma algebra
of M. Note that

E<An|]:n) = E<E(f(Zn)‘}—n) - f(Zn)U:n)
=E(f(Zn)|Fn) — E(f(Zn)|F0)) = 0.

Let us recall that given sub sigma algebras G; C Gy C B, we have that
E(f|G1) = E(E(f|G2)|G1). Moreover, if Gy = {0, M } is the trivial sigma algebra,
then E(f) = E(f|Go). Thus

E(An) = E(Aq|G) = E(E(A,|F0)|G) = 0.
Given k < n, it follows that
AnAy = Ap(E(f(Z)[Fr) = f(Z1)) = Anlgr — ),

where g = E(f(Zk)LFk) and hk = f(Zk)

Since g is Fj measurable,
E(Angi|Fr) = gelE(AL | Fr) = E(E(A|F,)|Fr) = 0.

The first equality in the previous expression holds because given any f,g €
L*(M, B,n) with g being F measurable, we have that E(fg|F) = gE(f|F).
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Therefore,

E(Angr) = E(Angr|Fo) = E(E(A,gk|Fk)|Fo) =0
Similarly, since hj, is Fip-measurable,
E(Anhy|Fr) = hE(AL|F) = ME(E(A,|Fn)[Fr) =
Therefore, it follows that
E(Anhe) = E(Anhi|Fo) = E(E(Anh| Fi )| Fo) =

Together, these facts imply that E(A,Ay) = 0, which proves the lemma. W

Using this orthogonality property of the random variables, the
Pythagorean theorem implies that the martingale random variables
"1
§nv1 = Z k(Qg)(Zk) Zk+1 Z Ak+1

k=0

satisfy the following inequality

=01
Jeale < tlgle 3 15

Therefore, by the Cauchy-Schwarz inequality, we conclude that
sup, E(]¢,]) < oo, so Doob’s martingale convergence theorem is indeed

applicable to the martingale process {(&,, F,)} and we conclude that

hm Z Qg Jj— 1) g(Zj)

n—oo j

exists and it is finite for almost every w € €).

Recall the following Kronecker lemma: if {a, },, C R is such that >7° | a,

o0

1 .
converges, then lim - ]zjl jaj = 0. Hence

lim — > [Q9(Z1) — 9(Z)] =0 ac.

By expanding the terms in this telescopic sum, we conclude that for p-a.e.
w €,

lim — ng

n—oo n,

which completes the first step of the proof of item (i).
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Now we proceed to proving that (i) holds for every ¢ € C°(M).
Since M is compact, C°(M) is separable, hence there exists a countable
set {g1,..., 9k, ...} which is dense in C°(M). Therefore, we may apply the
previous result to every ¢r: = Qgr — gr. Thus, for every £ € N, there exists
Qr C Q, with p() = 1 and such that for every w € ),

. 1 n—1
Jim_ — ; pr(Zj(w)) = 0.
Let ., = My, and note that p(€2,) = 1. Fix an arbitrary w € €, and
for every n € N, define the following measure

1 n—1

Np: = - Z 0z,(w) € Prob(M).
=0

Note that [,; Qgx — gx dn, — 0 for every k € N. Since {g1,...,9k,--- }
is dense in C°(M), it also holds that [, Qg — g dn,, — 0 for every g € C°(M).
Therefore, every limit point 7., of {n,}, is Q-stationary.

Note that there exists a subsequence {ny}; such that

1 n—1 1 nip—1
lim sup — 1 Z;) = lim —1 Z;) = Jim [ o dn,.
im sup — og]Z%SD( j) = Jim - log JE% p(Z;) = Jim | o di,
Finally, since Prob(M) is compact, there exists a further subsequence
{nnki }; that converges to some 74, which, by the previous argument belongs
to Probg(M). Thus, we conclude that

. 1 n—1 )
< max {/ pidn:n € PfObQ(M)}-
M

Next we prove item (ii). We apply item (i) to —¢ and conclude that
for a.e w € Q, we have that limsup, . +log¥"=) —p(Z;) < —f. Thus
—liminf,, o +log 3077 ©(Z;) < —f, hence liminf, o +log X720 ¢(Z;) > B.
Thuswe conclude that

n—1 n—1

1 1
lim sup — log Z QO(ZJ-) = lim inf — log Z go(Zj) =/
n—oo 11

n—oo
=0 n =0

which completes the proof. [ |
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3.1.2
Application to random linear cocycles

Consider the random linear cocycle F' generated by a probability measure
p € Prob(GLg(R)) with compact support 3 = supp(u). The cocycle is
defined as the skew-product map F: X% x P(R?) — ¥V x P(R?) such that
F(g,0) = (0g, §ob), where o: N — XN is the Bernoulli shift.

Consider the Markov kernel K from the third level, defined in sec-

tion 2.2.1, namely

K : P(R?) — Prob(P(R%))

(s /259017 du(g()) :
Consider the special observable defined in (2.5),
®(g0,0) = log||gov]|

where v is a unitary representative of the projective point ¢ € P(R?).

We define a linear functional a: Probg (P(R?)) — R as follows:
aln) = [ @(go, ) dplgo)dn(0) (3.1)
SxP(Re)

Moreover, since Probg (P(R?)) is compact and « is continuous, its max-

imum is attained. Then let

[ := max {a(n): n € ProbK(IP’(Rd))} :

Theorem 3.3 For every vector v € RA\{0} the following hold.
(i) For pN-almost every g € XV,
) 1
lim sup — log||gn_1- .- g190v| < 5.
n—oo T
(ii) If a(n) = B for every n € Proby (P(R?)), then for pN-a.e g € XN,

1
lim —logl||gn-1--.9190v| = B.

n—oo n,

Proof. Consider the Markov kernel K from the second level, defined in
section 2.2.1 by K: ¥ x P(R%) — Prob(X x P(R?)), K(go,9) = it X 0-
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Fix any © € P(R?) and consider the K-Markov chain

Zn: SN x P(RY) — ¥ x P(RY)

Zn(ga @) = (gnv gn—l s glgO@) s

where the space 0 = XN x P(RY) is equipped with the probability u% x 4.
Recall that for all (g, 9),

1
> 0(2,(0.)) = L 1oglgr .. v
By theorem 3.2, we conclude that for every v € RY\{0} and pM-a.e g € TV,

1
limsup — log||gn-1 ... g1907| < max{/ O dm: m € Probg (3 x P(Rd))}.
n—oo T

SxP(RY)
We claim that the right hand side of the previous equation is equal to
max{/q)d,udn: n e ProbK(]P’(Rd))} = 8,

where, again, K is the Markov kernel from the third level. In fact, the following

lemma implies the claim which will then conclude the proof of item (i).

Lemma 3.2 If m € Probg (X x P(R?)) then there exists n € Proby (P(R?))
such that m = pu x n. Conversely, if n € Probg(P(R%)) then the product
p X n € Probg (X x P(RY)).

Proof. Consider the following projection nmap:
I1: C(2 x PR") — C(BRY),  1e(0) = [ lg0,0) dpu(go).

Note that if m € Probz (X x P(R?)), then its associated Markov operator is
given by

Qelg0, ) = [ (g1, 500) dpa(g1) = p(Go)

If Iy = Tlp,, then Qyy = Qy,. Therefore,

) d:/ oy dm.
/EXIP’(Rd) QSOI m S xP(R4) QSOQ m

Since m is a K-stationary measure,

dm:/ dm.
/ZX]P(]Rd) a1 S xP(R4) vz am
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For any ¥ € C(P(R?)), consider

I‘IJ::/ dm.
(¥) EXIP(R‘i)SO "

where Il = W. Note that [ is well defined, since 1lyp; = Ilp, implies that
Jw1 dm = [@o dm. Moreover, I is a positive linear functional, thus by
the Riesz-Markov-Kakutani representation theorem there exists a measure
n € Prob(P(R%)) such that I(V) = [ ¥ dn. Therefore, Vo € C(X x P(R)),

/(pdm:I(\If):/\Ifdn:/l'[@dn://<pd,udn

showing that m = pu x .
It is easy to derive the K-stationarity of n from that of m. Moreover, the

reverse statement is a simple calculation. [

Returning to the proof of the theorem, by the previous lemma we have
that if a(n) = B for every n € Probg(P(R?)) then [® dm = j for every
m € Probz (X x P(R%)). Therefore, by item (ii) of theorem 3.2 we have

n—oo n,

. 1 ' 1 n—1
lim —log|lgn-1-..q190v] = lim n Y ®(Z) =5
=0

which establishes item (ii) of the theorem and completes its proof. |

Theorem 3.4 (Furstenberg’s formula) Given any compactly supported proba-

bility measure p on GL4(R),
Ly(p) = / ® dudn: 1 € Prob (P(RY) Y |
1(1) max{ ey © @1 € Pro K (B( ))}

where ®: ¥ x P(R?Y) — R is the observable given by ®(g, ) = log lgv]

lloll
Proof. Let {ei,...,en} be the canonical basis of RY and let ¢ € GLgq(R).

Consider the norm ||g|| = max;||ge;||. Note that for g almost every {g, }n

o1
Ll(ﬂ) = lim — 1Og||9n—1 . -90”

n—oo n,
1 ,
= lim —log||ga-1- - goll

_ i 1 | <8
= Saf, L sup o 0g||gn-1- - - goe;]| < B,

by item (i) of the previous theorem, so Ly (u) < f.
We proceed to proving that 5 < Li(u). Let

B := {n € Probk(P(R)): a(n) = 8} .
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Then B is a non empty, convex and closed set, therefore it is also compact. By
Krein-Milman’s theorem, there exists 19 € B which is an extremal point of B.

Let us show that 7y is also an extremal point of the whole set
Probg (P(RY)). Indeed, if ny = tn; + (1 — t)n, for some 7y, 1y € Probg (P(RY))
and t € (0,1), then a(n) = B = ta(m) + (1 — t)a(n). Since «(n;) and
a(ny) < B and a(n2) < B, both of them must be equal to 5. Hence ny,m, € B.
Since we assumed 7 to be an extremal point of B, we conclude that n; = ns,
therefore 7, is an extremal point of Proby (P(R?)).

Let ®: Y% x P(R?) — R, (g, ) := ®(go, 0). We then clearly have that
the stochastic Birkhoff sums of the observable ® corresponding to the Markov
chain {Z,} are equal to the Birkhoff sums of the observable ® relative to the
projective cocycle dynamics F': £7 x P(R?) — %% x P(R?), F(g, 0) = (0g, §od),
namely S, ® = Snfi) for all n > 1.

By proposition 2.2, u x 1y is ergodic for the projective cocycle E.

Therefore, by Birkhoff’s ergodic theorem, for p™ x ng-a.e (g,) we have

1 1 1 -
—1og||gn-1-..gov|| = =5, P(g,0) = =S, P(g,?) — /@ dpNdno.
n n n
But
[ @ dudng = [ @ dyudig = (o) = 8.
We conclude that for pMN-a.e. g and for ng-a.e v,
.1 ) 1
B = lgm — log|lgn_1---gov|| <limsup — log||gn_1---gol| = L1(1)
n—oon n—oo T
which completes the proof of the theorem. [
3.2

Furstenberg-Kifer's multiplicative ergodic theorem

3.2.1
The construction of the filtration

Let p be a compactly supported probability measure on GL4(R) and let
K be the corresponding Markov kernel as above. Consider the set of values at

the extremal points of the linear functional o defined above, that is, let
S(p) = {04(77) : 7 is an extremal point of ProbK(]P’(Rd))} :

Lemma 3.3 S(u) C {Li(p), ..., La(p)}. In particular, S(p) is finite.
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Proof. Let ®: ¥V x P(R?) — R given by ®(g,0) = log ”ﬁoﬁ” denote the
natural extension of ® as in the previous proof. Let 1 be an extremal point of
Probg (P(R?)). Then by proposition 2.2, the measure p x 7 is F-ergodic, so,

by Birkhoft’s ergodic theorem,

/q) 90, ) dp(go)dn(? /<I> (g)dn(?)
1
Iggngoglogl\gml--.gov!\-

By the Oseledets multiplicative ergodic theorem, this limit is equal to
one of the Lyapunov exponents, thus we conclude that S(u) is contained in

the Lyapunov spectrum of p. [ |

Let us introduce some notation. In what follows, we often write A™(g)
to denote the product g,_1...g9. Let By > f1 > -+ > [, denote the elements
of S(u). We will call them the Furstenberg-Kifer exponents. Note that, by
Furstenberg’s formula, we already know that Li(u) = 5 = fp.

Theorem 3.5 (Furstenberg-Kifer’s nonrandom filtration) Given a measure
p € Prob(GL4(R)) with ¥ := supp(u) a compact set, there exists a filtration
of R4

{0t=Ln CL G- C LG L=

such that the following hold.
(i) ¥V 0<j<r, L;is p-invariant, i.e. gL; = L; for pi-a.e. g € X.

(1) ¥ 0 < j <r and Vv € L;\L;+1 we have that
lim ~logl|A"(g)ol| = 8;  for pN-a.e g € BN
lim, gl A" (9)el| = 5 g e

(i) ¥ 0 < j <r, if n is an extremal point of Proby (P(R?)) such that a(n) =
B;, then n(L;) =1 and n(L;41) = 0, where L; = {: v € L; \ {0}}.

Moreover, each subspace L; of the filtration is given explicitly by

L= {U cR™ hmsup—logHA”( ol < B;  for WNoae. g€ ZN}.

n—oo

The argument is quite elaborate and consists of various lemmas and other
technical results and concepts which will be described in this and in the next

subsection.
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Lemma 3.4 If the linear functional o is constant on Proby(P(R?)) then the
theorem holds for the trivial filtration Lo = R* and £, = {0}.

Proof. Since a(n) = 8 for every n € Probg(P(RY)), by theorem 3.3, for all
v#0and pM-ae. g,

1
lim —logllgn1-..gov| = 8

7'L—>OO

This immediately shows that in this case the trivial filtration £, = R¢ and
L, = {0} satisfies items (i), (ii) and (iii) and the result follows. |

We will assume from now on that the linear functional « is not constant in
Probg (P(RY)). By Krein-Milman’s theorem, since there exist extremal points
in Probg (P(R?)), the restriction of a to the extremal points of Probg (P(R%))
is also not constant. Therefore #S(u) > 1.

In the next lemma we define the first non trivial subspace of the filtration.

Lemma 3.5 Consider the following set:
1
Ly = {U € R?: limsup — log||gn_1 ... gov|| < B for pN-a.e. g € EN} :
n—oo T -

The following statements hold.

(i) Ly is a vector subspace of R%.
(i) L1 is p-invariant.

(iii) If m is an extremal point of Probg(P(R?)) such that a(n) = By, then

(L) =1.
(iv) If n is an extremal point of Probg(P(R?)) such that a(n) = By, then
n(£y) = 0.

(v) Ly is proper.

Proof. If v € L4, then for any scalar A # 0,

1 1 1
lim sup — logHA”(g))\UH = limsup — logHA”( Jvl|| + hmsup —log |A|
- n—00

n—oo

= hmsup logHA”( || < py.

If A = 0 then the lim sup above is equal to —oco and the inequality still holds.

Hence A\v € L. Furthermore, given vy, v € Ly, then

: 1 n 1 n n
lim sup — log|| A" (g)(v1 + v2)|| < limsup —log [2max{]| A" (g)v |, | A" (g)eal}]

n—o0

2
< lim sup max {n log||A™ (gv1)]|, nlog||A”(gvg)||} + log - < br.

n—oo
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This implies that v; + v, € £; and that £, is a vector subspace of R
By definition of L, if v € L4, then

. 1 n
lim sup — log|| A" (g)v|| < B4
n—oo T

for pN-a.e. (go, g1,...). Thus gov € Ly for p-a.e go. Therefore goL1 C L;.
Since gy is invertible, dim go£; = dim £;. Hence goL, = L, for p-a.e gy and we
conclude that £, is p-invariant.

Let 19 be an extremal point of Probg(P(R?)) such that a(ny) = Bo.
Hence, pN x ng is E -ergodic and by Birkhoft’s theorem

lim * log|| A" (g)v]] = (o) = fo > by

n—oo n, =

for i x no-a.e (g,9). Hence, for ny-a.e & the previous limit holds for yN-a.e g
and we conclude that (L) = 0.

Similarly, let 7; be an extremal point of Probg(P(R?)) and assume that
a(m) = Bi. Then the measure p x 7, is ergodic and by Birkhoff’s ergodic

theorem .
lim —log||A"(g9)v|| = a(m) = b

n—oo n,

for pN x ni-a.e (g,0). Moreover, for n;-a.e ¥ the previous limit holds for uN-a.e
g. Hence m(Ly) = 1.
By the previous two arguments, £; is a proper subspace of R?, which

concludes the proof of the lemma. [ |

3.2.2
The induced cocycle

Let £ C R? be a proper p-invariant subspace, i.e go£ = L for p-a.e
go € ¥ and dim £ = k < d. One can then consider the induced (or restricted)
cocycle

Fr:YNxL£—¥Nxr, Fr(g,v) = (0g, gov).

Furthermore, we also consider its projective version:

A

Fp SN < P(L) = SN x P(L),  Ee(g,d) = (0g, Gob).

In fact, all the theory presented in the previous sections applies in
the same way to the cocycle restricted to the invariant subspace L. Let us
summarize the main objects and introduce the relevant notations.

Define the observable &, = ®|g., and the induced Markov opera-

tor Qz = Qlp(z). Similarly one may consider the induced linear functional
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ag: Probg,(P(£)) — R and its maximum value (.

We can also consider the quotient vector space RY/L = {[v]: v € R},
where v is in the same equivalence class as w if v — w € L. Analogously to
what we did before, we can also induce a cocycle in the quotient vector space.
Therefore it is also possible to define Fga,, FRd/ﬁ, Pra/r, Qrajz, Orayz, Brajr-

Remember that dim£L = k < d. Let {e,...,ex} be a basis in L
and {Egy1,...,Eq} be a basis in R?/L. Choose the representatives ey, ; €
Eyi1,...,eq € Eg. Then {ey,...,e4} is a basis in RY. Hence, by a change of
coordinates, we identify £ = R¥ x (0) C R? and R?/L = (0) x R¥* c R%

Thus, in this basis, any matrix g € ¥ is written in blocks as g = 0 al’ where

bisa k x k block, cis a k x (m—k) block and d is an (m — k) x (m — k) block.
Therefore, the cocycle A : ¥N — GL4(R) and its iterates are written as

B C

, and A":B Cn
0 D

0o D"

, (3.2)

where B is the cocycle F: ¥V — GLk(R) and D is the cocycle Fga/p: 3N —
GLg_x. Moreover, B™, D™ are the iterates of the induced cocycles and C,, =
Z?;ol aniflchi.

Lemma 3.6 If L is a p-invariant subspace of RY, then 3 = max{f, fra/}-

Proof. By Furstenberg’s formula, 5 = L;(F'). Applying Furstenberg’s formula
to the induced cocycles F; and Fga/z, we conclude that S, = Li(Fg) and
Brae = L1(Fra/z). Note that by the decomposition above,
=Li(F)=1 11 A = li 11 B"|, li 11 D"
8= Li(F) = lim —log]|A"[| = max { lim ~log]|B"]| lim  log]| D"} }
= max { Ly (Fz), L1 (Frac) }
= max{f¢, Bra/c}-

Lemma 3.7 Let Ly be the p-invariant subspace defined in lemma 3.5. Then
/61:1 = ﬁl'

Proof. By Furstenberg’s formula applied to the induced cocycle F,, for uN-a.e.
g € XV we have that
= Li(F;,) = 1li L log|| A
By = Li(F,) = lim —log|l AL, (9)]

1
= max lim —log||A"(g)e;|| < fi.

ej€E1 n—oo n, =
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On the other hand, ; = «a(n;) for some n; which is an extremal point of
Probg (P(R?)). By Birkhoff’s ergodic theorem,

" n
Br=a(m) = lim —log|A"(g)v]|

for p™ x mr-a.e. (g, ). Hence there exists @ € P(R?) such that

1
—log|l4"(g)ul| = 6,

for almost every g € YN thus w € £;. Furthermore,

1 n .1
B = lim —log||A"(g)wl| < lim —log|| AL, ()|l = fei,
thus establishing the equality of the two quantities. [
Corollary 3.1 fSga/p, = 3.

Proof. By lemma 3.6, § = max {ﬁgl,ﬁRdml}. By lemma 3.7 we have (;, =
p1 < Bo = B. It follows that 8 = Bga,, . [ ]

Lemma 3.8 If £ C R? is a p-invariant subspace and By < B, then B < f3i.

Proof. Recall that
Br = max{ag(ne): ne is an extremal point of Probg, (P(£))} .

Let 1, be such that 8, = a(n,). Consider the extension 7 € Prob(P(R%))
of nz such that n(P(L)°) = 0. We claim that 7 is @) stationary and it is an
extremal point of Probg(P(R?)). For every ¢ € L®(P(R?)),

/QSOdn:/P(E)QﬁSOEdnL:/SOLd"?E:/Spd'ﬂ-

Moreover, if 1 is not extremal, then n = tn; + (1 — t)ny for some n; # ns.
Since n(P(£)¢) = 0, both n;(P(£)¢) = 0 for i = 1,2. However 7 is extremal,
therefore 1; must be equal 7, and we get a contradiction. Thus, we conclude
that

Br=ac(ne) = /(I)ﬁ dne = /‘I) dn,

where 7 is an extremal point of Probg(P(R?)). Hence, 8, = [® dn €
{Bo, b1, - -, Br}. By hypothesis, 5, < [, so it must be that 5, < (. [ |

Lemma 3.9 The linear functional ogay,: Probg,, . (P(R?/Ly)) — R s
1

constant.
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Proof. Assume by contradiction that aga/z, is not constant. Therefore, there
exists a proper subspace V; C R?/L; which is invariant. Hence, Vi, = L£/L;,
where £ C R? is an invariant subspace such that £ O £;. Note that

Bv, < Brasz, = B. Moreover,
Br = max {551,55/51} = max {fc,, fn, } < S.

Thus, by lemma 3.8, 5, < ;. By the definition of £y, this implies that £ C L;.
We conclude that £ = L4, so Vj is a trivial subspace, contradicting the fact of

being proper. [ |

Lemma 3.10 Ifv € RY/L; then for pN-a.e. g€ YN we have that

.1 n
lim ~ log|| A" (g)e] = fo.

n—oo

Proof. We already know that for every v # 0 and for pMN-a.e g € N,

. 1 n
lim sup — log|| A" (g)v]| < fo.
n—oo T
Therefore it suffices to prove that for every v € R4/L£; and for uN-a.e g,

1
lim inf — log|| A" (g)v|| > fo.

n—oo n

By the change of coordinates described before, we can write the cocycle
A and its iterates as in (3.2), where B represents the cocycle induced in the
invariant subspace £; and D the cocycle induced in the quotient R¢/L;. Then,
a vector v € R? can be written as v = (vy,vp) with v; € R* and v, € RI7F,
Let v € R?/Ly, then v = (vy,v;) with vy # 0. Thus

) (Ul) _ <B”(g)vl +Cn’l)2>
Uy D™ (g)v, '

Hence ||A™(g)v|| > ||D™(g)v|| for every n € N and for every g € M.
Moreover, it holds that

o1 n o1 .
lim inf —log|[A"(g)vl| = liminf —log|| D" (g)v|
1 .
= lim —log|D"(g)vzll = ez, = Fo

which establishes the claim. [ |

We are finally ready to complete the proof of theorem 3.5.
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Proof. Recall that r + 1 is the cardinality of the set of values of the linear
functional «a(n) at extremal points of Probg(P(R?)). The case r = 0 was
treated in lemma 3.4. Combining all the previous results, we conclude that if
r = 1, then theorem 3.5 holds. Otherwise, r > 2 and we can apply the same
procedure to the induced cocycle F, to get another invariant subspace Lo,

which is a proper invariant subspace of £; such that for every v € £\ L5 and
uN-a.e g,

R I
Jim -~ log|[A™(g)vll = B1.

The completion of the proof follows by induction. [

Remark 3.1 Although both Oseledets and Furstenberg-Kifer’s multiplicative
ergodic theorems produce filtrations, they do not need to coincide, see example
3.2 in [3]. As a consequence, Furstenberg-Kifer’s exponents also do not need
to coincide with the Lyapunov exponents. What holds, however, is that the set
of Furstenberg-Kifer exponents is contained in the Lyapunov spectrum (the set
of all Lyapunov exponents given by the Furstenberg-Kesten or the Oseledets
theorem), as we saw in lemma 3.3. Moreover, by Furstenberg’s formula, the

first (largest) exponents in each set coincide.

Remark 3.2 Another interesting fact is that the Oseledets filtration is random
in the sense that for each point g € YN the filtration possibly depends on all
of its coordinates. On the other hand, Furstenberg-Kifer’s filtration is non-
random, in the sense that it does not depend on the point g € YN In chapter
8 we will introduce a version of Furstenberg-Kifer’s filtration for Markovian
cocycles, which turns out to be only slightly random, since it depends just on

the zeroth coordinate of g.

3.3
Irreducibility

In this section we discuss the concept of irreducibility, which is very

important in the study of the Lyapunov exponents.

3.3.1
Introduction to the concept

There are many different versions of this concept in the literature, but
we introduce only three of them. For a more detailed study of the topic, see
[8] and the references therein.

Let p be a probability measure on GL4(R). Then p is
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(i) strongly irreducible if there is no finite family of proper subspaces of R?

which is invariant under p-a.e. g € GL4(R);

(ii) drreducible if there is no proper subspace of R? which is invariant under
p-a.e. g € GLg(R);

(iii) quasi-irreducible if it is irreducible or else there exists a proper subspace
V of R? invariant under p-a.e. g € GLg(R) but the Lyapunov exponent
of the cocycle restricted to V is equal to the top Lyapunov exponent of
the cocycle, that is, Li(F|yv) = Li(F).

Remark 3.3 When a random linear cocycles satisfies one of the previous
irreducibility conditions, it is often referred to as being in a generic setting.
This is due to [33, Theorem 1.1], where Kifer proved that irreducibility is an
open and dense property in Prob(GLq(R)) with respect to the weak* topology.

Remark 3.4 If the Lyapunov exponent of the cocycle restricted to a mazximal
proper invariant subspace is strictly smaller than the top Lyapunov exponent

of the cocycle, then that subspace is referred to as the “equator” in [3].

It is clear that strong irreducibility implies irreducibility which implies
quasi-irreducibility. We provide some examples of cocycles that satisfy the

definitions above.

Example 3.2 A strongly irreducible cocycle:
2 cos(2ml) —sin(270)
g1 = 92 = .
0 sin(276)  cos(2mh)

In this example, we consider § € R\Q and both matrices with positive weights:

= O

p1 > 0, po > 0 and p; + po = 1. Note that ¢, is a hyperbolic matrix that fixes
both the x and the y axes and ¢, is an irrational rotation that does not leave
any finite family of subspaces invariant.

Note also that by a theorem of Furstenberg, the Lyapunov exponent of
this cocycle is positive. Moreover, if the p; = 0, the cocycle generated by g- is

still strongly irreducible, but has zero Lyapunov exponent.

Example 3.3 An irreducible cocycle which is not strongly irreducible:

_2
a1 0

= O
\/
e
)
/o~
w9
=)
—~~
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v



Chapter 3. Furstenberg-Kifer's Multiplicative Ergodic Theorem 54

This is a slight variation of the previous example. In this case, we chose 6 to
be rational (§ = 1) and the situation is completely different. In this case, g
still does not leave any subspace invariant, but it keeps the finite family of
x and y axes invariant. Therefore, this cocycle is strongly irreducible but not
irreducible.

Moreover, note that if p; > 0 and p, > 0, then the cocycle has zero
Lyapunov exponent. On the other hand, if p; = 0, the Lyapunov exponent
is positive. This is known is the “Kifer’s example” of discontinuity of the

Lyapunov exponents.

Example 3.4 A quasi-irreducible cocycle which is not irreducible:

_21
91—01

The cocycle generated by this triangular matrix preserves the z-axis. Thus it
is not irreducible. However, the Lyapunov exponent along the z-axis is equal
to log 2, which is the same as the top Lyapunov exponent generated by g1,
hence it is a quasi-irreducible cocycle.

In [8], the authors provide a general criterion for the quasi-irreducibility
of an SLy(R)-valued triangular cocycle, depending on the matrix entries and

the weights (the probability vector).

Example 3.5 A (completely) reducible cocycle (or not quasi-irreducible):

( )
1
2

This is a diagonal cocycle, so it preserves both axes. Along the z-axis the
Lyapunov exponent is maximal, however, along the y-axis the Lyapunov
exponent is smaller than the maximal. Therefore, this cocycle is not quasi-

irreducible.

3.3.2
Relation with Furstenberg-Kifer’s filtration

In this manuscript we work with the third, hence weakest concept of ir-
reducibility, the quasi-irreducibility. Furstenberg-Kifer’s non-random filtration

in theorem 3.5 provides the following characterization of this concept.

Corollary 3.2 A random cocycle (or equivalently, the measure generating it)
is quasi-irreducible if and only if its corresponding Furstenberg-Kifer filtration
is trivial, that is, Lo = R? and L, = {0}.
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Proof. If a cocycle is quasi-irreducible, then either it does not have any proper
invariant subspace, in which case Furstenberg-Kifer’s filtration is trivial, or

else it has an invariant subspace V' and

1
n IOgHanl . -9190UH - L1(,LL) =po=p (3-3)

for pN-a.e. g € Y and every nonzero v € V. In this case the filtration is also
trivial.

If we assume that the filtration is trivial, then equation (3.3) holds for
pN-ae. g€ YN and for every v € R% Thus if the cocycle admits an invariant
subspace, its top Lyapunov exponent must be attained along it, as it is attained

in any direction. ]



4
Holder Continuity of the First Lyapunov Exponent in the
Generic Setting

We study the regularity of the Lyapunov exponent of locally constant
random linear cocycles, as a function of the measure p driving the multi-
plicative process, under the quasi-irreducibility hypothesis (which represents
the generic setting). As we will see, the regularity can be extremely differ-
ent according to the topology that we choose. In this chapter we consider the
weak-star topology, which is metrizable by the Wasserstein’s metric.

The main result of this chapter is a general version of Le Page’s theorem,
that proves the Holder continuity of the Lyapunov exponent in the generic
setting. The proof we present in this chapter is based on the author’s Master’s

thesis [27], which generalizes a result in [4, Theorem 1, iteml].

One of the main elements in this proof is the so called strong mixing
property of the Markov operator (see definition 2.3) associated to a measure
on the group of matrices. By strong mixing we mean the uniform convergence
of the powers of the Markov operator to its (a posteriori) unique stationary
measure. This property plays a central role in the proof because one can reduce
the study of the regularity of the Lyapunov exponent to the regularity of the
stationary measure, via Furstenberg’s formula. By the strong mixing property,
the latter can then be deduced from the fact that the Markov operator and its
powers depend nicely on the measure .

The strong mixing property also implies, by general principles, statistical
properties (such as large deviations and a central limit theorem) for the
Lyapunov exponent. These results are not new in this specific setting, but

we include them for completeness.

In section 4.1 we introduce the Wasserstein’s metric, some technical facts
about the convolution of measures and the relation between them. In section
4.2 we prove the strong mixing of the Markov operator, which is then used to
prove the Holder continuity of the Lyapunov exponent in section 4.3 and the

statistical properties in section 4.4.
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4.1
Convolution of measures

The weak-star topology on the set of probability measures is metrizable
in various ways, of which, the Wasserstein metric is one of the most useful.
Our result on the Holder continuity of the Lyapunov exponent is formulated

relative to this metric.

Definition 4.1 Let (X,d) be a compact metric space and let Prob(X) denote
the set of Borel probability measures on X. Given two measures p,v €
Prob(X), a coupling between p and v is a measure m € Prob(X x X) with
marginals | and v.

More precisely, the push forward of m wvia the projections proj, proj,
in the first and second coordinates are p and v, that is, (proj,).m = p and

(proj,).m = v.

Given two measures u,v € Prob(X), let II(u,v) denote the set of
all possible couplings between p and v. Note that the product measure

X v e (u,v), hence (i, v) is not empty.
Definition 4.2 Given pu, v € Prob(X),

Wi(u,v) = inf /XXX d(z,y) dr(z,y)

el (1,v)

is called the Wasserstein distance (of order 1).

Kantorovich-Rubinstein’s duality theorem gives a characterization of W,

in terms of Lipschitz functions. It says that for all u, v € Prob(X),

Wi(p,v) = sup ’/cpdu /sodv

@€Lip, (X)

where Lip;(X) denotes the space of Lipschitz continuous functions with

Lipschitz constant less than or equal to 1.

Remark 4.1 It turns out that there exists 7 € Il(p, v) such that the infimum
in definition 4.2 is attained. Moreover, there also exists p* € Lip,(X) such

that the supremum Kantorovich-Rubinstein’s duality theorem is attained.

Definition 4.3 Let G be a group that acts on a set M. Let p be a measure in
G and let v a be measure in M. Then we define the convolution of u and v as

the measure p v on M such that:

(= v)( // 1p(gz) dv(x)du(g)

for every measurable set E C M.
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Given a measure y € Prob(G) and k > 2 we define

W=k xp (k times)

to be the k-th convolution power of u. We also set p*! := p or think of p*! as
the convolution of y with a Dirac measure centered at the identity element of

the group G.

Let G be a multiplicative subgroup of Maty(R). Given ¥ C G a compact
set, i € Prob(X) and n > 1, the next proposition shows that the convolution
power map p — p*" is Lipschitz (with Lipschitz constant depending on n and

¥)) with respect to the Wasserstein metric.

Proposition 4.1 Let ¥ C G be a compact set and let n € N. Then the map
Prob(X) 3 u+— u™ is Lipschitz with respect to the Wasserstein metric.

Proof. We split the proof into the three following lemmas.

Lemma 4.1 Givenn € N, the map p — p X ... X i (n times) is Lipschitz with

respect to the Wasserstein metric, with Lipschitz constant n.

Proof. Let ¢ € Lip;(2 x X). Observe that

[ elon) dulg)dpu(h) — [ olg.h )dv(g)dv(h) =

L el h) diu—v)(g)du(h) + [ _olg.h) dlu=v)(R)du(g).

Now fix h. The map g — ¢(g, h) is 1-Lipschitz. Then

/sz ©(g,h) d(p —v)(g)du(h) < /EXE Wi(p,v) du(h) < Wi(p,v),

since p € Prob(X). The same result is true for the other term:

[ el s~ v)()dvlg) < W)

Therefore we conclude that Wi (u x p, v x v) < 2Wi(u, v) because ¢ was

chosen arbitrarily. By induction, we conclude the lemma. [ ]

Lemma 4.2 Let p € Prob(X) and let {@,}nen be the group action of G
on dtself, p,: G X G X -+ X G = G, ©,(91,92,---,9n) = G192 gn. Then
= (on)e(pt X X -+ X ) and @, is Lipschitz.

Proof. We only prove the case n = 2, the general case following by induction.

For simplicity, we denote 5 by ¢. Given a measurable set £ C G, by the
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definition of the convolution of measures,
prplE) = [ 1p(9192) dulor)du(ge)
GxG

=/ 15(p(91, 92)) dp(g1)dp(ge)

_ /GIE(g) deo. (1t x 1)(g)

= ps(p x p)(E).

Since F was arbitrary, we conclude that p g = @, (1 X ).
It remains to show that ¢ is Lipschitz. We consider the distance
d((g1: g2), (h1, ho)) := d(g1, h1) + d(g2, ho) on G x G . Hence,

d(¢(9192), p(h1h2)) = d((g192), (h1h2))
< d((9192), (h1g2)) + d ((h1g2), (h1h2))
< lgalld(g1, ha) + [[h1 || d(ga, ha).

Since p has support in the compact set Y, there exists a uniform constant

C > 0 (depending on X) such that ||g|| < C for all g € supp(u). Therefore,
lg2lld(gr, b)) + [P [|d(ga, ha) < Cld(g1, hn) +d(ga, ho)] = Cd (g1, g2), (ha, h2)) -

This proves that d(¢(g192), 0(hihs)) < Cd((g1,92), (h1,hs)), s0 @ is
Lipschitz continuous, and its Lipschitz constant depends only on the compact

support . [

Lemma 4.3 If ¢: X — Y s Lipschitz with Lipschitz constant C, then the
map p— @i is Lipschitz with the same Lipschitz constant.

Proof. By remark 4.1, there exists f € Lip,(Y’) such that

Wi(pupt, pav) = /Y fd(pup — puv) = /X fopdp—v).

Since ¢ has Lipschitz constant C, then & & Lip,(X). Also the composition
&f o € Lip,(X). Therefore [x f o ¢ d(p—v) < CWi(u,v) and we conclude

that
Wi(pap, puv) < CWi(p, v),

which proves the lemma. [ |
Finally, by lemma 4.2, @™ = (@)% (X px - - - x 1) where ¢, is Lipschitz.
By lemmas 4.1 and 4.3, the map p — (p,)«(p X g X - -+ X p) is also Lipschitz,

which concludes the proof of the proposition. [ |
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4.2
Mixing of the Markov operator

Let 3 C GLq4(R) be a compact set and let u be a probability measure on
3, that is, u € Prob(X). We can define the Markov operator @Q,,: L= (P(R%)) —
L>*(P(R%)) associated to p as follows:

Qup)(®) = [ #(39) dulg). (4.0

where §: P(RY) — P(R?) is the projective action of g defined by gv = §d.
The goal of this section is to prove that if Ly(u) > Lo(p) and if p satisfies
the quasi-irreducibility condition then the associated Markov operator @), is
strongly mixing. Note that the Markov operator defined above is the one from
the third level (already defined in section 2.2.1) and by proposition 2.4, if it
is indeed strongly mixing, then the related Markov operator from the second
level also satisfies this strong mixing property. A general reference for this and

related concepts in this section is [22].

4.2.1
Uniform convergence to the top Lyapunov exponent

We start with an important consequence of Furstenberg-Kifer's multi-
plicative ergodic theorem. Together with the hypothesis above, the finite time
averages of the special observable log||gp|| converge uniformly in p € S to
the top Lyapunov exponent. This is a key property needed in order to establish

the strong mixing property.

Proposition 4.2 Let p© € Prob(X) be a quasi irreducible measure with
Ly(p) > Lo(p). Then

1
li —/1 du™(g) = L
im og ||gp|l du*"(g) = L1(p),

n—oo
with uniform convergence in p € S*' = {v € R%: |v|| = 1}.

Proof. Since p is quasi irreducible, by remark 3.2, the Furstenberg-Kifer’s non
random filtration is trivial. Therefore, for every p € R\ {0}, we have that

almost everywhere:

1
Jim —1og [|gn-1 -+~ gopl| = Lu()-

By the definition of the n-th convolution power and dominated convergence



Chapter 4. Holder Continuity of the First Lyapunov Exponent in the Generic
Setting 61

we get that for every p € ST 1,

. 1 *MN, . 1 n
lim f/ log [|gpl| d™(g) = lim — | log||gn-1---gopll diu"(gn-1, - o)
nJx N

n—oo n—oo n

= Li(p)-

Hence we establish the pointwise convergence in p. Assume by contradiction
that the convergence above is not uniform in p € S%!. Then there exists a

sequence of unitary vectors {p,}, € R? and § > 0 such that for all large n,

1
— [ 1 wll A (g) < L — 0.
~ [ 10g llgnall di(9) < Li(n)

By the compactness of the unitary circle, there exists a subsequence

{Pns. }r that converges to a unit vector p € RY. We claim that

1 sn
lim — [ 10g |lgpag | A (9) = La(10),
—00 N JX

which would contradict the previous assumption.
Note that by proposition 2.22 of [21],

[Gns—1"" " Gno P
Hgnk_]- o 'gHOH

> cosZ (pnk u(gnk—l e 'gno)) = |pnk : u(gnk—l i 'gno)lv

where w(gn, -1 gn,) is the most expanded unit vector of the matrix

Gny—1- " * Gny- Moreover, by proposition 4.4 of [21], the limit

u(p) == lm u(gny—1- - Gny)

k—o0

exists p-almost everywhere, so |pn, - U(gny—1* Gno)| — [P - u(p)].

We claim that for p-almost every sequence g, it holds that |p - u(u)| >
0. Note that u(u) is the most expanded direction of the adjoint cocycle
(see Proposition 2.4.2 from [27]), which is, for almost every sequence g,
orthogonal to all the less expanding Oseledets directions E?(g), ..., E%(g) (see

the beginning of the proof of Theorem 4.4 from [21]).

Since p is quasi-irreducible, we know that

.1
h}}l n log||gn-1 ... govl| = L1(n)

for every v and p-almost every g. Hence, if p - u(p) = 0, then p belongs to an
Oseledets direction different from the most expanded one, which happens with

zero probability. Therefore, the claim holds.
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Hence,
lim inf [ Gn—1 " Gro P ||

> |p-u(p)| >0
k=00 [ Gng—1 " Gnol|

pN-almost everywhere. Then

lim mf — log ||gnk 1" " GnoPny H

=0
k—oo Ny Hgn,fl "gnoH

pN-almost everywhere. Finally, using the definition of the convolution power

and the dominated convergence theorem,

i - [ o gpa | du™ () = Jim - / loglgl| di (9)

TR, 9]l

= L1 (p).

This proves the claim and concludes the proof of the proposition. |

4.2.2
The contracting property of the Holder seminorm

We start by showing the relation between the iterates (), of the Markov

operator and the Markov operator )« of the measure p*"

Lemma 4.4 Let u € Prob(X). Then
Qun = Q-

Proof. The proof proceeds by induction. Let ¢ € L®(P(R?)) and © € P(RY).

The statement is trivial when n = 1. For n = 2 we have

Q@) = [ [ o(didod) duu(g)dp(g0)
=//¢ﬁ%@@@ﬂmw
= [ #(39) du*(9) = Qua()(0).

Now suppose that it is true for every £ < n — 1. We are going to prove that is
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also true when k = n.

@' @)@) = [+ [ @Gu-s-+ Go0) dnlgn-1) -+~ dulgo)
= [ [ ¢(a(@s)) du = (g)du(g)
_ /E P(g0) dp™(g) = Qe () (D).

|
Given p,§ € P(R?), denote by §: P(RY) x P(RY) — [0, 00) the projective

distance on P(R?):
. e A
5(5,) =

’ Ipllllall
Definition 4.4 Let i € Prob(X) and let o € (0,1]. We define the average
a-Hélder constant of the projective action §: PRY — PR? by

— 0(9p,99) \"
o= | (i) o)

(4.2)

Lemma 4.5 k,(u™) is sub-multiplicative:

ka(lu*(n-i-m)) < ka(,u*n) ka(,u*m).

Proof. By a straightforward computation:

*(n—+m 6/\/\ Gq nm
k(™) = sup <(Z)gq> "t (g)

z#q ]
o(p, q)
9n+m 1 GoPs Gnrm—1 -+ Joq “
= sup dp(Gnrm-1) - - - dp(go
p#tz E"*’" pﬂ]) ) ( " ) ( )
5 n+m— y Yn+m— g -~ Joq “
< sup <( tm—1 - < 90Dy Gntm—1" " Gn-1 goq> B G g0)
ptq J=m 5(gn 1+ GoDs Jn—1 - goq)
(g o and) \ &
X sup < (o1~ G0 G goq>> dp™ (gn-1,---,90)
pAq J=n 5(1%61)
= ko (™™ )ka(p™)

Given ¢ € L®(P(R?)) and 0 < a < 1 define the Holder semi-norm

o (o) e sy [P0 = 9(0)]
alp) P St

01 #£02

If v,(¢) < oo then ¢ is a-Holder continuous. Let C%(P(R?)) be the space

of all Holder continuous functions, which we endow with its natural norm
-lla = Illloe + val-)-
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Lemma 4.6 For all ¢ € C*(PR?),
Va (Qu gb) < ka(ﬂ) Ua(¢)-
Proof. Given ¢ € C*(PR?) and p, § € P(R?),

(Que) (D) — (Qud)(9)]
5(p, ) Tz (

Take the supremum in p # ¢ on both sides and conclude the proof. [ |

Lemma 4.7 Given a measure p € Prob(GLg(R)) with supp(pn) C X, a

compact set, then for every a > 0,

ka(p) < sup A(WY du(g),

pEPRA HQP”2

where s1(g) and s32(g) are the first and second singular values of g and p is a

unit representative of p € PRY.

Proof. By the properties of the exterior algebra,

lgp A gall = [[(A29) (0 A @)l = s1(g)s2(9)[lp A qll.

Hence, by the definition of the projective distance and the fact that the

geometric mean is less than or equal to the arithmetic mean,

k(1) :Sup/z (ng/\ngH HPIIHQH> di(9)

P4 lgpllllgall llp A qll
:Sup/ (31(9)52(9)> du(g)
w43 /= \llgplllgall

31(9)32(g)>a{ 1 1 }
< sup + du(g).
P )y ( 2 Topl® * Tgal?e | 9

Proposition 4.3 Let u € Prob(X) be a quasi-irreducible measure with
Ly(p) > Lo(p). There are numbers 0 < o < 1,60 > 1, C > 0 and 6 > 0
such that for all n € N and for all v € Prob(X) satisfying Wi(u,v) < § we

have that
ko (V™) < CO7". (4.3)
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Proof. Note that

1
lim —
n—oo n

/Elog llgpll2 di*™(g) = —2L1(u) < 0 (by proposition 4.2)

with uniform convergence in p € S¢1.
Thus for every e > 0 and every p € S%!, there exists some N € N (that
does not depend on p) such that for every n > N we have that

1 — *1
—2L1(p) —€ < ﬁ/zlog lgpll ™2 di™(g) < —2Ly (1) + €.

Hence, by choosing € small enough, e.g € < 1(Li(n) — La(p)), and n

sufficiently large, we conclude that

J 108 llgpl =2 dy(9) < n (=2La() + ). (4.4)

Moreover, since for a cocycle A, the first Lyapunov exponent L;(A2A) of
its second exterior power AgA is equal to L;(A) + Ls(A), for large enough n

we get

/E log [s1(g) s2(9)| du™(g9) = /E log | Az gl di™(g) < n(Li(p) + La(p) + €).

We combine these two estimates to conclude that, for n sufficiently large,

lim l Zlog lsl(g)82(g)1 d,u*”(g) < _17

n=oo lgp||?

since Ly(p) > Lo(p).
By the classical inequality e* < 142+ §@\w|7 we conclude that for every
p € R?,

o (1) S/E[SI(Q)SQ(Q)] 0 (g) <

lgp||?
2 alog $1(9)s2(9)
< [1+alog31(9)52§9) + & log? (SI(Q)SQQ(Q))J 18 apl ] d™(g)
= lgpll 2 lgpl|

o2
<l—-a+ ?C(,u,n).

Note that C' is a constant that depends only on 1 and n. Thus, by taking

« sufficiently small we conclude that

ka(p™) < sup /Z lsl(g)@(g)] dp™(g) < 1.

HEPRE HQPHQQ

Finally, note that k, (1) depends continuously on p** and that the map
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(i — ™ is Lipschitz by proposition 4.1. Therefore, there exists § > 0 such
that for every v satisfying Wi(v,u) < 0 we have k,(v*") < 1. By the sub-
multiplicative property of k, we conclude that there exists C' > 0 and 6 > 1
such that the inequality 4.3 holds for every n € N. [ |

Corollary 4.1 Let i € Prob(X) be quasi-irreducible and Ly(j1) > Lo(p). Then
there exists 0 < a < 1, 0 > 1, C > 0 and a neighborhood V' C Prob(X) of

w with respect to the Wasserstein distance, such that for every n € N, every
v €V and every ¢ € C*(P(R?)) we have

Vo (@) < CO " va(e).

Proof. By the previous proposition, there exists 0 <« < 1,0 > 1, C > 0 and
a neighborhood V' C Prob(X) of u with respect to the Wasserstein distance,
such that for every n € N and every v € V| k,(v*") < CO~". Together with
proposition 4.6, we conclude that for every ¢ € C*(P(R?)),

Va(Qyp) < ka(V™") valp) < CO" va(p).

4.2.3
The strong mixing property

A consequence of corollary 4.1 is that for every v in the neighborhood
V' C Prob(X) of p, the associated Markov operator (), satisfies the strong

mixing property. More precisely we get the following.

Proposition 4.4 Let ;1 € Prob(X) be quasi-irreducible with Ly(u) > Lo(p).
There exist a € (0,1], 8 € (0,1) and C < oo such that for every v € V C
Prob(X), every n € N and every p € C*(P(RY)),

Qe = [, ¢ dnlla < CO"|o]l (4.5)
P(R?)
where 1, is a Q,-stationary measure on P(RY).

Proof. Note that

>

o= [ dnlw = |o(5) = [ ¢3) dnd)
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Therefore, since 1, is @), stationary,

1" = [ ¢ dnll = 10" = [ Qi ]l < val@i0) < CO ¢]a

Moroever,
va (@ = [@dn,) = va (@) < CO o]
which completes the argument. [

We claim that 7, is the unique @), -stationary measure of the cocycle.
Indeed, if there exists another ), -stationary measure 7/, then by integrating

the inequality (4.5) with respect to 7, we conclude that

d’:/ n d’—>/ dn,,
/P @ P = fog Qe dn, oy ¥

where the last convergence holds because 7, is a probability measure. Therefore

it must hold that n], = n,.

For each measure v € V, consider the observable ®,: P(R?) — R given
by

2,(6) = [ 10z av(y). (4.6)
z 7 [l
which belongs to C%(P(R%)).

Since every v € V C Prob(X) admits a unique stationary measure, the

Furstenberg’s formula implies that

Li(v) = /P oy ®0)

Remark 4.2 Note that for every probability measure v it is possible to as-
sociate a linear functional o, as we did in equation (3.1) for the measure
. The uniqueness of the stationary measure n, implies that oy, is constant,
hence v admits a trivial Furstenberg-Kifer’s filtration. This means that every
v € V C Prob(X) is also quasi-irreducible.

4.3
Holder continuity of the Lyapunov exponent

Proposition 4.5 Let yu € Prob(X). Assume that p is quasi-irreducible and
Ly(p) > Lo(p). Then there exist 6 > 0, C' < 0o and 0 < a < 1 such that
for all py, po € Prob(X) satisfying Wi(ui, ) < 8, for all n € N and for all
¢ € C(PRY), we have

1Q5, () = Qp, (P)llec < CWi(paa, i)™ (4.7)
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Proof. For n = 1 we have that

1Qu () = Qs ()l = sUD

pePR4

el @)du () = [ o(60)) dua(g2)

= swp | [ o(d(p) — @(3:(5)) dn(g1. 9 v € (. 12)
pePRE |/EXE
< sup lp(41(D)) — ¢(g2(p))| dn (g1, g2) v € TL(pua, o)
ﬁEPRd XXX
< va(p) sup 6 (419, ﬁzﬁ)a dm (g1, 92) V€ T(pa, p)
pHEPRE DIPTPY

< () g1 — gll” { L1 }acu )
S VU \@P) Sup g1 — g2 max ) (391, 92),
7 pepre Joxz i)l lg2(p) |

for every m € I1(q, o). The last inequality follows from lemma 2.9 of [21].

Since ¥ is compact, there exists C; > 0 such that for every p € PR,
max{ ! ! } < (.

llgr @) llg2(@)ll
Then, for every m € TI(u1, p2),

1Qui () = Quel@lloe < CEval) [ llor = g2lI” dr(gr, )

YXE

< Crea) ([l = gl dn(on,92))

< CTva(@)Wipa, p2)®,

where on the second line we used Jensen’s inequality and the concavity of
the function t — t®, which holds when ¢ € [0,00) and «a € (0,1]. Hence we
conclude that inequality (4.7) holds for n = 1. For now, we keep explicitly the
term v, () in the conclusion instead of saying it is a constant, because it will
play an important role in the induction process.

Now observe that the difference Q}; — @7, can be written as a telescopic

B2
sum as follows:

n—1

; —i-1

Zl o Zz = ZQLQO(QM _QW)O Z1Z :
=0

We use the previous relation to prove the desired estimate:
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lQn, () — Q; ||oo—||z@ (Qui = Qus) © (Q () lloo

<3 1Qh 0 (@ — Q)0 (@771 (9) Il

i=0

s”omm Q) o (Q771(9) I

1

n—1

Cva (@71 (0)) Wa(paa, 112)°

1=0

< CPWa(p, pio) Zva( ()

< YW (g, po)® Z Cy07"

1=0

< CW1(par, p2)”.

IN

In the previous estimate, Cy and € > 1 are the constants from corollary 4.1. B

Corollary 4.2 Let i € Prob(X). Assume that p is quasi-irreducible and
Li(p) > Lo(u). There exist § > 0, C < oo and 0 < a < 1 such that for
every puy, pg satisfying Wi(u, ) < 8, for alln € N and ¢ € C*(PR?) we have

that
/md i, — /md P iy,

where 1, and n,, are the unique stationary measures with respect to @), and

< CWi(p, p2)®,

Q,.,, Tespectively.

Proof. By proposition 4.4,

lim Q5 (p)= [ ¢dnn and  lim QL (p)= [ ¢ di,.

n—oo = H1

Hence, by proposition 4.5, we conclude that

P dnu, — /PRdw drjy, | = Hm[|Q), () — @), (9)lo < CWi(pa, p2)*.

PR4
|

Theorem 4.1 Let p € Prob(X). Assume that p is quasi-irreducible and
Ly(pn) > Lo(p). There exist 6 > 0, C > 0 and o € (0,1] such that given
any i, © € {1,2}, satisfying Wi (i, ) < 6, we have that

|Ly (1) — Li(p2)] < CWh(pa, pa)®.
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Proof. By Furstenberg’s formula,

La(i) = /P i /E  dpadi,;,
lgpll

where ¢(g,p) = log il and 7, is the unique stationary measure with respect
to Q,,, for i = 1,2. Then

[ L1 (1) — La(p2)| = ’/Rd/Esoduldnm —/W/Esodugd%
dund / / dund
_/IP’Rd/SD H1GTpy — PRI 290 1 77H2+
/PRd/ © dprdny, _/ /SOdManuz
/m /@ (1 — p2)dnu,| .

By corollary 4.2, the first term is bounded by CW;(p1, 12)®. Note that
@ is Lipschitz on ¥ with respect to the first coordinate with some Lipschitz

o @ @ (s = 1) dpin | +

constant C’. Then, using Kantorovich-Rubinstein’s theorem, the second term
is bounded by C’' Wy (1, pio).
Hence, there exists a constant C' > 0 and 0 < o < 1 such that

|L1(pn) — La(p2)] < CWi(p, p2)®.

This proves that the maximal Lyapunov exponent is Holder continuous

in a neighborhood of . [ |

Remark 4.3 Recently, Barrientos and Malicet obtained a similar result in [5],
using a moment condition instead of the compactness. Moreover, in private
communication with the authors, we were made aware of the independent work
of Duarte and Graxinha on a similar problem, but in the more general non

compact and not necessarily invertible setting.

4.4
Statistical Properties: LDT & CLT

In this section we explore statistical properties of the Lyapunov expo-
nents. We will use the machinery from section 2.3.

In proposition 4.4 we proved that given p € Prob(X), which is quasi-
irreducible and satisfies Li(u) > Lo(p), for every v in a neighborhood of u,
the associated Markov system (P(R?), K,,,7,) is strongly mixing in C*(P(R?)),
where K, (0) = [s 05006 dv(go).
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Moreover, by proposition 2.4, this implies that the Markov system on the
second level (¥ x P(R?), K,,v x n,) is strongly mixing in C*(X x PP), where

K, (90, 0) = 1t X 640

Remark 4.4 The Markov system (X x P(R%), K,,v x n,) is also strongly
mazing in a slightly larger space, which we define as follows. First consider

the seminorm v which is the Hélder seminorm in the second coordinate:

(g, p) — ©(g,9)]

P
v, (@) = sup )
( ) P#q 5(]97‘J)a
geEY

Define the norm ||| = [|¢llee + vE(p) and consider the space
Ho (D x P(RY) = {p € L®(Z x P(RY)) : vl (p) < 00}

Moreover, the special observable p(go0) = log% belongs to both

CX x P(R?)) and Hq (X x P(R?)). Therefore, theorem 2.2 is applicable and

we conclude that the following theorem holds.

Theorem 4.2 [f u € Prob(X) is quasi-irreducible and Li(p) > Lo(p), then
there ezists § > 0 such that for every v satisfying Wi (u,v) < 0, for every v # 0
and for all € > 0

1
N {g el ‘nlogHgn_l o q1gov|| = Li(v)| > 5} < ge~clem

where c(e) > 0 depends explicitly on the data.

We now prove a central limit theorem for this random linear cocycle. We
already showed that the Markov system (X x P(R?), K,,v x n,) is strongly
mixing in C%(X x P(R?)) for some a € (0,1). Thus, in order to apply
proposition 2.3 and conclude that the central limit theorem holds, we just

need to verify the following extra condition.

Lemma 4.8 For every open set U C ¥ x P(RY) with v(U) > 0, there emists
d € C*(X x P(R?)) such that 0 < & < 1y and [ ® dv > 0.

Proof. Let U C ¥ x P(R?) be an open set such that v x 1, (U) > 0. Then there
exist U; C ¥ and U, C P(R?) open sets such that U; x Uy C U and v(U;) > 0,
n,(Uz) > 0. The statement then follows by applying a version of Uryshon’s

lemma. [ |

We conclude that the following CLT holds.
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Theorem 4.3 If u € Prob(X) is quasi-irreducible and Ly(u) > Lo(p), then
there exists & > 0 such that for every v satisfying Wi(u,v) < § and for every
v # 0, we have that

logllgn_1-..q190v|| — nL1(v)
1
— — N(0,1)

for some constant o = o(v) € (0, 00).



5
Analyticity of the Lyapunov Exponent

In the previous chapter we studied the regularity of the Lyapunov
exponent with respect to the weak-star topology. Now we study its regularity
with respect to the total variation norm. Although there are similar ideas
involved, it turns out that the Lyapunov exponent is much more regular in
this setting.

The main result of this chapter is the analyticity of the maximal Lya-
punov exponent as a function of the transition probabilities, which extends the
results and methods of Peres from a finite to an infinite (but compact) space
of symbols. This chapter is based on a joint work with Amorim and Melo [1].
Our approach combines the strong mixing property of the associated Markov
operator with the theory of holomorphic functions in Banach spaces.

By putting together ideas of Peres, Baraviera and Duarte and tools of
complex analysis in Banach spaces, we establish the analyticity of the top
Lyapunov exponent with respect to the total variation norm in two different
settings. Precise definitions of analyticity and total variation will be given in
section 5.1.1.

In the first setting, we assume a quasi-irreducibility hypothesis. In the
second one, instead of quasi-irreducibility, we assume that the probability
measure has full support (which is an analogue of the assumption that each

matrix has a positive probability in the finite support case of Peres [39]).

Remark 5.1 Similar results hold for absolutely continuous measures and for
random locally constant linear cocycles whose domain X is an arbitrary compact
set mapped to GL4(R) by a measurable and bounded function (see Section
5.2.3).

Remark 5.2 In section 5.2.3 we include an example where 3 is not compact

and the Lyapunov exponent is not even continuous.
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5.1
Holomorphic functions in Banach spaces and complex Markov operators

This section is divided into two parts, both of which serve the purpose
of constructing a setting that permits a generalization of Peres’ arguments.
The first part recalls the concept of analyticity in infinite dimensional Banach
spaces as well as a useful criteria thereof. The second part is devoted to the
study of complex Markov operators. We generalize the tools introduced in
chapter 4 to the broader scenario of complex measures and we show that the

analogue properties still hold.

5.1.1
Holomorphic functions in Banach spaces

Throughout this section, M and N will denote Banach spaces over C
and U will denote an open subset of M.

A function f: U — N is said to be holomorphic at a point a € U if for all
n € N there is an n-linear symmetric continuous map 7,,: M x --- x M — N

(Th is identically equal to a vector) such that:
fl@) =2 Tux—a)",
n=0

for every € B(a,r) C U (for some r > 0), where T,,y" denotes T),(y,y, ..., y).
If f is holomorphic at every point of U then f is said to be holomorphic on U.

We introduce the following notation:

Ula,b) ={z€C:a+2be U}.

Definition 5.1 A map f: U — N is said to be Gateux holomorphic (or G-
holomorphic) if for every a € U and for every b € M, the map

z+— f(a+ 2b)

is holomorphic on U(a,b) C C.

It is clear that every holomorphic map is also GG-holomorphic. However
the converse in general is not true when M is infinite dimensional. The
following theorem, see [16, Chapter 14|, provides a criterion for when the

converse holds.

Theorem 5.1 Let U be an open subset of a Banach space and let f: U — N.

The following are equivalent:
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(i) f is holomorphic on U.

(ii) f is G-holomorphic and continous on U.

The variation of a complex measure p is defined as

|| :=sup > [u(A)]

T Aerw

where the supremum is taken over all partitions 7w of a measurable set E into
a countable number of disjoint measurable sets.
Another characterization of the variation of a complex measure is the

following:

ul(E) = sup {| [ £(9) dut9)| - f € L(n) and | < 1.

Note that if f € L'(u), then:

‘/zf(x) dp(z)| < /2 |f(z)| d|p|(z).

Let ¥ be a compact metric space. The total variation of a complex

measure is defined as ||u]|: = |p](2). If a measure satisfies ||| < 0o, then we
say that p is finite or that it is of bounded variation.

We will consider ¥ to be a compact (but possibly infinite) space of
symbols. We denote by M(3) the set of complex valued measures over ¥ with
bounded variation. The set M(X), endowed with the total variation norm, will
play the role of the Banach space M.

In this work, we consider slightly more general definitions of holomorphy
and G-holomorphy, in which the domain could also be a translation of a
Banach subspace. The following construction shows how one can transfer the
holomorphic structure from Banach spaces to affine subspaces via translation.

Let V' C M be a closed subspace, vg € M and consider a closed affine
subspace Vo =V + vy of M. Let Uy C Vj be an open set of V). We consider a
function fy : Uy — N to be holomorphic (G-holomorphic) at zq € Uy if there
exists a function f: U = Uy — vg — N which is holomorphic (G-holomorphic)
at zo — vg, such that f(z) = fo(z + vo) for every x € U. Moreover, if f is
holomorphic (G-holomorphic) at every point of its domain, then so is f.

It is then immediate that Theorem 5.1 also holds in this context.
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5.1.2
Complex Markov operators

Recall from the last chapter that given p € Prob(X), one can consider
the associated Markov operator @, : L>(P) — L>*(P)

Qu@)(@) = [ p(30) du(9)

In this chapter we consider small perturbations of u given by complex
measures v € M(X) and their associated operators @),. Although @, is a
Markov operator, (), may not be a Markov operator. This can happen because
when v is not a probability measure, it does not fix constants. Although the
operator (), associated to a complex measure may not be a Markov operator,
we will show that it satisfies similar properties.

First, note that the relation @, = @« described in lemma 4.4 still holds
when p € M(X) is a complex measure with bounded variation. The proof is
exactly the same.

Now we proceed to introduce an analogous version of the average Holder
constant of the projective action k,. Note that when u is a complex measure,
the image of k, (from definition 4.4) may not be a real number, thus, instead

of working with p, we consider its variation |u|, see below.

Definition 5.2 Let p € M(X) be a complex measure of bounded variation
and let o € (0,1]. We define the average a-Hdélder constant of the projective
action gy: P(RY) — P(RY) by

Falp) = sup
viFvg I B

5(90?71,§0@2)>a
————=] d :
(202} )

Throughout this chapter, whenever we refer to k, one should consider

the one from the previous definition 5.2.

Lemma 5.1 For every two complex measures p,v € M(X), it holds that

| v| < |pllv|. In particular, for every ¢ € L>®(u*™), it holds that

’/gpdu*”

< [1gldim < [ Il dii™
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Proof. Let ¢ € L*>(u * v). Then:

/E()du*y ’ o(gz) dv(z)du(g)

< /E /E [e(g)] dlvl(@)dlpl (o)
= [ le@)| dlu *|v(a)

By restricting it to ||¢]lc < 1 and taking the supremum on both sides, it
follows that |u * v| < |u||v|. Moreover, applying the inequality above multiple
times with v = u concludes the result. [

Now, we prove the analogues of lemmas 4.5 and 4.6 for the complex

analogue of the Markov operator.

Lemma 5.2 The sequence ko (u*™) is sub-multiplicative:
o () < ko () ko (™).

Proof.

v1 £V

bl = s [ (22

(901, !??72))
< swp (BRI o
= s [ (PRI )
V1 £V U17U2
(G101, Gagr02) 5(93?71793792))&
— su - ™| (gr)d] ™
vwégg// 6(101, G102) 6(01, 0a) i ()l (g2)
5(91@1,§1@2)>a
< su Il 2 ka ¥ | < _ ka *m ka Ny
< sup [ (EEIE) g )l 0) = Bl)

Lemma 5.3 For everyn > 1, p € M(X) and ¢ € C*(P(R?)), the following
inequality holds:
Va(@u(9) < Ka(™) valyp)-
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Proof.

|Q70(01) — Qp(D2)] _ s e(g01) dp™(
§(0y, 02) (D1, D)™

We conclude the lemma by applying the supremum in 9; # 05 to both sides.
|

5.2
The holomorphic extension of the Lyapunov exponent

This section is divided into three parts. The first one is devoted to proving
that the ideas in chapter 4 still hold for complex measures. We show that
the powers of the Markov operator @), converge to a number which, when
i is a probability measure, is the Lyapunov exponent. In the second part
we use the concept of Gateux holomorphy to write the Markov operator as a
polynomial. Therefore, using ideas of [39], we show that the Lyapunov exponent
of a probability measure has a holomorphic extension, which in turn implies
its analyticity, the main result of the chapter. In the last part of this section
we present some consequences of this result and we include one example that

shows the importance of the compactness of the support of the measure.

5.2.1
The convergence of the iterates of the Markov operator

Let g be a probability measure on GL4(R) with support in the compact
set X. Assume that pug is quasi-irreducible. This implies that its Furstenberg-
Kifer’s filtration (see theorem 3.5) is trivial, that is, for every v € R4\ {0} and
ph-almost every {g,}, € XN,

1
Jim —log|lgn-1 - - 1900 ]| = L (po)-

Moreover, together with the hypothesis that Ly (o) > La(po), a conse-

quence of the previous fact is proposition 4.2, which says that

n—oo

1 in
lim — [ logllgolldiss™(g) = La (o), (5.1

with uniform convergence in ¢ € P(R?).
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Now, similarly to what we have done in chapter 4, we proceed to prove
that the complex analogue of the Markov operator associated to any complex

measure in a neighborhood of i contracts the v, seminorm.
Lemma 5.4 For every p € M(X) and every o > 0,

tat0 <sup [ (240 a0,

oeP lgvl?
where s1(g) and so(g) are the first and second singular values of a matrix
g e GLd(R)
Proof. Recall that
lgp A gall = s1(g)s2(9)llp A qll-

Hence, by (4.2), given a > 0, two points p,§ € P and any g € X, it holds that

PIRIDN — sutapstan el

lgpllllgall

[31(9)32(9)]al| 1 1 ]

< +
2 lgpl>>  [lgql[*

since the geometric mean is less or equal the arithmetic mean.
Note that if we integrate with respect to the measure |u| and take the

supremum in p # ¢ on both sides of this inequality, we conclude the lemma. H

Proposition 5.1 Assume that g € Prob(X) is quasi-irreducible and Ly (o) >
Lo(pg). Then there exist 0 < o < 1, 0 > 1, C > 0 and a neighborhood
V < M(X) of ug with respect to the total variation distance, such that for
every n € N and for every p €'V,

k(™) < CO™. (5.2)

Proof. We start the proof for p by following the argument in proposition 4.3.
Since o € Prob(X), the same estimates from chapter 4 hold and we conclude
that

2

i) < [ (00 g [ (SOD) iy

lgvl]® lgvl]®

for some finite constant C' that depends only on g, 1o and n.
Thus, fixing ny sufficiently large and considering o small enough, we
conclude by Lemma 5.4 that

o?
ko(pg™) <1 -— a—l—C’? < 1.
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Note that for a fixed n, the quantity | (Slugv‘o"‘%(g))a d|po|*™, which bounds
from above k,(ug"), depends continuously on the measure pg. Then the
previous inequality extends to a neighborhood of py. There exists k < 1 and
a neighborhood V' C M(X) of ug with respect to the total variation distance,
such that k,(p*°) < k < 1 for every p € V.

Because of the sub-multiplicative property of k., we conclude that there

exists C' > 0 and # > 1, such that inequality 5.2 holds for every n € N. [ |

Corollary 5.1 Assume that py € Prob(X) is quasi-irreducible and Li(ug) >
Lo(pg). Then there exist 0 < o < 1, 0 > 1, C > 0 and a neighborhood
V. C M(X2) of po with respect to the total variation distance, such that for
everyn € N, for every u € V and every ¢ € C*(P(R?)),

Va(Qup) < CO " va(p).

Proof. By proposition 5.1, there exist 0 < o < 1,0 > 1, C" > 0 and a
neighbourhood V- C M(X) of py with respect to the total variation distance,
such that for every n € N and for every p € V, we have that k,(u*") < C67".

Together with lemma 5.3, we conclude that

1a(Q1()) < ka(W™) valp) < CO™

|

We already showed in proposition 4.4 that when g is a probability

measure on Y, a consequence of the previous corollary is that @, is strongly

mixing. There exist o € (0,1], 8 € (0,1) and C' < oo such that for every n € N
and every ¢ € C%(P(R?)),

1@se = [ @ dnulla < CO"llgla, (5.3)

where 7, is the unique y-stationary measure on P(R?).

Consider the observable : P(R?) — R given by

o(D) / log ||”q |||| (9). (5.4)

If pu is a probability measure, then, by Furstenberg’s formula,

/P - p(0) dn = La(p).

Remark 5.3 When p is a probability measure, for a fivred © € P(R?) the

iterates Qﬁgp(ﬁ) converge uniformly to the top Lyapunov exponent Li(u).
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5.2.2
The domain of holomorphy

Now we establish a holomorphic extension of the Lyapunov exponent L.
We start by defining the domain where L; will be shown to be analytic.

Let My(2) be the set of finite complex measures that give measure zero
to 3. Therefore, every p € My(X) satisfies p(3) = 0.

Lemma 5.5 My(X) is a Banach space.

Proof. First note that M (%) is a vector subspace of M(X). Moreover, it is the
kernel of the linear functional that assigns to each finite measure, its measure
of the whole space: v — v(X). Therefore, it is a closed subspace of M(¥),
hence it is also a Banach space. [ |

Let M;(X) denote the set of finite complex measures that give measure
one to . Note that M;(X) is an affine subspace of M(X), namely M;(X) =
Mo(E) + o, for some py € Prob(X). Therefore M;(X) can be endowed with
an analytic structure as seen in section 2.1.

We are going to prove that L; admits a holomorphic extension to
V N M;(X), where V' is the neighborhood of 1 from proposition 5.1. In fact,
all the proofs from the previous sections were done in M(X), but could have

been done directly in M (X). Thus, from now on, we are going to consider the

neighborhood V' to be in M (3) and we will write just V' instead of VM, (X).
Lemma 5.6 For every u € V.C My(X), 6 # 0, € P(R?Y) and p € C*(P(RY))

it holds that
Quip(iy) — Queplinn)| < CO™. (5.5)

Proof. By lemma 5.3, for every u € M(X) and every ¢ € C%(P(RY)),
Ua(@y) < va(p)ka(p™).
Therefore, it also holds that for every 6, # 0, € P(R?),
|Qip(01) — Qpup(2)| < valip)ha (™).

Using proposition 5.1 we conclude the proof. |

Proposition 5.2 For every p € V .C My(X) and 6, # v, € P(R?),

Qo) — Qupl0)| < CO™
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Proof. Note that for every 9, # 9, € P(R?),

|t o() -

)| = | [ @eta) du - Qo)

Moreover, for every u € V. .C M;(X) and 0y # o, € P(R?),

[ @uetan) dn - Qe

’/Q (§0) — Zap(@)du‘ﬁC@”.

We are ready to state and prove the main result of this chapter.

Theorem 5.2 Let ¥ C GL4(R) be a compact subset, o € Prob(X) and
assume that Ly(po) > La(po).

(1) If po is quasi-irreducible, then p— Lqi(p) is real analytic with respect to

the total variation norm in a neighbourhood of y.

(2) If supp(uo) = X, then p— Ly (p) is real analytic with respect to the total

variation norm in a neighbourhood of .

Proof. For a fixed © and ¢ given in equation 5.4, the sequence {Qp(?)}, is
Cauchy. Therefore its limit, denoted by ongp(f)), exists. Moreover, note that
= Qup(0) is continuous. Since p = Q5w () is a uniform limit of continuous
functions, it is also continuous. Furthermore, when p is a probability measure,
QY (D) = Li(p), the top Lyapunov exponent (as shown in remark 5.3).

We want to prove that p +— Qp°p(9) is holomorphic. For this, we are
going to use theorem 5.1. Since we already know that the limit is continuous,
it suffices to prove that it is also G-holomorphic.

As we stated, M;(X) is not a Banach space, therefore, we need to
transfer the holormphic structure from Mg(X) to it. Intuitively, G-holomorphy
means to be holomorphic along complex lines, hence to say that the map
po— Q) from V. .C M;(¥) to € is Gateaux holomorphic means
that Vu € V, Vv € My(X), the map z — Q7 ,,¢(0) is holomorphic on
V(p,v)={2€C: p+z2veV}.

Consider measures p, of the form pu, = pu + zv, where p € V and v
is any finite complex measure with v(X) = 0. Note that, since p € M;(¥),
we have that pu, € My (X2) for every z € C. Consider small perturbations of

the Markov operator in the following sense: for each z € C, let the operator
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Quiz: L(P,C) = L¥(P,C) be defined by

Queau@)(®) = [ ¢(30) d(p+2v)(9)

Note that, for a fixed vector 9, each Q};_()(?) is a polynomial of degree
smaller or equal to n, in particular, the map z — Q};_()(?) is holomorphic for
p. € V. Therefore, for every z € V(u, ), the limit function is a uniform limit
of holomorphic functions, hence z — Q7 ¢(9) is holomorphic. In other words,
the Lyapunov exponent is G-holomorphic in the neighbourhood V' C M;(X)
of pg. Together with the continuity, we conclude that it is indeed holomorphic.

This concludes the proof of item (1) the theorem.

Let us now prove item (2). We drop the assumption of irreducibility of
1o and instead we assume that suppug = . Let W be a non trivial vector
subspace of R? that is invariant for z9 almost every matrix g. We saw in section
3.2.2 that the measure p defines the measures pow and fig g/ in GLg(W)
and GLq4(RY/W). Moreover, they induce the linear cocycles restricted to W
and to RY/W, with Lyapunov exponents Li(uow) and Ly (o ra/w)-

By lemma 3.6, Lyi(io) = max{Li(row), L1(porew)}. Without loss of
generality, we may suppose that Ly (1) = L1 (pow). The other case is similar.
The fact that we consider supppg = > implies that ¢giW = W Vg € .
Therefore, for every p € M (X) also satisfies glW = W for p-a.e g.

By corollary B of [39], if i, — 1o in the weak star topology and supppu,, C
supppg for every n, then Lq(p,) — Li(po). Therefore, the continuity of the
Lyapunov exponents imply that for every u sufficiently close to g, it holds that
Lyi(pt) = Li(pw). This happens because Ly () = max{ L (uw ), L1(pra/w)}-

If p1ow is irreducible, then the map g — Ly (pw) is holomorphic. Since
Li(p) = Li(pw) in a neighborhood of pg, we conclude that pu+— Lqi(p) is also
holomorphic in a neighborhood of py.

If pow is not irreducible, there exists another non trivial invariant
subspace W' C W. The measure jiy defines measures juo - and po w/w.
Then we do the same procedure. Since the invariant subspaces are of decreasing
dimension, this process must stop after a finite number of steps. Therefore, we

conclude the proof of the theorem. [ |

Remark 5.4 Note that under the quasi-irreducibility hypothesis the analytic-
ity holds in a neighborhood of py, even if its support is not total. In order to

exclude the irreducibility hypothesis, we assume in item (2) that o has full
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support. When the measure jiy is not quasi irreducible, is the full support hy-
pothesis strictly necessary?

The answer is yes, and it is based on Kifer’s example. Recall that in
example 3.3, if po > 0, the top Lyapunov exponent of this cocycle is zero. In
the limit case, with py = 0, the cocycle is generated only by g1, which is a
not quasi irreducible cocycle, since it preserves both axis and one of them is
an equator, i.e the top Lyapunov exponent in this direction is not maximum.
Moreover, the top Lyapunov exponent of the limit cocycle is equal to log?2,
which makes this cocycle a discontinuity point. Therefore, if the cocycle is not
quast irreducible and also does not have full support, it can be discontinuity

point of the Lyapunov exponent.

5.2.3
Corollaries and remarks

Let ¥ be an abstract compact space, X = XN and 0: X — X be
the forward shift on X. We fix a measurable and bounded function A: ¥ —
GL4(R) and denote also by A the locally constant (fiber) map A: X — GLq(R)
given by A((zn)nen) = A(wo).

Given p € Prob(X), let u" be the product (Bernoulli) measure on X.
A random (Bernoulli) locally constant linear cocycle Fii: X x R? — X x R?

relative to the product measure u" is a skew product transformation such that
Fa(w,v) = (o(w), A(z)v).
Its iterates are given by
Fi(w,v) = (0" (w), A" (w)v),

where A™(w) 1= A(wp_1) ... A(wy)A(wy).
A seminal result from Furstenberg and Kesten states that under the

integrability condition log*||A%|| € L'(u), the limit
1 n
Li(A, p) = lim — log|[ A" ()]

exists uN a.e. and it is called the top Lyapunov exponent of this cocycle.
Corollary 5.2 In this context, let ¥ C GLg(R) be a compact subset and
X = YN, Fiz any locally constant fiber map A : X — R?. Let gy € Prob(%)
and assume that Ly (A, po) > La(A, po)-

(1) If po is quasi-irreducible, then p— Li(A, p) is real analytic with respect

to the total variation norm in a neighborhood of .
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(2) If supp(uo) = X, then u — Li(A, p) is real analytic with respect to the

total variation norm in a neighborhood of .

Proof. Consider the push forward measure on Prob(GLg(R)) given by A, u. By
the boundedness of A, the support of A,u remains compact, and therefore
its Lyapunov exponent is well defined. A change of variables shows that
the Lyapunov exponent L;(A,u) associated to the measure A,u is equal to
Ly (A, ). Moreover, the application A, : M(X) — M(GL4q(R)) is a linear
continuous (and, therefore, analytic) mapping that preserves probabilities.
Since the composition on analytic maps is analytic, it follows by Theorem
5.2 that the map L;(A,pn) = Li(A.p) is analytic with respect to p, which
guarantees that the result in theorem 5.2 also holds for arbitrary locally
constant linear cocyles. [

A second corollary is an analogue of the finite case, in which the support is
of the measure is a fixed compact set on GLq(R) and we look at the dependence
on the probability weights. Let py € Prob(X) be a reference measure of full
support. We restrict to the measures in > which are absolutely continuous with
respect to pp.

By the Radon-Nikodym Theorem, this space is identified with the space
L' (o) of integrable complex functions with respect to pg through the map
I: LY(pg) = M(X) given by

1N(EB) = [ fa)do(a)

for every measurable set E. The map I is an isomorphism between L' (1) and
the measures on M(X) which are absolutely continuous with respect to 1.
Observe that, given f, g € L'(up), it follows that

() = L) lrv < [If = glls < 1F = gllp,

where ||.|[7v denotes the total variation norm, ||.||; denotes the L' norm and
||.|l, denotes the LP norm, with p € [1, +oc]. This fact guarantees that, given
r > 0, it follows that B,(f,7) C Bi(f,r) C Bry(I(f),r), where each of the
previous sets denotes an open ball on its respective norm.

This observation, together with the Theorem 5.2, proves the following.

Corollary 5.3 Let 1p € Prob(X) have full support and assume that Ly (po) >
Lo(po). For p € [1,400], define

(o) == {f: @ R: [ € L(ig) and [ f(@)dpuo(a) =1}
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Then the Lyapunov exponent Ly: L (o) — R is locally a real analytic function

of o with respect to the LP norm.

We now consider the set in which L, is analytical. We say that a measure
p € M(GL4(R)) is drreducible if there is no proper subspace V. C GL4q(R)
such that gV =V for p-a.e.g. Notice that every irreducible measure is quasi-
irreducible.

Observe that irreducibility is a dense property with respect to the total
variation norm. Indeed, let 19 be a probability in GL4q(R), and let v be another
probability in GL4(R), with compact support. If v is irreducible and given
e > 0, then pu. = (1 — ) + ev is an irreducible probability in GLq(R). To see
this, let V' be a proper subspace of GL4q(R). Since v is irreducible, there exists
a borelian set B C GL4(R) such that v(B) > 0 and gV # V for every g € B.
Notice that u.(B) = (1 —e)u(B) + ev(B) > ev(B) > 0, so it follows that p.
is irreducible.

Notice also that |u. — u| = |ev — eu| < 2, so we can choose ¢
sufficiently small such that u. is arbitrarily close to . Moreover, supp p. =
supp 4 Usupp v, so if u has compact support, p. also has compact support,
and if both supp ¢ C ¥ and supp v C X, then supp p. C 2.

We also observe that in [33], Kifer proved that being irreducible is an
open property on Prob(GLg4(R)) with respect to the weak™ topology. Since
the total variation norm generates a finer topology than the weak* topology, it
follows that being irreducible is also an open property with respect to the total
variation norm. Therefore, by the first result of 5.2, we can conclude that L, is
analytical on the set of compactly supported irreducible measures on GLq(R),
which is a dense open set on the space Prob(GL4q(R)) with respect to the total
variation norm.

To conclude this section, we show that the restriction of the probabilities
to a compact set X in 5.2 cannot be removed without any other extra
hypothesis to replace it.

Indeed, let u € Prob(GL(d)) be a compactly supported measure with
Ly(p) > La(p). Let a,e > 0 and consider the measure fi,. = (1 — &) + €dqy,
where [ is the identity matrix. This measure is 2¢ close to p in the total
variation distance, however, depending on the choice of a, their supports may
be very distant from each other.

By a previous comment, the measure p,. is compactly supported.

Moreover, the identity:

Li(v)+ ...+ Ly(v) = /log | det g| dv(g),



Chapter 5. Analyticity of the Lyapunov Exponent 87

which is true for any compactly supported measure on GL(d), gives us that:

Ly(ftae) + oo+ La(ttae

Ll(,ua,s) Z d

1
) = E/log|detg| d,ua,&(g)

Hence, it is possible to choose a sufficiently large such that the previous
term is much bigger than the Lyapunov exponent L;(i). Since there is no
restriction on the support of the measures, for every € > 0, one can find
infinitely measures of the form p, . which are close to i in the total variation
norm, but that have Lyapunov exponents very far from it. Thus, L; cannot
even be continuous.

Although it is clear that compactness plays an important role in this
result, in recent conversations with Duarte and Graxinha, they explained that
the techniques from section 4 are being extended by them to the non-compact
setting assuming, however, a certain growth condition, namely the finiteness
of an exponential moment. Independently, Barrientos and Malicet [5] were also
able to adapt some of the techniques presented in section 4 to the non-compact
setting and obtain the strong mixing of the Markov operator. Therefore, we
believe that the same kind of hypothesis should be sufficient to prove theorem

5.2 in this more general setting.



6
Dichotomic Behavior in the Singular Setting: Analyticity vs
Discontinuity

A version of the Bochi-Mané dichotomy theorem in the context of linear
cocycles states that given any measure preserving dynamical system (X, f, i)
where f is an aperiodic (meaning its set of periodic points has measure
zero) homeomorphism, for any fiber map A: X — SLy(R), either the cocycle
associated with A is hyperbolic over the support of i or else A is approximated

in the C° topology by fiber maps with zero Lyapunov exponent.
By Ruelle’s theorem, hyperbolic cocycles are points of analyticity of the

Lyapunov exponent; moreover, since the Lyapunov exponent is always upper
semicontinuous, it must be continuous at any SLs(R)-valued cocycle with zero
Lyapunov exponent. Therefore, a fiber map A: X — SLy(R) is a continuity
point for the first Lyapunov exponent in C°(X,SLy(R)) if and only if the
corresponding linear cocycle is either hyperbolic over the support of p (in

which case the Lyapunov exponent is in fact analytic) or L;(A) = 0.

In other words, if Li(A) > 0, the first Lyapunov exponent is either
analytic or discontinuous at A in the C° topology of SLy(RR) cocycles. However,
this behavior changes dramatically when the fiber map is highly regular and

it varies in a space endowed with an appropriate, strong topology.

Indeed, consider a locally constant linear cocycle over a Bernoulli shift.
More precisely, let A := {1,...,k} be a finite alphabet and let p = (p1,...,px)
be a probability vector with p; > 0 for all 7. Denote by X := A% the space of
bi-infinite sequences w = {wy, }nez on this alphabet, which we endow with the
product measure p = p%. Let 0: X — X be the corresponding forward shift
ow = {wni1}nez. Then (X, p,0) is a measure preserving, ergodic dynamical

system called a Bernoulli shift (in finite symbols).

Let Maty(R) denote the semigroup of 2 x 2 matrices. A k-tuple A =
(Ay,..., Ax) € Maty(R)* determines the locally constant fiber map A: X —
Mats(R), A(w) = A,,, which in turns determines a linear cocycle over the
Bernoulli shift, referred to as a (random) Bernoulli cocycle. We identify
this cocycle with the fiber map A and with the tuple A and denote by
Li(A) = Ly(4, p) its first Lyapunov exponent.
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When we restrict to invertible random linear cocycles, that is, when
A= (Ay,..., Ay) € GLy(R)X, the Lyapunov exponent is always continuous;
moreover, it has a good modulus of continuity as we saw in the previous
chapters. This has been the subject of intense research throughout the years,

starting with the celebrated work of Furstenberg and Kifer [29)].

However, as it turns out, the behavior of the first Lyapunov exponent
at random cocycles with both singular and invertible components is strikingly

different, showing a dichotomy in the spirit of Mané-Bochi’s (see theorem 6.3).

This chapter is based on the joint work [18] with Duarte, Graxinha and
Klein. In section 6.1 we generalize Avila, Bochi, Yoccoz [2] theory of projective
uniform hyperbolicity in terms of multi-cones, from SLy(R)-valued cocycles to
Maty (R)-valued cocycles. Recall that Maty (R) is the semigroup of matrices
g € Mato(R) with det(g) > 0. In section 6.2 we use this result to prove
a Mané-Bochi type of dichotomy for singular cocycles and also derive other
interesting corollaries from it. In particular, we conclude that Lebesgue almost
every cocycle A € Matj (R)* with both singular and invertible components
satisfies a sharp regularity dichotomy: it is either a point of analyticity or a

point of discontinuity of the Lyapunov exponent.

6.1
Projective uniform hyperbolicity

6.1.1
Extension of the multi-cone theory to non-invertible cocycles

Consider a random linear cocycle F': X x R? — X x R? determined by
the data (A,p) where A := (4;);ea € Maty (R)E.

Definition 6.1 We say that a linear cocycle F is projectively uniformly
hyperbolic if there exists an F-invariant decomposition into one-dimensional
subspaces R* = Ey(w) & Ey(w) where the sub-bundles X > w — E;(w)
are continuous functions and there exists n € N such that ||A"| g, (w)| <
|A™| g, ()| for all w € X.

Since X is compact and A: X — Mats (R) is continuous, the last
condition is equivalent to
1A™ | ()

Sup T ——— o < A<,
wex [[A" e, (W]
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for some A > 1. This is further equivalent to the existence of ¢ > 0 and A > 1
such that for all w € X and all n € N,

[A™ [y (W) | = A" | A" ()]

Note that projective uniform hyperbolicity is also sometimes referred to
as dominated splitting.

Given an invertible matrix A € Maty(R), its induced projection action
A: P(R?) — P(R?) is given by A0 := Av. If A has rank 1 (that is, if it is
nonzero and noninvertible), we define its projection action as the constant
map At := 7, where r = Range(A).

Moreover, let m(A) denote its co-norm (its smallest singular value). If A is
invertible, m(A) = ||A7!||7!, otherwise m(A4) = 0. An immediate consequence

of it is that, if a cocycle A admits a singular component, then Ly(A) = —oc.

Definition 6.2 An invariant multi-cone for A = (A;)iea is a nonempty set
M such that:

1. M is an open subset of P(R?),
2. its closure M # P(R?),

3. AAM e M, ie, AiM C M for everyi e A .

The next theorem extends to Mat] (R)-valued cocycles the results of
Avila, Bochi, Yoccoz [2, Theorem 2.3] and Yoccoz [44, Proposition 2] estab-
lished for SLs(IR)-cocycles over sub-shifts of finite type.

Theorem 6.1 Given a random linear cocycle A € Mat] (R)¥, the following

are equivalent:
(1) A is projectively uniformly hyperbolic.

(2) There exist ¢ > 0 and A > 1 such that for alln € N and w € X,
[A™ ()] = e A" m(A™ (w)).

(3) A admits an invariant multi-cone.

Proof. (1) = (2): Suppose that A is projectively uniformly hyperbolic (it
admits a dominated splitting). Then for some ¢ > 0 and A > 1 we have
that for all w € X and n € N,

[A™ )] o 1Az (W)

m(An(w) = A g @) =
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(2) = (1): This is a straightforward adaptation of [42, Proposition 2.1] to
the case where A takes values in Maty (R). The idea of this proof is to define the
Oseledets invariant directions Fy(w) and E}(w) as uniform limits of continuous
functions, by exploiting the contracting behavior of the cocycle action on fibers
due to the cocycle’s hyperbolicity. This implies that the Oseledets splitting
is continuous. In our setting, when singular matrices appear, their actions
contract the whole projective space to points. This helps the convergence and
poses no problem regarding the continuity of the approximations, which are

defined as singular directions of the the matrices A™(w) and A™(c "w).

For the remaining implications we need a desingularization construction
that associates a family of invertible cocycles A* (1) € SLa(R) to every singular
cocycle A € Maty (R)*. For each A; € Matg (R) with i € A, consider its
singular value decomposition: 4; = R;3;R;. If A; is not invertible, consider a

small perturbation of X; that transforms its zero singular value into a small

Aill 0
constant p~2. In other words, if A; = R; A 0 R}, let
~ 1 0 A; 0
Aui = AR r =120 g | O g
0 —2 14 0 ,u_l
If A; is invertible put flw- := A;. Then set Ay ; := S — fl,“ The cocycle

- \/det(Ap,i)

A = (A )ica € SLy(R)" has the same projective action as (A,:)ica, which
for large p approximates that of A.

Lemma 6.1 Let A € Mat; (R)*.

(1) If (M;)ica is an invariant multi-cone of A, for some p > 0, then it is also

an invariant multi-cone for A.

(2) If (M;)ica is an invariant multi-cone of A then it is also an invariant

multi-cone of A}, for all sufficiently large p.

Proof. (1) Since M is an invariant multi-cone for A7, A, M € M for every
i € A. Moreover, the pair of matrices A; and A,; share the same singular
directions, but their contraction strengths are different (infinite in the case of
non-invertible matrices vs. finite for invertible ones). Thus since the contraction
is stronger for non-invertible matrices, we conclude that A,M C A,;M € M
for every 1 € A.

(2) This holds because multi-cones are stable under perturbations and
A=lim, o A,
they induce the same action on P(R?). [

while A: and Au share their invariant multi-cones, because
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We now return to the proof of the theorem.

(1) = (3): Since projective uniform hyperbolicity is an open property,
if A is projectively uniformly hyperbolic then the approximating cocycles AM
and Ay, are also projectively uniformly hyperbolic for large ;. By [2, Theorem
2.3], the cocycle A), admits an invariant multi-cone M. Therefore, by (1) of
Lemma 6.1, M is also an invariant multi-cone for A.

(3) = (2): Suppose A admits an invariant multi-cone M = (M;);c4. By
(2) of Lemma 6.1, for some large p, M is also an invariant multi-cone for A7.
Therefore, by [2, Theorem 2.3], the cocycle Ay, is uniformly hyperbolic and by
2, Proposition 2.1] there exists ¢ > 0 and A > 1 such that ||(A})"(w)|| > c A"

for all w € X, which in turn implies that

|4 @) IAp)l
m(A4()) ~ m(Ax(w))

= [(A)"(W)I? =X VweX.

Note that either A"(w) = A, _, -+ A,, does not include singular
matrices so A"(w) = fll’j(w), or else it does and then m(A"(w)) = 0, which

implies that the left-hand side of the above inequality is oo. [ |
Definition 6.3 We say that A € Mat] (R)* has rank 1 if

lim rank(A"(w)) =1 for a.e we X.

n—o0

We do not consider cocycles of rank 0 because in this case the first
Lyapunov exponent is equal to —oo. Cocycles of rank 2, that is, in GLy(R)X,
are also not considered here because, as mentioned in the introduction, they

have already been extensively studied.

Remark 6.1 A cocycle A € Mat; (R)* has rank 1 if and only if
(1) rank(A;) =1 for some i € A and

(2) A has no null word, i.e. A™(w) 1= A,,,_, -+ A Aw, # 0 for everyw € X.

From now on we only consider cocycles A of rank 1. We split the alphabet

A into two parts:
Ay ={i € A: det A; #0} and Agpg := {i € A: rankA; = 1}.
For i € Agng, write r; := Range(A4;) and k; := Ker(4,;) and set

K(A) == {k;: i € Asing },
R(A) == {r;: i € Aging}-
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Moreover, we define the following sets:

wh= | U{Aw)r} and W= |J U {4 (w) kil

ieﬂsing n>0 ieﬂsing n>0

These sets represent the forward (backward) iterates of the ranges
(kernels) and their accumulation points. They play a central role in the theory

that we develop to study singular cocycles.

Definition 6.4 If M is an invariant multi-cone for the invertible cocycle
(Ai)ien,,,, we define the sets K, and K3, asin [2, Subsection 2.3] by

mv mv

Ky, = U A, Ay(M)

n=0 i1, ,in€Ainv

and

K= U (A 4) "\ D)

n=0 i1, ,in€Ainv

Proposition 6.1 If M is an invariant multi-cone for the invertible cocycle
(Ai>i€flinv then:

(1) K&, is the set of unstable Oseledets directions E"(w) of the cocycle
z

mv?’

(Ai)ien,,, over the set of points w € A

(2) K., is the set of stable Oseledets directions E*(w) of the cocycle (A;)icas,.,

inv
Z

mv -

over the set of points w € A

Proof. Fix @ € M. Then by dominated splitting, 0 € K  is the limit

b= lim A, , - Ay = lim A"(c "w)d = E"(w),
n—o0 n—oo

L . Similarly, o € K is the limit

mv-* mv

for some sequence w € A

~ 1 -1~ _ 71z —-n/ n ~ s
b= lim (A, , -+ Ay) @ = lim A7 (0"w)d = E°(w),

for some sequence w € AZ |

mv*

Proposition 6.2 Let M be an invariant multi-cone of the invertible cocycle
(Ay)ica,., and take v € M\ K . Then there exists an invariant multi-cone M
of (Ay)ica,,. such that M € M and v ¢ M.
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Proof. Define the set
M,= |J A"w)M

|w|=n
weA?

where the union is taken over all admissible invertible words of length n. We
claim that M, is an invariant multi-cone of of (A;);ca,,., for every n € N and
that there exists a sufficiently large N € N such that v ¢ My. Let us prove,
by induction, that M,,,; € M,, € --- € M. Since M is an invariant multi-cone
associated to (4;)ica,,., then A(w)M & M for every invertible word w such
that |w| = 1. Thus U wj=1 A(w)M & M as the union is finite. Then

weAL

mnuv

M= U A wM= {J Ak U A"wM

|w|=n+1 |z|=1 |w|=n
weATH! z€AL wEAR,
= | A@)M, € M,.
|2=1
z€A]

inv

In particular, as M # P(R?) we have that M, # P(R?) Vn € N. Notice that as
M is open and the cocycle (A;)iea,,, is invertible, then M,, is open for every
n € N. Therefore M, is an invariant multi-cone Vn € N. To prove that for any
ve M\ KY, there exists N € N such that v ¢ My we simply notice that K},

is closed and that

lim M,, := lim U Aw)M = U A"(w)M = K}

mnv?

|w|=n n=0 |w|=n
because M, is a monotonous sequence. [ |

6.1.2
A criteria for projective uniform hyperbolicity in the singular setting

Proposition 6.3 Consider a cocycle A € Maty (R)* of rank 1 such that
Ay = (A)iea,,, 18 projectively uniformly hyperbolic, A is not diagonalizable
and WFNW~ = (. Then

KA NKE, =0 and RA)NK,, =0.

mv mv

Proof. We only prove that K(A4) N K

mv

Suppose by contradiction that there exists k € KA NK!

mv*

= (), the other proof being analogous.
We split the proof

into two cases:



Chapter 6. Dichotomic Behavior in the Singular Setting: Analyticity vs
Discontinuity 95

» A, . is not diagonalizable, and
n A

Let us start with the assumption that A, , is not diagonalizable. We will

==inv

say that © € P(R?) is A;,,-invariant if 4; 0 = 0 for all i € Ajpy.

is diagonalizable but A is not.

Lemma 6.2 There exists an A, -invariant element in K" if and only if

=—=1nv mv

#K!' = 1. Analogously, there exists an A, -invariant element in K if and
only if #K;,, = 1.

Proof. Suppose # K, = 1. By Proposition 6.1, there exists 0 € K/, such

mv

that for almost every w € X, E%(w) = 0. Moreover, by the invariance of the
Oseledets subspaces, for almost every w € X, E*(f(w)) = A(w)E*(w). Hence,

A

0 = A(w)v for almost every w € X. In particular, A;0 = 0 for all i € Ajpy.

for all 1 € Ay, since v € K% C M,

mv

Conversely, if A;0=0¢ K"

mv

0= lim A,_, -+ A,_, 0= lim A"(c7"w) 0 = E*(w),

n—oo

and E%(w) = 0 for all w € A%

mv*

Thus by Proposition 6.1 K, = {0}.

mv

The conclusion for K follows under a similar argument. [ ]

mv

By Lemma 6.2, #K", > 1 or #K;, > 1, for otherwise 4;,, would be
diagonalizable. We treat each of these cases separately.

» First assume that #K, > 1.

If there exists 7 € R(A) such that 7# ¢ K, then for every £ > 0, we can
choose w € A%, and n € N such that d(A™(w)#, k) < e. This contradicts the

mv

fact that W n'W— = 0.
On the other hand, if 7 € R(A) N K, since K&, has at least two

mv?’ mv

elements one of which is k € K by Lemma 6.2 there exists ¢ € Aj,, such

mnv?

that A;'k # k. Hence there exists a word w € AZ_ and ny € N such that

mv

A (w)k ¢ K®,. Choosing the coordinates of w appropriately we can force

v’
the convergence of A™"(w)k to # € K&, which also contradicts the fact that

WHNW= =9.
= Now assume # K, > 1.
Suppose that there exists # € R(A) such that 7 ¢ K . Then it is possible

to iterate 7 forward by a suitable invertible word in a way that it converges to
k € K" . This contradicts Wr Nn'W~ = 0.

mv*

If, on the other hand, there exists # € R(A) N K, then by Lemma 6.2

there is i € Ay, such that A;7 # 7. Hence there exists a word w € A%

and ng € N such that A™(w) 7 ¢ K3 . Finally, choosing the coordinates of w
appropriately we can force the convergence of A™(w)7 to k€ K®_, which also

contradicts the fact that WH Nn'W— = ().
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We now proceed to the case that A;,, is diagonalizable but A is not. Since
A

exactly two invariant directions, K] and K

mv-*

v 18 projectively uniformly hyperbohc and A, is diagonalizable, there are

Lemma 6.3 Suppose A;,, is diagonalizable but A is not. Then either

(i) there exists 7 € R(A) such that ¢ K UK}, or else
(ii) there exists k € K(A) such that k ¢ K5, UK, .
Proof. Since A, is diagonalizable, K = {é"} and K = {é°} are singletons

where é" and é° are respectively the unstable and stable directions of Oseledets.
If (i) and (ii) were both false, then for every i € Agpg, the matrix A; would
preserve both directions é* and é°, which would imply that A is diagonalizable.
[

Next we analyze the two cases given by Lemma 6.3.

If there exists 7 € R(A) such that # ¢ K3  then iterating # by any
u — {k}. This contradicts Wt Nn'W~ = 0.
Otherwise, every # € R(A) satisfies K2 = {#} and there exists k' € K(A) such

mv

invertible word, it converges to K.

that &' ¢ K5 U K" . Hence iterating k' backwards by any invertible word, it
which contradicts W MW~ = (). This concludes the
proof. [ ]

converges to 7 = K,

Remark 6.2 Note that in the previous proposition, the assumption that Wt N
=0 can be replaced by W NK(A) =0 and R(A) "W~ = 0.

Theorem 6.2 Given a random cocycle A € Maty (R)* of rank 1 such that
A

able, the following are equivalent:

v = (Ai)iea,., s projectively uniformly hyperbolic and A is not diagonaliz-

(1) A is projectively uniformly hyperbolic,
(2) WHnWw= =40,

(3) WHNK(A) =0 and R(A) N W- = 0.

Proof. (1) = (2): Assume by contradiction that A is projectively uniformly
hyperbolic but WH MW~ # (). Then it is possible to produce null words under
arbitrarily small perturbations of the cocycle’s matrices. This implies the loss
of the projective uniform hyperbolicity for the perturbed cocycle. However,
this leads to a contradiction, as the projective uniform hyperbolicity is an
open property.

The fact that (2) = (3) is trivial, since X(4) C W~ and R(A) C W+.
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(3) = (1): We know that A, is projectively uniformly hyperbolic so by
Theorem 6.1, there is an invariant multi-cone M associated to A;,,. Note that
by Proposition 6.3 and Remark 6.2 there are no ranges of singular matrices in
K, and there are no kernels of singular matrices in K. Also, by Proposition
6.2, we can shrink the multi-cone M so that it does not contain kernels of
singular matrices A;, i € Agng. Now, because A;,, is projectively uniformly

=—=1nv

hyperbolic, there exists N € N such that for every w € AZ_ and every

mv

range 7 € R(A), which as we have previously seen is not in Kj_, we have

AN(w)# € M. Thus, because there are only finitely many ranges in R(A)
and finitely many words of length N, using (3), we can find sufficiently small
numbers

0<e < - <enoy

independent of the words w and of the ranges 7 such that the following

inclusions of balls in the projective space hold:

Ay Bey (AN Y w)P) e M

WN "~ EN-1

and for every 1 < j < N —1

A, Be,(AT(w) ) € B, (AT (w) 7).

€j+1
The union of M with all these balls, for every word w € A and every

range 7 € R(A) is an invariant multi-cone associated to A. [ |

Remark 6.3 If A,,, is projectively uniformly hyperbolic and the cocycle A is
diagonalizable with
Ky = R(A) = {7} and K3, = K(A) = {k},

then the equivalences in Theorem 6.2 still hold. The non diagonalizable hypoth-

esis aims to exclude the case when

K, = K(A) = (k) and K3, = R(A) = {}. (6.1)

mv

In the view of theorem 6.2 and remark 6.3, we provide an example of
a cocycle A with rank 1, such that A, is uniformly hyperbolic, but A is
diagonalizable and satisfies (6.1). Moreover, we show that W™ N W~ = () but
A is not uniformly hyperbolic.

Example 6.1 Let A = (Ag, By) be the cocycle taking values
2 0 00
01

L

] and By =
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with probability measure j1 = % 04, + 3 0p,. Notice that Ly(A) = =122,

Note that Ay preserves both the x and the y axzes. Moreover, #(By) = (0,1)
and k(By) = (1,0). Therefore, both of them are preserved under the invertible
part of the cocycle A. Thus W+ = #(By) = (0,1) and W~ = k(B,) = (1,0),
so that WHnw~ = (.

Next we show that A is not projectively uniformly hyperbolic. Consider

the sets

Y, = {(A,B): A is hyperbolic, rank(B) = 1, A"#(B) = k(B) },

t
),teR,
1

such that A = Ay. The cocycle A = (Ag, By) is an accumulation point of

and the one-parameter family of cocycles A, := (AO, B; =

the cocycles A, , where t,, = 27", and so it is also an accumulation point
of the hypersurfaces ¥, as A, € 3,. Then Li(4;) = —oo, for all n. In
particular, since projective uniform hyperbolicity is an open property, it follows

that A = A, cannot be projectively uniformly hyperbolic.

Note that in the previous example, the Lyapunov exponent of A is

—log?2
2

words, in particular, with Lyapunov exponent equal to —oo. Therefore, A is a

equal to and we were able to approximate it by cocycles with null
discontinuity point of the Lyapunov exponent. This already gives a flavor of

what is yet to come in the next section.

6.2
Dichotomy: analyticity vs discontinuity

In this section we prove a result in the spirit of Mafié-Bochi’s theorem but
for non-invertible random, locally constant cocycles. As a corollary, we obtain
a dichotomy in the regularity of the Lyapunov exponent, between analyticity
and discontinuity.

We start with an example that appears in the introduction of [3] as well
as in [20, Section 3]. It was the starting point of this work and it was also

responsible for much of the intuition behind the results in chapters 6 and 7.
Example 6.2 Consider the family of cocycles A, :== (A, By), where

e 1 0 and B, — cost —sint
00

sint cost

are chosen with probabilities p = (%, %) By [3, Introduction] or [20, Proposition
3.1]:
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1. Ly(4) = ZO pYas) log‘cos(]t)’.
]:

2. Ift € mQ there existsn € N such that AB'A = 0 and so Ly(A;) = —oc.
3. The set {t € R: Li(As) > —oo} has full Lebesgue measure.
4. Iften(R\Q) then WF N W~ =P(R?).

Hence, by (2) and (3) we conclude that the function t — Li(A,) is discontinu-

ous for almost every t € R.

This example shows that for singular cocycles, it is not expected any type
of continuity for the Lyapunov exponents. In what follows, we will prove that
all cocycles which are not projectively uniformly hyperbolic present the same

type of behavior.

6.2.1
A Maiié-Bochi type dichotomy

Lemma 6.4 Let A be a random linear cocycle of rank 1 such that A,,, is

projectively uniformly hyperbolic and W+ N W~ £ (). Then either
KA NKp, #0 or R(A) N K, #0.

Proof. The assumption that Wt N W~ # () implies that an accumulation
point of the forward iterates by invertible words of the ranges is equal to an
accumulation point of the backward iterates by invertible words of the kernels.
Since A has rank 1, so there are no null words, there cannot be a finite
time matching, more precisely, A" (wq)r; # A™"*(w2)k; for every w; € ApL,
wy € A, 1, J € Asing and nq,ng € N.
Moreover, since A;,, is projectively uniformly hyperbolic, the sets K}

and K of respectively unstable and stable Oseledets directions are well

then we conclude
then the forward

iterates of the ranges converge by the invertible dynamics to K}, and the

defined. If there is a range in K: or a kernel in K

muv mur

the result. If there is no range in K and no kernel in K}

backwards iterates of the kernels converge to K73, . Since A;,, is projectively
uniformly hyperbolic, K7 ,NK? = 0. Hence, in order to satisfy WrNW~ # (),
it must be that some iterate A™(w)r; € K, or A"(w)k; € K} . Since K,

is backward invariant and K}, is forward invariant, we conclude the result. ll

Theorem 6.3 Let A € Mat] (R)* be a random linear cocycle of rank 1. Then

either A is projectively uniformly hyperbolic or else there exists a sequence
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of random linear cocycles {A,}, — A such that A, has a null word and, in

particular, L1(A,) = —oo for every n € N.

Proof. Suppose that A is not projectively uniformly hyperbolic. We are going
to show that there exist a sequence {4, }, — A such that A, has a null word
for every n € N. We divide the proof into three cases, according to theorem 6.2.

Case 1: Suppose that A;,, is projectively uniformly hyperbolic and A is
not diagonalizable. Then by theorem 6.2, there exists a heteroclinic connection:
WHNW~ # (. By lemma 6.4, either X(A) N K}, # 0 or R(A) N K}, # 0.

muv mu

Without loss of generality, assume that K(A) N K%, # 0, the other case is
analogous. Since A;,, is projectively uniformly hyperbolic, the iterates A" (w)r;

converge uniformly to K} . Therefore, one can consider arbitrarily small

mv*

perturbations of the kernel that belongs to K}, to generate null words in

finite time. That is, consider the sequence of cocycles A, whose entries are

equal to those of A except for the singular matrix whose kernel is in K} | for

mur

which we perform a progressively smaller perturbation. Then A,, converges to

A and each A, has a null word.

Case 2: Suppose that A,,, is projectively uniformly hyperbolic and A is
diagonalizable. Since A is diagonalizable, either K, = R(A) and K}, = K(A)
or K =X(A)and K}, =R(A).

mu mu

Assume that K = R(A) and K, = K(A), then, by Remark 6.3,

mv mv

Theorem 6.2 still holds. Therefore KX(A) N W = () and R(A) N W~ = 0,
which by this theorem implies that A is projectively uniformly hyperbolic,
contradicting our assumption. Therefore, this cannot happen.

= X(A4) and
K., = R(A). Note that with a small perturbation of the range, which moves

mv

it out of K?

mv?

return to the first case, where a small perturbation of the kernel can create a

Hence it suffices to consider the case in which K¥

mv

its iterates will converge to K, where lies a kernel. Hence, we

mv)

null word.

Case 3: Suppose that A, is not projectively uniformly hyperbolic. If
€ GL$ (R)* is not in SLy(R)*, we consider the normalized cocycle A}

=—=nuv’

A

which belongs to SLy(R)*, and it is obtained by simply dividing each invertible

matrix A; by \/(hi(—A). Moreover, A} = has the same projective action as A;,,.

Then, by proposition 6 of [44], A’ can be approximated by elliptic

L24nv
cocycles (cocycles that admit elliptic matrices). Moreover, almost every elliptic
matrix admits an irrational rotation number, thus we can assume that the
approximation is by elliptic cocycles that admit elliptic matrices with irrational

rotation number. Therefore, the original cocycle A;,, is also approximated

v

by elliptic cocycles with elliptic matrix components with irrational rotation
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number by rescaling the matrices. Then both W and W~ are equal to P(R?)
(see Example 6.2). We can then perform an arbitrarily small perturbation on
the kernel (or range), thus creating null words. [ |
Corollary 6.1 Let A € Mat; (R)* be a random linear cocycle of rank 1.
If L1(A) > —oo, then either Ly(A) is analytic around A or else it is a
discontinuity point of B — Lq(B).

Proof. By theorem 6.3, either A is projectively uniformly hyperbolic or there
exists a sequence A, — A such that L;(4,) = —oco for every n. In the first
case, by a theorem of Ruelle [40], L; is analytic in a neighborhood of A. In the
second case, since we assume L;(A) > —oo and there is a sequence A, — tg

such that L;(A4,) = —oo, the Lyapunov exponent is discontinuous at A. W

We say that a set is residual if it is a countable intersection of open and
dense sets. The next corollary is an adaptation of [42, Corollary 9.6] and it

shows that the set of continuity points of the Lyapunov exponent is a residual
subset of Mat4 (R)E.

Let PUH denote the set of cocycles A € Mat] (R)* such that A is
projectively uniformly hyperbolic.
Corollary 6.2 The set {A € Maty (R)*: L;(A) = —oo} is a residual subset
of Maty (R)*\ PUH..
Proof. Given a € R let L(a) := {A € Mat; (R)*: Li(A) < a}. Since the top
Lyapunov exponent is upper semi-continuous, £(a) is open in Mat; (R)*.
Consider a sequence a, — —oo. The set in the statement coincides with
N,L(a,). By Theorem 6.3 this intersection is dense in MatJ (R)*\ PUH, hence
so is each of the open sets £(a,). Thus £(a) = N,L(a,) is a residual subset of
Maty (R)* \ PUH. u
Moreover, by the previous corollary, we conclude that the set of continuity
points of the Lyapunov exponent is a residual subset of Mat; (R)*. That is

because the set of continuity points is exactly
{A € Maty (R)*: Li(A) = —co} UPUH.

Since PUH is open, it is clear that N, (L£(a,) U PUH) is a countable intersec-

tion of open and dense sets.

Remark 6.4 Since the map A — Ly(A) is also upper semi-continuous for
bounded and continuous cocycles with respect to the C° norm, it is also true
that the set of cocycles A € C°(X,Mats (R)) which are either projectively
uniformly hyperbolic, or else satisfy L1(A) = —oo, is a residual subset of
C%(X,Mat; (R)).
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6.2.2
Regularity dichotomy for the Lyapunov exponent

Definition 6.5 A function u: Q — [—00,00) is called subharmonic in the

domain Q0 C C if u is upper semi-continuous and for every z € €,
1 )
u(z) < / u(z 4 re*™)df
0

for some ro(z) > 0 and for all r < ro(2).

Basic examples of subharmonic functions are log |z — zg| or more gener-
ally, log |f(z)| for some analytic function f(z) or [log|z — (|du(¢) for some
positive measure with compact support in C.

The maximum of a finite collection of subharmonic functions is sub-
harmonic, while the supremum of a collection (not necessarily finite) of sub-
harmonic functions is subharmonic provided it is upper semi-continuous. In
particular, this implies that if A: Q — Mat] (R) is a matrix valued analytic

function on some open set 2 C C, then

u(t) :=log|A(®)| = sup log|(A(t) v, w)|
is subharmonic in €.
Moreover, the infimum of a decreasing sequence of subharmonic functions
is subharmonic. This shows that if A: Q — Mats (R) is analytic, then the map
t — Lq(A(t)) is subharmonic on €.

Lemma 6.5 Let A C R be a compact interval, let Q2 C C be an open, complex
strip that contains A and let u: Q — [—o00,00) be a subharmonic function
such that for some constant Cy < oo we have u(z) < Cy for all z €  and
u(tg) > —Cy for some to € Q. Then for all N € N,

Leb{t € A: u(t) < —N} < Ce ™V,

where v > 0 and C' is a finite constant depending on Cy, A and €.
In particular, Leb{t € A: u(t) = —oc0} = 0.

Proof. The statement is essentially the one-dimensional version of [23, Lemma
3.1]. In [23] the set € is an annulus and A is the torus, which are transformed
into our setting via the complex logarithmic function. The proof of this result
is a consequence of a quantitative version of the Riesz representation theorem
for subharmonic functions and of Cartan’s estimate for logarithmic potentials,
see [30, Lemma 2.2 and Lemma 2.4]. |
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Corollary 6.3 For Lebesgue almost every cocycle A € Maty (R)* with rank
1 we have Li(A) > —oo. In particular, Lebesgue almost every cocycle A €
Maty (R)* with rank 1 satisfies the reqularity dichotomy: its Lyapunov exponent
is either analytic or discontinuous.

Proof. For each A € Maty (R)*, consider the 1-parameter family A(t) such
that for every i € Ainy, Ai(t) = A;R;, where R, is a rotation and for i € Aging,
A;(t) = A;. Consider t € [0,27] and note that this family gives a foliation of
Mat; (R)* by closed curves.

Let € be a thin and open complex strip around [0, 27]. Since the map
t — A, is real analytic, it extends to a holomorphic map Q > t — A, €
Maty(C)*. Then t — Li(A(t)) is subharmonic on €.

Moreover, since [0, 2] is a compact set and the Lyapunov exponent is
an upper semicontinuous function, there exists a global upper bound C' € R
such that Ly (A(t)) < C for every t € €.

Now, we adapt Yoccoz’s argument from [44, Lemma 2] to prove the
existence of a parameter ¢y such that A(ty) is projectively uniformly hyperbolic,
hence L;(A(ty)) > —oo. Note that the real projective space is the equator of
the complex projective space (the Riemann sphere) CP! and splits it in two
hemi-spheres H~ and H*, each of which can be identified as a hyperbolic
plane. Given 1 < 7 < k and o € P(R?), when we complexify the curve
R >t Ay(t) 9 € P(R?), the map C >t — A;(t) 0 € CP', defined on a small
strip 8 around I, takes the interval I to the equator of CP' and it maps the two
semi-strips 8 := {t € §: Im(¢) < 0} away from the equator. This behavior is
uniform in 9 € P(R?). Hence, if t € 8T, resp. t € §7, then the projective map
Ai(t): CP' — CP*! contracts H*, resp. H™, by a factor of order exp (—c [Im(t)|).
Note that the uniform behavior ensures that A;(¢)(0H*') = 4;(t)(P(R?)) € H*.
The rest of the proof follows [44, Lemma 2].

We conclude that there are points ¢y € Q where A(tg) is projectively
uniformly hyperbolic, and in particular Li(A(tg)) > —oo. Since, on the other
hand, L;(A(t)) is bounded from above on €2, lemma 6.5 is applicable to this
subharmonic function and we conclude that L;(A(t)) > —oo for Lebesgue
almost every parameter ¢ € [0, 27].

We proved that given any cocycle A of rank one, there is a curve (i.e.
a smooth, one-parameter family of cocycles) passing through A such that the
first Lyapunov exponent is finite for almost every cocycle along this curve. By
Fubini, we obtain that Lebesgue almost every cocycle A € Mat] (R)* with at
least one invertible and one singular component satisfies L;(A) > —oo and, in

particular, also satisfies the regularity dichotomy. [ |
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6.2.3
Constant rank 1 cocycles

Consider the set of cocycles whose matrix entries have constant rank 1,
that is,
Ry = {A € Mat{ (R)": rank(4;) =1V 1 <i <k},

which is an analytic sub-manifold of Mat; (R)* with co-dimension k.

Theorem 6.4 Given A € Ry, either d(K(A),R(A)) > 0 and A is projectively
uniformly hyperbolic or d(KX(A),R(A)) = 0 and A admits a null word hence

Proof. Tf d(X(A),R(A)) > 0, there are two disjoint open subsets of P(R?):
one forward invariant containing the ranges and another backward invariant
containing the kernels. The first is an invariant multi-cone. Therefore, A is
projectively uniformly hyperbolic. If d(K(A),R(A)) = 0, there exists a null
word and L;(4) = —o0. |

Corollary 6.4 The Lyapunov exponent Ly: Ry — [—o0,+00) is always con-
tinuous. Moreover, it is analytic on Ry \ {A: L1(A) = —oc}. Furthermore, for
Lebesgque almost every A € Ry, L1(A) > —oo, therefore, the analyticity set has

full Lebesque measure.

Proof. By Theorem 6.4, either A is projectively uniformly hyperbolic or
Li(A) = —oo. By Ruelle [40, Theorem 3.1|, if A is projectively uniformly
hyperbolic then the Lyapunov exponent is an analytic function. Moreover, the
first Lyapunov exponent is continuous at points with L;(A) = —oo (since it is

an upper semi-continuous function). The set

{AeR: Li(A) = -0} ={AeR: K(A)NR(A) # 0}

= U {4 e R k() = (A} €

ij=1

is an algebraic sub-variety of R; with positive co-dimension in R;. Hence it

has zero Lebesgue measure in R;. |



7
Statistical Properties

The main goal of this chapter is to prove statistical properties (large
deviations estimates and a central limit theorem) for the Lyapunov exponent
of random linear cocycles in the singular setting. To this end, we study the
corresponding Markov operator and stationary measure which, surprisingly,

behave quite differently from their analogues in the classical invertible setting.

This different behavior happens due to the fact that whenever a singular
matrix A, appears at the end of any random product of matrices, every
projective point © is mapped by the corresponding projective map to the range
7, of A,. In particular, this gives rise to a phenomena called a renewal process.

More precisely, if we regard the action of a random matrix product as
a random walk on the projective space, we have that starting at a range, the
random walk follows the action of the invertible matrices up until a singular
matrix appears; then the walk returns to the range of a singular matrix and
the process restarts.

This type of phenomena is a peculiarity of the singular setting and it
produces many interesting consequences. This observation lies at the heart of

all of the explicit formulas presented in this chapter.

This chapter is based on the joint work [19] with Duarte, Graxinha
and Klein. In section 7.1 we establish an explicit formula for the stationary
measure and investigate the particularities of the Markov operator in the
singular setting. Specifically, we prove that it is strongly mixing on its largest
domain, that of bounded, measurable observables (rather than on a properly
chosen space of Hélder-type observables as in the invertible setting). Moreover,
using the explicit formula of the (unique) stationary measure, we establish an
analogue of Furstenberg’s formula, the classical one not being available here.
In section 7.2, using a parameter elimination argument, we establish large
deviations type estimates and a central limit theorem for Lebesgue almost

every such cocycle.
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7.1
Furstenberg’s formula in the singular setting

Given the alphabet A = {1,...,k} and a partition A = Agng Ll Ainy into
two nonempty sets, consider the space M of all k-tuples A = (Ay,..., Ax) €
Mat] (R)* such that rankA; = 1 if i € Agye and det A; > 0 if j € Ay
Moreover, let M* C M denote the set of such cocycles, which additionally
satisfy 7; # l;:j for all 4,7 € Agng. Recall that we identify such a k-tuple
A with the locally constant map A: X — Matj (R), A(w) = A,,, where
w = {wn}nez € X = AL,

Given a probability vector p = (p1,...,px) with p; > 0 for all ¢, the
k-tuple A = (Ay, ..., Ag) determines the random linear cocycle F': X x R? —
X x R?, F(w,v) = (0w, A(w)v) = (0w, Ay, v) where X is endowed with the
product probability 4 = pZ. As before, we also identify the cocycle F' with the
tuple A = (A, ..., Ag).

Let L°°(P(R?)) be the Banach space of bounded and measurable functions
¢: P(R?) — R endowed with the usual sup norm, denoted by ||-||.. Recall that
the projective action of a nonzero matrix A € Maty(R) is given by At = A if
A is invertible and by A9 = 7, where r = Range(A) otherwise.

For the rank 1 random cocycle A = (A;);ea € Maty(R)* we will use the
notations r; and k; to represent, respectively, the range and the kernel of A;,
as well as, when convenient, a unit vector belonging to these one-dimensional

subspaces.

7.1.1
Markov operators and stationary measures in the singular setting

The random linear cocycle (A,p) determines the Markov operator

Q: L=(P(R?)) — L=(P(R?)) defined by

(Qp)(0) :=>_ p(Ai0) p

€A
= 3 e(At)pi+ > @@ pi
iE.Ainv ieAsing

Moreover, we write Q = Qiny + Qsing, Where the operators Qj,, and Qgin, are
given respectively by the two terms above. Note that Qg4 is a projection to
a constant function.

The operator Q is clearly linear, positive and it takes the constant
function 1 to itself. Using the Riesz-Markov-Kakutani representation theorem,
one can deduce the existence of a corresponding transition probability kernel;

in other words, Q is a Markov operator.
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Recall that a measure n € Prob(P(R?)) is Q-stationary if for all observ-
ables p € L>*(P(R?)),
/ Qpdn = / pdn.

In this case we also call i stationary relative to the cocycle (A, P).

Lemma 7.1 For everyn € N,

n—1
Qn = Z Qsing © anv + Q?nv
i=0
Proof. We proceed by induction. For n = 1 the formula holds trivially, since
Q = Qging + Qinv. Suppose that it also holds for n = k. Then for every
¢ € L>®(P(R?)) and every o € P(R?),

k—1

Q) = Q0[5 Quny= @l + | (10

=0

I
+
(@)
\®)
=y
S

k—1
Qo (Z Qsing © Qﬁm(w)(@)> © Qi () (0)-
=0
Note that the first term is a constant function, hence it is preserved by the

Markov operator Q. Then

k-1

Q" () (0) = >~ Quing © Qi (9)(0) + Q0 O, ()(0)

=0

= Qiing © Qi (0)(0) + Q1 (0)(0)

i=0
which proves the identity for k& + 1. [ |

Let us introduce some notations. Given n > 1, consider the word
W = (wla"'vwn) € ‘AZIV

AY(w) = A, -+ Ay, with the convention that A%°(w) is the identity matrix.
We denote the quantity p(w) := pu, - -+ Pw,. Moreover, in order to (visually)

of length n. For such a finite word we denote

distinguish the weight of a singular symbol ¢ € Ay, from that of an invertible
one, we will re-denote it by ¢; (instead of p;, which will be reserved for the
weights of invertible symbols). Moreover, we define the sum of the weights of
the singular matrices by q := 3 icq,,, ¢ < 1.

With these notations, we have the following explicit formula for a (or,

a-posteriori, the) Q-stationary measure.
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Proposition 7.1 Let n € Prob(P(R?)) be given by

Z q8§ Z p(@)(SA”(g)rs-

s€Asing 1=0 |w|=n
weA”

nuv

Then n is stationary with respect to the operator Q.

Proof. Note that n is a probability measure. Indeed,

> qsi > pw) = ) qSi(l—q)":q;:L (7.1)

Se‘Asing n=0 ‘UJ‘ SEAsing n=0
weA”

nuv

Let ¢ € L=(P(R?)). A straightforward computation shows that

/wdn—quZZp (W)rs)-

SEAslng n=0 |w|
wEA"

mv

Now show that the integral of Qp with respect to 1 has the same result.

/den— > qu Y pw) Y pip(AANw)ry)

Seﬂslng n=0 ‘w‘ ]EA
wGA?mJ
S 0E 5 ) F netaan)+ T asto)
SE‘Asing n=0 |0J| ]e-Amv kE-Aamg

wefl"

mnuv

= > 4 Z > plw)e(A™H (w)rs +Z > opw) > are(re)

Seﬂslng n= O\w\ n+1 n= O‘ull keAsing
weA? T
= > qsz > plw) )rs+q21—q > awe(re)
s€Asing N=1 |w|=n n=0 k€Asing
wefl”

nv

> qsz > plw)e(A"(w)ry)

s€Asing  n=0 |w|=n
wGA”

mv

which equals | ¢ dn and completes the proof. |

Theorem 7.1 If the cocycle (A, p) has at least one singular and one invertible
component, then Q is strongly mizing on L= (P(R?)) endowed with the uniform

norm. That is, there exist constants C' < oo and a > 0 such that

1% = [ ¢dnlle < Ce™ ¢l

for alln € N and ¢ € L>®(P(R?)), where n is any Q-stationary measure.
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Proof. Let ¢ € L*°(P(R?)). By lemma 7.1, for every n € N, it follows that

n—1
Q"¢ ~ [ =Y Quing © Qs (P)(¥) + Qi (2)(0) = [ 0
1=0

JZOQsmgosz<¢><v>+9?m<so><v>— S 03 Y @A @)

ieAsing n=0 |£|:n

weAy,,
= Y pWeAwv)— > ad, Y, pwe(A(w)r).
|£|:TL ieAsing j:TL ‘H'Z.j
weA, wEA,,
Then

12~ [ednle< 3 p@lele+ ¥ Y T sl

lw|=n i€Asing  J=N |w|=j
Qe‘Azy'an QEAJ.

inv

< llele {(1 RTINS qw‘]

J=n

= [[ellos [(1 — )" +q <; 1-(- q)n1>]

q

< 2[lpfloo(1 = )",

which proves the statement with C' =2 and o =1 —q. [

Remark 7.1 When a Markov operator is strongly mizing on the whole space
of measurable, bounded functions relative to the L norm (as it was shown
to be the case with Q), it is also called uniformly ergodic. Note that uniform

ergodicity is the strongest form of strong mizing.

Corollary 7.1 If the cocycle (A, p) has at least one singular and one invertible

matriz component, then it admits a unique stationary measure.

Proof. If n; and 1, are Q-stationary, then Theorem 7.1 applies to each of them,
so for any ¢ € L°(P(R?)), Q"¢ converges uniformly to [ ¢ dn; and to [ ¢ dn,.
Thus [@dn = [ @dn, for all observables ¢, showing that n; = n,. |

7.1.2
Description of the Lyapunov exponent via induced cocycles

Lemma 7.2 Given rank one matrices By, Bs, ..., B, and a unit vector rq, it
follows that

n
| By -+ Byrol| = [Tl Biri-all
=1

where r_1 1s a unit vector in the range of B;_1.
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Proof. We write Byrg = Airq, thus |\| = ||Byro||. It follows that ByBirg =
)\1827“1 SO
| B2Biroll = || | Bar|| = || Bari ||| Biroll -

From here,
||Bn+an(Bn—1 -+ By r0)|| = ||Bn+17’n||||Bn<Bn—1 By To)”

and the conclusion follows by induction. [ |
Next we establish a preliminary formula for the first Lyapunov exponent

for singular cocycles. It will be then used to derive a Furstenberg-type formula.

Lemma 7.3 Let (A, p) be a random cocycle with both singular and invertible

components. Then

LE)= Y Y 5 Y aapw)log|4,A @],

1€ Asing J€Asing n=0 |w|=n
weA?

inv

Proof. Consider the cylinders C; := [0;i] with ¢ € Agye and their union
C = Uiea.., Ci, the set of all (bi-infinite) words with a singular symbol at
the zeroth position. Remember that ¢ = u(C) = Yica,,, ¢-

o0
Moreover, let C;; = U U [0;iwj], with the convention that for
n=0|w|=n
weAm

mnuv

n = 0, w is the null word. These sets give rise to the following partitions

modulo a zero measure set (mod 0)

Oi: U C@j: U Ej U [0,%}]] and

jGAsing jE-Asing n=0 |£‘:n
weA?TMJ
o
C = U U Cij = U U U U [0; dwy] .
JE€Asing 1€ Asing i€ Asing jE€Asing =0 |w|=n

weAD

inv

Let g: C — C be the first return map to the cylinder C', given by
g(w) = 0™ (w), where 7(w) = min{k > 1: 0¥(w) € C}. The map g preserves
the induced measure jic = u(C)™ ple = %MO-

We define the induced cocycle Fp: C x R? — C x R2? given by
Fo(w,v) = (g(w),C(w)v), where C(w) := A™@)(w).

By [42, Proposition 4.18 and Exercise 4.8] (these statements also hold for
Mat; (R)-valued fiber maps) its Lyapunov exponent is related to that of the
original cocycle (A, p) via the expression Li(F¢) = %LI(A); thus it is enough
to compute Li(F¢).
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The induced cocycle F¢ leaves invariant the 1-dimensional sub-bundle
X 3 w — R(w) := Range(A4,,). Then using Oseledets’ theorem, its first
Lyapunov exponent is the rate of exponential growth of the fiber iterates
of F¢ along this sub-bundle. Thus for p-a.e. w € C' and for a unit vector
ro € R(w) = Range(A,,),

.1 n
Ly(Fc) =nlggloglogl|c (W) roll = lim —10g HHC (g'w) rol| - (7.2)
=1
Given w € C, let 0 = k; < kg < --- denote all future entries to the

singular part of the alphabet, that is, & € N is such that w;, € As, if and only
if k = k; for some [ € N. Then clearly ¢'(w) = o*(w) (whose zeroth entry is
wy,) and 7(g'w) = ki1 — k; for all I € N. Moreover,

B, :=C(g'w) = A7) (glw) = ARi=h(ghy) = A

“kiy1 Why+1 7

which is a rank one matrix whose range r; := Range(B;) = Tany -

By Lemma 7.2,

IC" (w) 7ol = IIHC g'w)roll = IIHBzToll = HIIBm 1l

- [Tle() a1 - (7.3)

=1
Consider the observable p: C — R,
(W) = 10g|C(w) uy || = log[| AT (w) 1

By (7.2), (7.3) and Birkhoff’s ergodic theorem,

Li(Fc) = dim — ZlogHC gw)'r’wle = lim — ng g'w)

n—oo n

= [ el dilo(w) = 7 [ 10gIC(w) rlldu(e).

Note that on each given cylinder [0;iwj| with |w| = n, w € AL,
1,7 € Asing and n > 0, the first return map 7 is constant and equal to n, while
the observable ¢ is equal to log||A;A™(w) r;||, thus it is constant. Moreover, the
Bernoulli measure of this cylinder is p[0; iwj] = ¢;q; p(w). Since these cylinders

partition (mod 0) the set C', we conclude that

Lo = ¥ % Y agp() oglAA"w) i,

7"7.7‘6‘Asing n=0 |w|
wefl"

mnmuv

which completes the proof of the lemma. [ ]
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Consider the following observable ¥: P(R?) — [—o0, 00),
/QU
() = 3 pilog 12200
i o]l
Theorem 7.2 (Furstenberg’s Formula) If the cocycle (A, p) has both sin-

gular and invertible components, then

(7.4)

Li(4) = [wan,

Proof. Using the explicit formula of the stationary measure n derived in

Proposition 7.1,

/‘Ifdnz Yopi Y qﬂ'i 2 p(w)logWJr

ieAinv jeAsing HZO |w\:n

S [Ai A" (w)r |

+ > @ Y 4>, Y. plw)log m———0

i€Asing  JE€Asing ]n:0 lw|=n [ A™(w)r]|
weA?

Note that the first term is equal to

Z i Z sz Z P(W)logHAz‘An(w)er—
iEAinv jE-Asing n=0 ‘w‘:n

we‘AzT'lnv
Yoopio Y 4y Y. plw)logAM(w)rll.
1€Ainy jeAsing n=0 ‘W‘:n

weA?

nuv

Since Y. p; = 1 — ¢ and since ¢ € A;,,, we note that the previous
iEAinu
difference is a telescopic sum. Moreover, when n = 0, A(w) is the identity

matrix and since ||r;|| = 1 for every i, we conclude that the first term of the

integral is equal to

¢ >, 4. > pw)log]|A™(w)ryl.
jEAsing n=0 |W|:n
weAT

inv

Now expand the logarithm of the second term into a difference. Since

> @ = q, the previous computation corresponds exactly to the term arising
1€Asing

from the denominator. Hence, we conclude that

[rar= % ¥ 3 Y aape)loa 44" @)

iE‘Asing je-Asing n=0 ‘w‘:’l’b
weA?

mnuv

thus completing the proof. [ ]
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Remark 7.2 We note that the classical Furstenberg’s formula (theorem 3.4)
for random cocycles in GL4(R) is not applicable to this singular setting.
Moreover, the probabilistic approach used by Furstenberg and Kifer to establish
such results (see e.g. [29, Theorem 1.4]) is not immediately applicable either,
since the observable ¥ is not continuous, not even bounded. That is why we had
to employ an ad-hoc argument which uses the explicit formula of the stationary

measure.

7.2
Statistical properties

The goal of this section is to establish a large deviations type (LDT)
estimate and a central limit theorem (CLT) for Lebesgue almost every cocycle
A € M. This will be obtained as a consequence of a stronger result, which
essentially says that if t — A, € M* is a one-parameter family of such cocycles
satisfying a positive winding condition, then an LDT estimate and a CLT hold
for Lebesgue almost every parameter t. Recall that, by theorems 2.2 and 2.3,
such limit laws hold as soon as the associated Markov operator satisfies a
strong mixing condition on an appropriate space of observables. The Markov
operator is, as we have seen, strongly mixing on L*(P(R?)). The problem is
that the relevant observable ¥ defined by (7.4) is not bounded, so the abstract
LDT theorem 2.2 is not immediately applicable. Instead, we will truncate
the observable at a level depending on the scale (number of iterates of the
dynamics) and apply the abstract LDT to the truncated observable. The case
of the CLT is slightly different, as the abstract theorem 2.3 requires a certain
type of mixing on average. We will use a parameter elimination argument
to show that for Lebesgue a.e. parameter ¢, these challenges in applying the
abstract results can be overcome.

In order to make use of theorems 2.2 and 2.3 we will actually need to
associate to a given cocycle A € M* a Markov operator on a slightly larger
space, Q: L®(A x P(R?)) — L*(A x P(R?)) defined by

— k A
(4, 0) = > pipli, A;0) .
i=1
Consider the projection 7: L>®(A x P(R?)) — L>(A) given by
k
mo(0) = > pip(i, ) = /Aso(i, 0) dp(i) -
i=1

Then the Markov operators Q and Q are related by lemma 2.2. Moreover,
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since 7 is Q-stationary and @ is uniformly ergodic, we conclude by proposition
2.4, that the measure p x 1 is Q-stationary and Q is also uniformly ergodic.
Let A C R be a compact interval (normalized to have length 1) and let
A: A — M* be a smooth map. We think of this map as a one-parameter family
of random cocycles so we use the subscript notation ¢t — A;. For its components

we write A;(7) instead of (A;);, while the fiber iterates are denoted by
Al (w) = Ay(wy) -+ - Ag(wr) -

For every parameter ¢ € A, denote by Q, and Q, the Markov operators
corresponding to the cocycle A; (defined as above). Moreover, let 7, €
Prob(P(R?)) be the unique Q,-stationary measure. Note that all the results
proven in section 7.1 for a given cocycle A € M, namely the explicit formula
of the stationary measure, Furstenberg’s formula and the strong mixing of the
Markov operator, apply to A; for all ¢ € A. Furthermore, since the probability
vector p = (p1,...,pk) and the singular/invertible symbols do not change,
all the mixing parameters are uniform in ¢. Finally, recall that the stationary

measure is given by:

e = Z ds Z Z p(&)5ﬁy(g)fs~

5EAsing n=0 we A"

inv

7.2.1
The winding property

We assume that the family of cocycles A 3 ¢ +— A, is positively winding
and that its singular components are constant. More precisely, we impose the

following conditions on the smooth map ¢t — A; € M*:
(A1) For all i € Aging, A7) = Ai.
(A2) There is ¢g > 0 such that for all t € A, j € Ay, and 9 € P(R?) we have

Ai(j) v A % Ai(j)v
[ A4:(5) v|?

ZCQ.

Remark 7.3 By [7, Proposition 3.1], the quantity in item (A2) above, which

we refer to as the rotation speed of the map t — A;, can be characterized by

: Yoo AG) AL Ay
4 4= AdDe _AG)0A g A
dt dt || A:(j)v]| 1A+ () vl
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Remark 7.4 A more general version of the winding condition requires that the
inequality in assumption (A2) above holds for some iterate A° of the cocycle.
For simplicity we assume that ng = 1.
Moreover, if the assumption (A2) holds, then there exists ¢; > 0 that only
depends on the map A, such that ¥Vn € N, Vw € A?, Vo € P(R?),
4 Apwp
dt | Ay (w)ol| =

In other words, if A is a family of positively winding cocycles, then so is

inv’

(7.5)

A} for every n € N, with rotation speed uniformly (in n) bounded from below.
For a proof of this statement see [7, Section 3.1], specifically Propositions 3.3
and 3.4.

Example 7.1 Given any tuple A = (Ay,..., Ar) € M*, the one-parameter
family { 35 2} — A, € Maty (R)*, A,(i) = A; if i € Aging and

cos 2nt —sin 27t

sin 2wt cos 27wt

A(j) = Aj Romy = [ ] if J € Ay

satisfies the assumptions (A1) and (A2) above and passes through A.

In order to simplify the exposition in the estimates to follow, we will
write a < b if there is some absolute constant C' < oo such that a < Cb.
Moreover, for an arc I C P(R?), m(I) denotes its length, while Leb(E) stands

for the Lebesgue measure of a subset E of the real line.

Lemma 7.4 Given any € > 0, the set

A

I.: = {v € P(R?): ||4;

|| < e for some i € Abmg}

ol
is a finite union of arcs with m(I.) < e.

Proof. Let i € Agng and consider the normalized directions r; and k; of the
range and kernel of A;, respectively, such that ||k;|| = ||r;]] = 1. Given any
vector v € R?, we can write v = ay1; + qok;.

Hence,
|

el

Therefore, HAZ””—”H < ¢ in a small interval around each kernel k;. Moreover I

is a finite union of arcs of length approximately 2¢ each. Hence m(] )<e N
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Lemma 7.5 Given any arc I € P(R?), n € N, w € A" and © € P(R?), it
holds that

Leb {t € A: Ap(w)p e [} < ml)
C1
Proof. Since the projective line P(R?) is one dimensional, we may regard the
map A 3t — A?(w)0 as a real valued map, whose derivative (because of the
winding condition) is bounded from below by ¢;. The result then follows by
the mean value theorem. [
The main point of introducing the winding property was to prove the
previous lemma. Moreover, the assumption that the invertible matrices have
positive determinant was made to guarantee the uniform lower bound ¢; on
the rotation speed of A}. If it is possible to prove lemma 7.5 using another
method, then we believe that the main results of this chapter could be extended
to Maty(R) cocycles.

71.2.2
Preparing the proofs

Consider the maps ¢;: AXP(R?) — [—00, o0) and ¢ : P(R?) — [—00, 00)
given by

@i, 0) = IOgHAt(i)HUUHH and () = Zpi%(ia@) = /flSOt(iv@)dp<i>~

i
Let ¢ = ¢(A) be a constant that satisfies
(i) e <||A:()|| <e® Vte Aand Vj € Ay.
(i) ||Ail| < e Vi€ Aging.
(iii) ||Air]| > e ¢ Vi, l € Aging.

Such a constant exists by the compactness of A and the fact that A € M*,
thus 7; # l%j and Ajr; # 0 for all 4,j € Agng. It follows that for all j € A,y
and 9 € P(R?) we have ’gpt(j, ﬁ)’ < ¢. Moreover, the upper bound ¢;(j,0) < ¢
holds for every j € A and © € P(R?).

Lemma 7.6 There is C' < oo which depends on the constants c, ¢y, such that
the following hold.

(i) For alln € N, w € A, i € Agpng, € P(R?) and N > 0,

Leb{t € A: (i, AM(w)d) < =N} < Ce ™.
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Moreover,

/gpt ) dt < C.

(it) For alln € N, w € A", 1,5 € Agng and N >0,
Leb{t € A: (i, A(w)?,) < =N} < Ce™ |

Moreover,
/ ©2 (i )7s) dt < C.

(1ii) Furthermore, for alli € A, w € X andn € N,
2(i, Ay (w)d) dny () dt < C.
S, gy #1000 A0 @)0) () i <

In particular,
9 Ans N a A
/A P(R?) by (Af (w)0) dn(0) dt < C.

Proof. (i) If i € Aging then ¢;(i,1) < —N holds if and only if || A; || < ™.
By Lemma 7.4 the set of such points w is a finite union of arcs with total
measure of order ¢ := eV, and by Lemma 7.5 the measure of the set of
parameters ¢ for which 121? (w)? belongs to these arcs is S e. This proves the
first statement in item (i).

For the second statement, note that

/ @2 (i, A” ) dt = /OOO Leb{t € A: (i, fl?(w)@) >z} dx
- /0 " Leb{t € A+ @2(i, AN(w)d) > o} di

+ 2: Leb{t € A: @2(i, A%(w)d) > o} da

<22+ OOLeb{t € A: i, AMw)D) < —v/T) da

<4 , eV dr < 1.
2c
The bound in the penultimate line above holds because A has length one
and, moreover, the upper bound ¢, (i,9) < c is valid for all ¥ € P(R?), so that
@i(i, AM(w)d) < ¢ < /T when x > 2¢2.
(ii) Note that if w € A

n ., then the statement follows from item (i). Now

we consider any word w, invertible or not, which begins with a singular vector,
namely rs. Let w = (wo,...,w,—1) ¢ AL,. We split the argument into two
cases: either w,_1 € Aging or else w,_1 € Ajpy but thereis 0 < j < n — 2 such
that w; € Aging.
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If Wp—1 € -Asingy then

A A A A

Al (w)rs = At(wn—l)A?_l(W)fs = Ay, , A?_I(W)TAS = T,y
Then by the choice of the constant ¢, for all parameters ¢ € A,
(i, A7 (w)r,) = log|| At || > —

hence the set {t € A: @i, A?(w)?,) < —N} becomes empty for N > ¢ and
the statement follows.
If w,—1 € Ainy and w; € Agpg for some index 0 < 7 <n —2, let n’ be the

largest such index and let W' := (W1, ..., wn_1) € A" L. Then

AP (w)py = AW AL AT (W) = AP N WA,

Thus ¢, (i, A?(w)7,) = @i, AW )T, ), With W' € A1 hence item
(i) is applicable and the conclusion follows.

(iii) If ¢ € Ajny, then the statement holds immediately since 2 (i, W) < ¢?
for all (¢,%) € A x P(R?). Let us then fix i € Agyg. Using the explicit formula

of n;, note that

/ /P(Rz 7 (i, AP (w)D) dmy(0) dt
=Y Y Y e ) [ 636, A (@) Hwp,) di

s€Asing  7=0 A7

inv

= > qu > plw /sot I (ww)fy) dt

5EAsing 7=0 weAJ

inv

> qu > pwC=

SeAsing J 0 WE-An

inv

where the inequality in the last line follows from item (ii) above and the last
equality comes from equation (7.1). [ |

Let 77 € Prob(A x P(IR?)) be the probability measure whose disintegration
relative to the Lebesgue measure on A is {r,}, that is, the measure character-

ized by

/¢(t, 0) dii(t, d) = /A/ma 6(t,0) dny(0) dt Yo € L¥(A x P(R?)).
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Lemma 7.7 Giventi € A, n € N, N >candw € X, let
P (w) = {(t,0): @i, A (w)0) < =N}
Then (P n(w)) < Ce ™.

Proof. If i € Aiyy then (i, 9) > —c > —N for all & € P(R?), so P, n(w) is

empty. Hence, consider i € A, and note that
~me:// Tp v (t, D) di()dt
/’7( ) 7N( )) A P(R2) Pz,n,N( )( ) nt( )

- Z qsi Z p<&)/A]lPi,n,N(w)@?Az(&)fs) dt.

SE-Asing .7:0 QGAJ

inv

Moreover,

~ .

(t, Al (W)7s) € Pin(w) <= @i, Al () A] (@)F,) < =N

— gpt(i,fi?+j(gw)fs) < —N.
By Lemma 7.6 item (ii), for all j € N,
/A Lp,, vt Al (w)7) dt = Leb{t: ¢, (i, AT (ww)f, < =N} S e~

and the conclusion follows from equation (7.1). |

Given any N > ¢, consider the truncation

wrn i=max {py, —N} .

Note that ¢,y € L®(A x P(R?)) (a property that does not hold for ¢;) and
let.nlloo < N. Moreover, ¢;(i,0) = ¢ n(,0) if and only if i € Ay 01 7 € Aging
and ¢(i,0) > —N.

Lemma 7.8 Forallie A, n e N, N >c andw € X we have

S e

Proof. The statement follows immediately when i € Aj;,,, since in this case
o(1,0) = oy n(1,0) for all & € P(R?).

We fix i € Agng and recall that o, (i, A(w)0) # o5 (i, AP(w)d) if and
only if (i, A*(w)0) < —N, that is, if and only if (¢£,0) € Pi,n(w) =: P,

A

(i, AP (w)0) — @i n (i, A (w)d) | dipy(0) dt S e V2
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which, by Lemma 7.7, is a set of -measure < e~"V. Then

-

i1, AP (W)D) — oy n (4, Al (w)D)

(i, AP (@)) — w6, AF (w)D) | Lpy (¢, 0) dif (1, 0)

AxP(R?)
< lg(t, 0) |2 7(Pn)"?

where g(t,0) := @;(i, A}(w)D) — 0yn (i, AP (w)d) and we used Cauchy-Schwarz
in the last inequality above.

Moreover, by Lemma 7.6 item (iii),
lg(t, )l 2y < Nei A7 (@)0) |2y + llorn (@, A7 (@)0) |12y < VC + N.
Thus, we conclude that

-

which completes the proof. [ |

i, AP (@)D) = v (i, A7 (w)0) | dp () dt S (VO + N)e N2 S VP2

7.2.3
Large deviations

In order to prove large deviations estimates for cocycles in M*, we will
use theorem 2.2. For the remaining part of the argument, it is very important
to note the precise dependence of the large deviations estimate on the norm
(in our case the L>-norm) of the observable.

We are ready to state and prove a stronger, parametric version of the large
deviations type (LDT) estimate for cocycles in M*, which will also imply the

result stated in the introduction.

Theorem 7.3 Let A: A — M* be a smooth family of cocycles satisfying
Assumptions A1 and A2 in subsection 7.2.1. Then for every e > 0 and n-a.e
(t,0), there exist co(€) > 0 and no(e,t,0) € N such that for everyn > ng(e, t,0),

1/3

1
y{w € X: ’ﬁlogHAﬁ(mvH — L1(At)‘ = e} < e—<0(On

Moreover, for Lebesque a.e. t € A, given any ¢ > 0 there are co(€) > 0 and
no(e,t) € N such that for all n > ng(e, t).

1/3

1
pfw € X: | tog A7 @) = Li(An)| > e} < e,
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that is, a (sub-exponential) large deviations type estimate holds for Lebesque

almost every cocycle along the curve t — Ay.

Proof. Given a parameter ¢ € A, consider the Markov chain Z,,: X x P(R?) —
A x P(R?),
Zn(w, D) := (cun,fl?(w)ﬁ)

Note that the associated Markov kernel is given by

A x P(R?) 3 (wp,d) = p X (5At(w0)@,
so that its corresponding Markov operator is precisely the operator Q, defined
by Qup(4,0) = SF_ | pio(i, Ay(5)0), whose stationary measure is p x 1. Recall
that by theorem 7.1, Q, is uniformly ergodic on (L*°(P(R?)), ||-||~) and by
proposition 2.4, Q, is uniformly ergodic on (L®(A x P(R?)), ||-|lsc)-
For the observable ¢;(i,0) := 10g||At(i)ﬁH it holds that
1A~ (w)o
= log|| A} (w)?]| — log|| A~ (w)?]] -

10 Zn-1(w,0) = @i(wn1, A7~ (w)0) = log|| Ay(wn-1)

Thus, by the definition of stochastic Birkhoff sums (recall section 2.1.3),

1 N n
—Supi(e,0) = < log| A7)

where v is a unit vector representative of the point 0.

Moreover, by Furstenberg’s formula (7.2),

Li(A) = [ (@) dn(®) = [ @ili 0) dlp x m)(i,0)

Furthermore, note that Lemma 7.6 item (iii) implies that for Lebesgue a.e.
te A, Li(A) > —o0.

Our statement (in fact, a stronger version thereof) would then immedi-
ately follow from theorem 2.2 if the observable ¢, was bounded. That is not
the case, precisely because of the singular matrices. The idea is then to use
the truncations ¢, y (for which theorem 2.2 is applicable) as a substitute for
¢, where the order N of the truncation is adapted to the scale n at which we
prove the LDT estimate.

More precisely, given any large enough scale n € N, let N,, € N be a
truncation order to be chosen later (anticipating, the choice that optimizes the
estimates will turn out to be N,, ~ n'/?). We will transfer the LDT estimate at

scale n from ¢; n, to ¢; by eliminating an 7-negligible set of parameters (t, 0).
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For all n € N, define the following real-valued functions on X x A x P(R?):

. 1 .
ATL(wat?U) = 5Sn90t(wav) - /Spt dp X Ny
. 1 .
E,(w,t,0) = - n N, (W, 0) — /SOt,Nn dp X n;
and
1 R 1 R
In(w, t,0) := =Sppy(w, ) — =Sppin, (w,0)

Then

[Anw,t,0) = Eafw,£,0)] < |gulw,0) + [Jon — ou,

Note that

dp x . (7.6)

R T
An(w,t,0) = —log|| A} (w)vl] = L1(Ay).

Moreover, given € > 0, the general LDT estimate (2.4) shows that for
every (t,0) € A x P(R?),

L {w € X: ’En(w,t,f)) > ;} < e @@Na"n (7.7)
where cq(¢) is essentially of order €.
By Lemma 7.8, it holds that
/(/’th — p1.N, | dp X 77t> dt

B Z bi / /JP(R2

Moreover, we will also show that

J[on(eo.t, )| dite) dit(t,5) < Ve 78)

Indeed, note that

©i(i,0) — @i.N, (z,ﬁ)’ dny(0) dt < e /3

|
—

n

gn(w, t,0) =

(¢e(wj, A (w)D) = g, (w), A (w)D)) -

0

SRS

J

Given w € X, if g,(w,t,0) # 0 then there is 0 < j7 < n — 1 such

that o (w;, A (w)D) # @i, (Wi, Al (w)D), that is, ¢, (w;, Al(w)D) < —N,, or

(t,0) € Py, N, (w).
(

Thus for (t,0) ¢ Bn(w) := U=y Pu,jn, (W), where 7j(B,(w)
have that g, (w,t,0) =0
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Using Fubini and Cauchy-Schwarz it follows that

J[onteot.0)| duw) dit, 0) = [[|galeo,t.9)| dit(t, ) du(w)
= [[lgnw:t.9)| Lo, (2.9) dii(t, ) du(w)

< [llgnte Mrzm (Ba(ew)) dp(e)
S Ve [llga(w, Yz dp(w)

By Lemma 7.6 item (iii), for all w € X,
/903(%', Af(w)0) dmy(0) dt < C,

hence .
= Suprleo, D)l z2s) < V.

while ’%, N, (1, 1@)‘ < N,,. Therefore, we conclude that

1 N
||ﬁSn(pt,Nn (W, U)HLZ(ﬁ) < Nn

Thus for all w € X, ||gn(w, )| r2(s) < VC + N, which then implies (7.8).
Integrating the inequality 7.6 with respect to pu and 7 we obtain

//’A“(“’taﬁ) — En(w,t,0)] du(w) dij(t, 0) S Ve N3

Applying Chebyshev’s inequality to the function
(t,0) — /’A E,(w,t v)’d,u(w),

there is a set B,, C A x P(R?) such that 7(B,) < v/ne /% and if (¢,0) ¢ B,
then
/\A B, 1,9)| dp(w) < e /6

Since 3,51 7(By) < oo, by Borel-Cantelli, 7j-almost every (t,0) belongs
to a finite number of sets B,,. That is, for 7-a.e. (¢,0) there is ng(t,9) € N such
that for all n > ng(t,9) we have (t,0) ¢ B, so

/\A Bu(w,1,9)| dp(w) < e /6.

Applying again Chebyshev we have that

i {w € X: ‘An(w,t,@) — B, (w,t,0)

> e—Nn/12} < e Nn/12.
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We have shown that there is a set 2, C X with u(,) < e /! such
that if w ¢ Q,, then

~Naj12 o €
— 2

<e

provided n is large enough depending on (¢, 7) as above and on e.
Thus if ’An(w7t, ﬁ)’ > ¢ then either w € Q,, or ‘En(w, t,0)
holding for w in a set of measure < 8 ¢~@(ONa"n hy (7.7).

We conclude that for -a.e.(t, 0) and for all € > 0 there is ng = ng(e, t,0) €

> ¢, the later

N such that for all n > ng we have

1/3

p{w: |An(w,t,0)| > e} < eN/12 4 gem0@ONiTn < ol

provided we choose N,, ~ n!/?. This establishes the first statement of the
theorem.

In particular, by the definition of the measure 7}, for Lebesgue almost
every parameter t € A and for 7;-a.e. point ¢ this first statement of the theorem

holds, namely
1 1
plow € X2 [T logAp@)el - Li(A)] > e} < e (1)

Recall that support of the measure 7, is the set

mv?

AMW)Py: 5 € Aging, w € A", n € N},
{ J

There is at least one singular symbol, s € A, and at least one invertible
one ¢ € Ainy. By the positive winding condition,
d .~ .
%At(z) Ts > co > 0,
so t +— flt(z) 7s cannot be constant on a set of positive Lebesgue measure.

Therefore A,(i)#, # 7, for Lebesgue almost every ¢.

It follows that for Lebesgue almost every ¢t € A, the support of the
measure 77, has at least two points, é; and éZ. Thus (7.9) holds for two linearly
independent vectors e; and e?, hence it must hold with the matrix norm
| A7 (w)||, which establishes the second statement of the theorem. [

We now derive the version of the LDT estimate stated in the introduction
of this manuscript, namely that such an estimate holds for Lebesgue almost

every singular cocycle.
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Proof. [of Theorem 1.5] Note that the set M\M*, which consist on cocycles
for which a kernel l%z coincides with a range #; for some ¢, j € Aging, has zero
Lebesgue measure in M. Moreover, by 6.3, L1(A) > —oo for Lebesgue almost
every A € M. We may neglect these zero measure sets of cocycles.
Given any A € M, define A(t) := (A1 (t), ..., Ag(t)) for every t € [—m, 7],
where
ARy ifiel

Al(t) = and Rt =
A figl

cost —sin t]

sint cost

This is an analytic family taking values in M* that satisfies the assumptions
(A1) and (A2) of Section 7.2.1. By Theorem 7.3, A(t) satisfies large deviations
of sub-exponential type for Lebesgue almost every t € R. Hence, since the map
M x [-m,m] = My, (A, t) — A(t), is a submersion, Lebesgue almost every

A € M satisfies similar large deviations estimates. [ |

7.2.4
Central limit theorem

We now establish a central limit theorem for singular cocycles. The proof
uses the abstract central limit theorem 2.3 due to Gordin and Livsic.

We consider as in the previous subsection a smooth family of cocycles
A>t— A € M* satisfying the positive winding property. We also consider
the special observables 1), and ¢, from before.

We introduced two related (families of) Markov operators acting on
measurable bounded observables. They can actually be defined for arbitrary

observables, namely if ¢: P(R?) — [—o0, 00) we put

Qu(d) = > pib(Ai(4))

1€A

and if p: A x P(R?) — [—o00, 00) we put

Qip(4,0) = > pip(i, Ay(§)0).

ieA
Consider the projection:

7 L*(A x P(R?)) — L*(A)
(D) =Y pip(i,d).

i€A

Using this notation, mg, = 1. Moreover, Qi (i, 0) = QP () (A (1)0).
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Lemma 7.9 For Lebesgue almost every parameter t € A we have that

ZHQ”“% /sotdpdnt\lm(pxm o0.

n=0

Proof. By the previous observations,

S 19— [ dpdnllie = YI1Q (A0 — [ b dillse
n=0 n=0

dﬁt( )) :

We start by showing that for every i € A there exists o € (0, 1) such that for
every n € N

Johis

Fix i € A and note that by lemma 7.6 item (iii) and Jensen’s inequality,

//RQ Q?%(At(i)ﬁ)_/% dntz
_//P(RQ GAILV

3 psZ > plw)tn(Al(w)ry)

Seﬂsing .7 =n wEAJ

inv

<2f [ o) @A)

weAD

inv

+2//R2 S Y Y ) [ve(Al (w)r,)

) s€ing 1= yead

inv

S D pw +ZPSZZP ) S (1 —q)

“’EAﬁw $E€EAsing Jj=n wefl]

inv

-5 (s larechgon - [

Qi (An)) — [ v dm|

dne(0) dt < o™,

(w)e( AP (w) Ar(0)0)

2

dn,(0)dt

dij(t,0)

" dij(t, )

so the claim holds with 0 =1 — g¢.
By Chebyshev’s inequality,

Leb {t eAN: /1P(R2 ’Qn¢t(At ' /1/):: d77t

dn(0) > ’%}saé‘.

Therefore, for every i@ € A and for each n € N, there exists a set
B, (i) C A, with Leb(B, (1)) < ¢ such that for every t ¢ B, (i),

108+, /A s A2y S 0% (7.10)
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Moreover, since there is a finite number of symbols, there exists a set
B, that satisfies the same properties for all symbols i € A simultaneously.
Furthermore, since >0 Leb(B,) < oo, by the Borel-Cantelli lemma, for
almost every t € A, there exists ng(t) € N such that for every n > ng(t),
t ¢ B,. Thus for almost every ¢, the inequality (7.10) holds, hence

SIQF e — /sot dpdne|| L2 (pxny) < 00
n=0

which proves the lemma. [ |

We are ready to formulate and to prove a parametric version of the CLT

for singular cocycles.

Theorem 7.4 Let A: A — M* be a smooth family of cocycles satisfying (A1)
and (A2). Then, for almost every t € A there exists o = o(t) > 0 such that

the following convergence in distribution

log||Afvll —n Li(A:) 4
1
i — N(0,1)

holds for ng-a.e © € P(R?*). Moreover,

log||AF|| —n L1(Ar) 4
— — N(0,1).

Proof. In order to apply theorem 2.3 and establish the central limit theorem,
we first note that for every parameter ¢, the Markov system (A x P(R?), Q,)
is ergodic, since it has a unique stationary measure p x 7. That is because
"o — [ dpdn, uniformly for every ¢ € L®(A x P(R?)).

Consider the special observable ¢; defined before and recall from the

previous lemma that for Lebesgue almost every parameter t € A we have

S 1195w [ e dpdnilzzgn < oo
n=0

This in particular allows us to define

g = Q9 (got — /sot dpdm) € L*(p x ny).

n=0

Then for every parameter t,

O — / ©; dpdn, = g; — Qs
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Let o2(t) = o7 () = l|gell3 — | Qegell3-

In order to apply Theorem 2.3 it remains to prove that o%(t) > 0 for
almost every t € A. We accomplish this in several steps. The result will be

proved in Lemma 7.12 and the next two lemmas prepare the proof.

Lemma 7.10 Let PUH be the set of parameters t € A such that the corre-
sponding cocycle A, is projectively uniformly hyperbolic. For Lebesgue almost
every t € PUH, the corresponding stationary measure p X 1, has infinite sup-

port.

Proof. Firstly note that if the parameter ¢t € PUH is such that A, is diagona-
lizable, then the ranges of the singular matrices and the unstable directions of
the invertible matrices are aligned. Therefore, the support of the corresponding
stationary measure has only one point. However, this case only happens with
zero measure, since this alignment will be undone by the winding property
as the parameter ¢ varies. Note that singular matrices remain constant in the
process.

Hence we only need to consider the case in which the cocycle A, is not
diagonalizable. Note that if A, is projectively uniformly hyperbolic, then so is
the set
of unstable Oseledets directions E*(w) of the cocycle (A;)ica,,, over the set of
points w € AZ . We divide the proof in two cases: #K" =1 and #K*, 6 > 1.

mnv-*

its invertible part A, (t) := (A:(4))iea,,.. Hence we can define K

mv?)

First, we suppose that #K! = 1. Since we assume that A, is not

diagonalizable, there is no range in K"

mv-*

Therefore, the iterates of the ranges
are going to spread into infinitely many different points in the projective
space by the projective uniform hyperbolic dynamics (in fact, the iterates will

converge to K ). Since the corresponding stationary measure p x 1, is discrete

mv
A

and gives positive weight to every pair of the form (j, A?(w)7s), we conclude
that the support of 7, is infinite.
Now, suppose that # K% > 1. In fact, in this case the set K[! is infinite,

mv

since it is a Cantor set. Note that if there is any range outside of K},

the proof
is the same as in the previous case, hence we assume that every range r; is
contained in K . Furthermore, since 4;,,, is projectively uniformly hyperbolic,
the distance between K and K3 (the set of stable Oseledets directions E*(w)

inv inv
Z

mv

of the cocycle (A;)iea,,, over the set of points w € A7) is positive. Hence, by
an appropriate choice of word w, one can iterate any range r; by A7 (w) to
(Remember that by Lemma 6.2, there

is no invariant element in K once #K}, > 1.) Since the corresponding

converge to any desired element of K

mv-*

stationary measure p x n; is discrete and gives positive weight to every pair of

the form (j, A7 (w)7s), we conclude that the support of 7, is infinite. |
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Lemma 7.11 For Lebesgue almost every parameter t € A, the observable p;

cannot be p X n; constant.

Proof. By Theorem 6.3, for every t € A, either A, is projectively uniformly
hyperbolic or it can be approximated by cocycles that admit null words. The
proof is then divided into two cases.

First let us consider the set B of parameters t € A such that A, is not
projectively uniformly hyperbolic. Note that there exists ¢ > 0 such that for
every t € Band all j € A and i € Ay, it holds that |¢; (4, 7;)| < c. Moreover,
by Theorem 6.3 there exists ¢’ arbitrarily close to ¢t such that A, has a null
word. Hence, by continuity, there exists some range r; and a finite word w such
that || A} (w)rs|| is arbitrarily small, thus |@;| > ¢. Therefore, we conclude that
for every t € B, ¢; is not constant.

By Lemma 7.10 we have that for Lebesgue almost every ¢t € PUH,
there are infinitely many points in the support of the corresponding stationary
measure p X 7;. Moreover, ¢, is p X n,-constant if and only if it takes the same
value at every point in the support of p x n;. The only way for this to happen
is if A, had a conformal word (with a pair of non real eigenvalues). In fact,
the presence of a conformal word implies that this word is projectively elliptic,
hence not projectively uniformly hyperbolic. Therefore, we conclude that for
almost every t € PUH, the observable ¢, is not p x 7, constant, which finishes
the proof. |

The next lemma establishes the positivity of the variance type quantity
o2(t) for almost every t € A by an adaptation of the proof of [13, Proposition
2.2]. We note that this proposition is a version of the abstract CLT of Gordin

and Livsic, which is more applicable to dynamical systems.

Lemma 7.12 The variance-type quantity defined above satisfies o2(t) > 0 for
everyt € A.

Proof. Consider the family of Markov operators Q;: L®(AxP(R?)) — L>®(A x
P(R?)), given by (Q)(j,9) = Siea (i, Ai(j)9)p; and the corresponding
family of Markov kernels K;: (A x P(R?)) — Prob(A x P(R?)). Recall that the
measure p X 1 is }_(t-stationary, in the sense that (l_(t)*p XMy =p XN

Fix any ¢ € A. Assume by contradiction that o2(p) = 0. Let z,y €
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A x P(R?) with z = (i,91) and y = (j,9,). Then

0< [(Qia@) - 9iw))? dEsc(w)dp > mi(a)

= [{(Qai(@)? + (@) ~ 20:(4) Qugn(2)} dKialy)dp x ()
— [{0w)? ~ (Qua@)?} dEiuly)dp x ()

— lgull3 = 1Qr 1ll3 = o*(t) = 0.

We then conclude that g,(y) = Qg:() for p x n-a.e x and Kt7x—a.e Y.
By induction, for every n > 1 QFgi(2) = g:(y) for p x n-a.e x and f({fm—a.e y.
Hence for all n > 1 and p X n;-a.e x, g; is I_(t’fx—a.e constant.

We claim that in fact g; is p X m-a.e constant. Assume by contradiction
that g; is not constant for p x n;-a.e. Then there exist two points x; and x5
in the support of the stationary measure p x 7, such that p x n,({z1}) > 0,
p X ne({x2}) > 0 and g¢|121} < Ge|{zs)- Define ¢ = 1,y and ¢y = 1y,,3. Note
that 0 < ¢; = 1y, and [¢; dp x n, > 0 for ¢ = 1,2. Moreover, for every

r € A x P(R?) and every n > 1, uniformly in z we have

K, ({aid) = (91 () = (90 () = [ brdpxn >0

Then for n sufficiently large and for every z € A x P(R?), {x;} and {z,}
have positive K;', measure. However, g|(z,} < gt|{z,}, contradicting the fact
that g is f(gx—a.e constant for p x ny-a.e x. Thus, g, is p X n-a.e constant. Since
O, preserves constants, it follows that O = Gy — tht =0 p X m-a.e. which,
by Lemma 7.11, cannot hold. Since we obtained a contradiction, we conclude
that o2(t) > 0, as stated. |

Theorem 2.3 is then applicable to the Markov system (A x P(R?), K;)
and the observable ¢, for Lebesgue almost every ¢ € A. We then conclude
that for ni-a.e. point ¢ € P(R?),

log|[ A7 v — n Ly(A)
o/

In order to prove the second statement we choose a unit vector v for
which the CLT holds and note that

24 N(0,1).

log|| A7l — n L1(Ay) _ log|| A7 vl —nLa(Ar)  logllA7| —log||Af vl]
o\/n o\/n o\/n '

We claim that the sequence log||A7| — log||A} v|| is almost surely

bounded, hence the last term above converges to 0 almost surely, which would
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then conclude the argument via Slutsky’s theorem.

The claim clearly follows from the a.s. boundedness from below by a
A7 ]|
A7
singular direction of the matrix A. By the Pythagorean theorem,

positive constant of the sequence . Let u(A) denote the most expanding

W > v u(A} ()| = [v- u(A)(w))-

Remember that the limit direction u™(A4;)(w) exists almost surely by
arguments in the proof of Oseledets’ theorem (see [21, Proposition 4.4]) and
u®(Ay)(w)t = E*(w), the stable subspace in the Oseledets theorem (see the
beginning of the proof of [21, Theorem 4.4]).

We must have that ‘U : uOO(At)(w)‘ > (0 almost surely (which then
establishes the claim). Otherwise, on a set of positive measure we would have
that v € u®(A;)(w)t = E*(w), which is not possible. Indeed, E*(w) consists
of the pre-images of the kernel k,, via matrix products A} (w), for some n € N
such that w, € Agpng and wo, ..., wp—1 € Ajny. On the other hand, 9 is in the
support of 7;, which consists of images of ranges s via matrix products A} (y).
Thus v € E*(w) would imply the existence of null words, and in particular the
fact that L;(A,) = —oo. But those parameters t form a zero measure set. W

We note that the non-parametric version of the CLT stated in the
introduction, namely theorem 1.6, can be derived form the parametric version
exactly the same way the non-parametric LDT theorem 1.5 was derived from
the parametric LDT theorem 7.3. Thus theorem 1.6 holds as well.

Remark 7.5 The statistical properties derived above are sensitive to pertur-
bations of the cocycle, that is, the parameters that appear in these estimates

are not locally uniform.

Remark 7.6 Projectively uniformly hyperbolic cocycles automatically satisfy
uniform LDT estimates and a CLT, since these properties can be immediately
reduced to the corresponding limit laws for i.i.d. additive processes in classical
probabilities. In particular, by Theorem 6.4, if all components of A € Maty(R)*
are singular and Li(A) > —oo then A satisfies uniform LDT estimates and a
CLT.
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Extensions and Further Problems

All of the results in this manuscript were presented in the Bernoulli
setting for the sake of readability of the text. They are, however, available in
a more general setting, that of locally constant linear cocycles over a mixing
Markov shift, which we refer to as the Markov setting.

In this chapter we intend to offer a glimpse of these other available
results as well as of other possible extensions, ongoing projects and some open
questions.

The chapter is divided into seven sections. In the first we formally
introduce the Markov setting, or the Markov cocycles. Each subsequent section,
from 8.2 to 8.6, corresponds to a previous chapter of the manuscript, from
chapter 3 to chapter 7. We describe how the results in these chapters can be
adapted to the more general setting of Markov cocycles. Finally, in section 8.7
we explore further extensions and describe some open questions that we think

are worth being explored.

Sections 8.2 and 8.3 are based on two joint works with Cai, Klein
and Melo. In 8.2 we describe a Markovian analogue of Furstenberg-Kifer’s
multiplicative ergodic theorem with an explicit filtration. This can be used to
prove the continuity of the Lyapunov exponents for Markovian compositions
of cocycles (precise definitions will be given in that section). In 8.3 we establish
a joint Holder continuity in both the cocycle and the Markov kernel for the
Lyapunov exponent with respect to a suitable topology. Section 8.4 is based
on a joint work with Amorim and Melo and we establish the analyticity of the
Lyapunov exponent with respect to Markov kernels. Sections 8.5, 8.6 and 8.7
are based on two joint works with Duarte, Graxinha and Klein. We discuss not
only the extension to the Markovian setting but also include some thoughts on
how to derive similar results in Mato(R)* (that is, for cocycles whose matrix
components may have negative determinants), which was the original goal of

this project. We conclude with other relevant related problems.
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8.1
Markov cocycles

Consider a Markov system (X, K, ) where ¥ is a compact metric space,
K is a Markov kernel and p is a K-stationary measure. Let Py, denote
the Markov measure on X+ = XN with initial distribution y and transition
kernel K. We use the same notation for its extension to the space X = X7
of double sided sequences. Let o be the forward shift on X and on X.
Then (X, Pk, 0) is a measure preserving, ergodic (non invertible) dynamical
system, (X,Pg,,0) is its natural invertible extension, both of which we call
Markov shifts.

A measurable function A: 3 x ¥ — GLg(R) induces the skew-product
dynamical system F' = Fy g: X x R — X x R?,

F(w,v) = (ow, A(wy,wp)v)

for w = {wptnez € X and v € R¢. That is, F4 i is a linear cocycle over
the base dynamics (X,Pk ,,,0), where the fiber dynamics is induced by
the map A (which depends on two consecutive symbols). We refer to such
a dynamical system as a Markov linear cocycle. Its iterates are given by
F™(w,v) = (¢"w, A"(w)v), where for w = {w, }nez € X,

A (w) = A(wn, wn—1) -+ - A(wg, w1) A(wr, wp) -

By Kingman’s ergodic theorem, if it satisfies an integrability condition, for
example A, A~! are bounded, then the geometric averages of the fiber iterates

of the cocycle Fy i converge Pg ,-a.s.

1
~log][A"(@)]] = La(4, K)

and the limit L;(A, K) is called the maximal Lyapunov exponent of the
system. Replacing the norm (or largest singular value) of the iterates A™(w)
by the other singular values, we obtain all the other Lyapunov exponents
Ly(AK), ..., Ly,(A, K) of the cocycle Fy k.

Remark 8.1 Although we only consider Markov cocycles that depend on two
symbols, the same results will hold for cocycles that depend on any fized,
finite number of symbols. The idea is to do an analogous argument to the one
developed in chapter 2 and establish relations between the stationary measures

and Markov operators on different levels.
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8.2
More on Furstenberg-Kifer’'s multiplicative ergodic theorem

Recall that Furstenberg-Kifer’s filtration is “non random” in the sense
that it does not depend on the point w. Oseledets filtration is completely
random, since it depends on possibly all the coordinates of w. In what follows,
we show a Markovian analogue of Furstenberg-Kifer’s filtration that is only
slightly random, since it depends only on the zeroth coordinate of w.

Let (X, K, ) be an ergodic Markov system, that is, u € Prob(X) is
an extremal point of the set of K-stationary measures. Note that p is not
necessarily unique, but we fix ¢ and everything will depend on it.

Let A: ¥ x ¥ — GLg(R) be a Borel measurable fiber map with A, A™*
bounded. Together with K, it determines the Markov cocycle F' = F4 i over
the ergodic Markov shift (XY, Py ,, o). Note that the corresponding Lyapunov
exponents also depend on (i, so we denote them by L;(A, K, p), 1 < j < m.
Consider the observable ¢ = 14: 3 x ¥ x P — R given by

wA(wl,wo,@) = log

A(wl,wo)HzHH (8.1)

where v is any vector representing the projective point o.

Let Probg) (X x P(R?)) denote the set of all probability measures 7 €
Probg , (X x P(R?)) that project down to p.

Define the continuous linear functional a: Probg, (2 x P(RY)) — R

a(n) = [ wlwr,wo, 0)dKu (wr)dn(wo, 0
and let
B(p) == max{a(n): n € Probf (X x P(R%))}.

Denote by ¥#(a) the set of all values of the linear functional « over the
extremal points of Prob, , (3 x P(R?)). By the Krein-Milman theorem this set

is nonempty. Moreover, (1) = max L#(«).

Theorem 8.1 Let (X, K, 1) be an ergodic Markov system and let A: ¥ x 3 —
GLn(R) be a measurable fiber map with A, A~' bounded. There exists a
filtration £ = (Lo, L1,...,L,), that is, for 0 < j < r, L;: ¥ — Gr(R™) is

a measurable section and for all wy € %
{0} = Lrs1(wo) C Lr(wo) € -+ © Li(wo) & Lo(wo) =R™

such that for all indices 0 < j <,

(1) the section L; is A-invariant,
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(ii) for p-a.e. wy € X, Yv € Lj(wo) \ Lj11(wo) and P,y -a.e. w € XN,
li L log ||A™ =
T, 1og 47 (@)l = 5500,

(i) if m is an extremal point of Probg (¥ x P) with a(n) = f; then
n{(wo,?): wo € B, v € Lj(wo)} = 1 and n{(wo,?): wo € X,v €
Lj1(wo)} = 0.

Moreover, the filtration can be explicitly defined as
1
Lj(wy) == {v € R™: limsup — log || A"(w)v]| < B(p) Puy-a.e. w} (8.2)
n—oo T
forallwy € X and 0 < j <r.

In [15] we were able to provide a direct proof of the Markovian filtration
and describe explicitly each of its components. The existence of such filtration
was already known by work of Bougerol, as a consequence of Kifer’s theory of
random i.i.d composition of cocycles [34, Theorem 1.2 in Chapter 3|, which we
will briefly describe bellow. Moreover, we will prove in 8.2 that the Markovian
filtration also implies a filtration for random composition of cocycles, therefore
we conclude that the theorems are in fact equivalent.

Let M be a compact metric space, let d > 1 and denote by G the set of
linear cocycles w: M x R? — M x RY, w(x,v) = (1,(2), A,(x)v), where the
base dynamics of w is a continuous function 7,,: M — M and the fiber map of
w is a measurable, bounded, with bounded inverse function A, : M — GLq(R).

Let Q C G be a compact set. Given a measure v € Prob(§) with suppr C
2, consider the multiplicative process in G (i.e. the random composition of
linear cocycles)

II" :=wp_10...w1owy, neN

where w = {wy, }n>0 is an i.i.d. sequence of random variables in § with common
distribution v. Note that for all (z,v) € M x R? and n € N,

IL (2, v) = (75(2), A(@)v) ,
where

n __ P
T = Twn_10.. 0w 0wy = Twn_1 O« Twy OTw, and

AZ(LE) = Awn71<7—nilx> o 'Awl (Twox) Awo (l‘) :

w

Evidently (G,0) is a monoid that acts naturally on the set M by

wo + T := Ty, (). This action induces a convolution operation (or an action of
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Prob(9) on Prob(M)). More precisely, given v € Prob(9) and m € Prob(M),
their convolution v*m € Prob(M) is the push-forward of the product measure
v X m via the map (wo, ) — wp -

A measure m € Prob(M) is v-stationary if and only if v * m = m, which
means that for all ¢ € C'(M)

/gb Tuwo®) dv(wp) dm(z /gb ) dm(z

Moreover, if m is an extremal point in the set of v-stationary measures on
M, we say that the pair (v,m) is ergodic. This can be shown to be equivalent
to the ergodicity of the skew-product dynamical system (QY x M, N x m, f),
where f(w,z) := (ow, 7, (2)).

Next we show that Theorem 8.1 implies the existence of a non-random
filtration for i.i.d. compositions of linear cocycles, which provides a different

argument for [34, Theorem 1.2 in Chapter 3].

Theorem 8.2 Let G be a set of linear cocycles on M x R? as above, let
v € Prob.(9), let m € Prob(M) and assume that (v, m) is ergodic. There are

an integer 0 < r < d, real numbers By > 5y > ... > [, that depend on v and
m, and a measurable filtration £ = (Lo, L1, ..., L), that is, L;: M — Gr(R?)

are measurable maps with
{0} = Lo1(2) € Lo(2) © ... C La(2) € Lo(z) =RY

such that for all 0 < j < r and for m-a.e. x € M, the following hold.

(i) Ay (z) Lj(x) = L;(T0,(x)) for v-a.e. wy € 9.
(ii) For allv € L;(z)\ Lj11(z) and vN-a.e. w € XN,

.1 n
Jim = log AL (z)vll = 5;.
(iii) For vN-a.e. w € ¥V,

1
lim ~ log | AZ ()| = fo.

n—oo n,

Proof. We associate to the multiplicative i.i.d. process II”, a Markov linear
cocycle as follows.
Let ¥ := Q x M and consider the Markov chain in X

(wo, ) = (w1, Two) =+ .. = (Wp, T0x) — ...
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with transition kernel K: ¥ — Prob(X), K(u.z) i= ¥ X 0r, 2.

Since m is v-stationary, it follows that u := v x m is K-stationary.
Moreover, since (v, m) is ergodic, namely m is an extremal point in the set
of v-stationary measures on M, then p is extremal also which shows that
(K, ) is an ergodic Markov system on 3.

Note that the “admissible" sequences in (2 x M)N are the elements of
the set

X = {{(wn,rwn_l O Ty O Tw®) bnen: wn € QYN €N,z € M}

in the sense that Pk ,(X) = 1 and consequently P, )(X) = 1 for v-a.e.
wo € G and m-a.e. x € M.

Define the fiber map (depending on one variable) A: ¥ — GL4q(R),
Awg, ) := Ayy(z). Then for all points (w,z) = {(wn, 7 x)} >0 € X, the

iterates of the fiber map are
An(w> .CE) = Awn—l(’rn_lx) o 'Awl (7’0_,033) Awo (ZL’) = AZ(I’) :

Theorem 8.1 applied to the corresponding Markov linear cocycle Fy i
implies the existence of » € N, 8y > ;1 > ... > 3, and, for every index
0 < j < r, of a measurable section £;: Q x M — Gr(R?) with the stated
properties, given (see (8.2)) by

n—oo T

1
Li(wo, ) = {v € R™: limsup — log|| A" (w, 2)v|| < B Pluym) a.e.(w,x)}

1
= {v e R™: limsup — log|| Al (z)v]| < B; P, a.e. w}.
n—oco T

Since wp, w1, ...wWn_1, ... are chosen independently and according to the
same distribution v, it follows that £;(wp,z) does not depend on wy v-almost
surely, that is, £;(wo, ) = L;(z) for v-almost every wy. Items (i) and (ii) are
consequences of the corresponding statements in Theorem 8.1, while item (iii)

follows from the Markovian analogue of Theorem 3.3. [

In an ongoing project, we are investigating the Markovian analogue of
the theory of i.i.d random composition of cocycles: the Markovian composition
of cocycles. Therefore, we consider an ergodic Markov system (€2, K, i) and the
points wp, w1, ... are chosen accordingly to it. One of the goals is to establish
the continuity of the Lyapunov exponents under some irreducibility hypothesis

to Markovian composition of cocycles.
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8.3
Holder continuity in the generic setting
The goal of this section is to present a Markovian analogue of theorem
4.1. We study the continuity of the maximal Lyapunov exponent of Markov
cocycles Fy i as a function of the fiber map A and the transition kernel K.
Let X be a compact metric space. We assume that the Markov kernel K
is uniformly ergodic, meaning that K converges to its stationary measure
uniformly (in x € ) relative to the total variation distance. In this case the

convergence is necessarily exponential and the K-stationary measure pu = py
is unique. Let Qg : L®(X) — L>®(X),

Qro(@) = [ oly) dK.(y)

be the corresponding Markov operator. It turns out that the uniform ergodicity
of the transition kernel K is equivalent to the existence of constants C' < oo
and ¢ > 0 such that

Qo — [wdu| <ol Vo€ Lx()VneEN,

in which case we refer to K as being (C, ¢)-uniformly ergodic.

In the Markov setting, irreducibility refers to the non-existence of a
proper, A-invariant section, that is, of a measurable function £: ¥ — Gr(R%)
(here Gr(R?) denotes the Grassmannian of R?) such that 0 < dim(V') < d and

A(wng1,wn) L(wn) = L(Wn1), for Pr -ae. w = {wp}n .

Quasi-irreducibility is a weaker version of this property, where such a proper A-
invariant section £ may exist, but in this case, the maximal Lyapunov exponent
of the fiber restriction of the cocycle Fs i to £ must equal Ly(A, K).

Given M < oo, a fiber map A: ¥ x ¥ — GLg(R) is M-Lipschitz

continuous if for all (wy,wp), (21,20) € X X X,
‘A(wl, WO) — A(Zl, Zo)‘ < M (d(wl, 21> + d((ﬂo, Zo)) ,

while a transition kernel K': ¥ — Prob(X) is M-Lipschitz continuous with
respect to the Wasserstein distance W if for all x,y € X,

Wl(Kxa Ky) S Md(l‘, y)

'For these and other characterizations of uniform ergodicity see [36, Theorem 16.0.2].
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Fix some constants M,C < oo and ¢ > 0 and consider the set
C = C(M, C,c) of Markov linear cocycles with M-Lipschitz data and (C, c¢)-

uniformly ergodic transition kernel, that is,

€= {(A, K): A is M-Lipschitz, K is M-Lipschitz,

K is (C, ¢)-uniformly ergodic}.
We endow this set with the distance
d((A,K),(B,T)) :=dw(A, B) + dw, (K, T),

where dyy, is the distance between kernels induced by the Wasserstein distance,

namely
dw, (K, T) := sup Wy (K,, T,).
TEX
Theorem 8.3 Let (A, K) € € be a Markov cocycle. Assume that (A, K) is
quasi-irreducible and that L(A, K) > La(A, K). Then locally near (A, K), the
map C 3> (B, T) — Li(B,T) is Hélder continuous.

A proof of this result is given in [15].

8.4
Analyticity of the Lyapunov exponent with respect to Markov kernels

In the previous section we presented a result about the joint regularity
of (A,K) — Ly(A, K). During that work, it became clear that the main
obstruction to obtain a good modulus of continuity was to control A. In this
section we introduce the Markovian analogue of theorem 5.2. That theorem
shows that the Lyapunov exponent admits a high regularity with respect to
the measure in the total variation norm. We now present a result that shows
that it also admits a high regularity with respect to the Markov kernel in a
suitable norm. Similarly to chapter 5, where we considered complex valued
measures, we consider complex Markov kernels K: ¥ — M(X).

Denote by IC(X) the set of continuous and complex Markov kernels over
Y such that for every w € ¥, K,(X) has bounded variation. Consider the

following norm in IC(X):
K] == supl| Ku[| v -
weX

Given two kernels K and L, we may consider a partial order relation between

their supports. We say that supp(L) < supp(K) if supp(L,) C supp(K,,) for



Chapter 8. Extensions and Further Problems 140

every w € Y. For any fixed kernel K, we may define the set of continuous

kernels whose supports are contained in the support of K as the following:
S(K) :={L € K(X): supp(L) < supp(K)}.

Moreover, we call a transition kernel K quasi-irreducible if the corre-

sponding Markov cocycle Fy i is quasi-irreducible.

Theorem 8.4 Let Ky be a uniformly ergodic kernel on ¥ such that Li(Ky) >
Ly(Ky).

(1) If Koy is quasi-irreducible, then K +— Li(K) is real analytic in a
neighbourhood of K.

(2) The map K — Li(K) is real analytic in a neighbourhood of Ky in S(Ky).

The main ideas in the proof of the Markov setting are analogous to the
ones that appear in the i.i.d case, but we need to use tools from [15] and [21]
to deal with it. A full proof can be found on [1].

8.5
Regularity dichotomy in the singular setting

In this section we consider linear cocycles over a Markov shift and we
explain how to extend the results in chapter 6 to this setting.

Let P € Mat,(R) be a (left) stochastic matrix, P = (p;j)1<ij<x With
pi; > 0 and SF pij = 1 for all 1 < 5 < k. Given a P-stationary probability
vector ¢ = P q, the pair (P,q) determines a probability measure p on X for
which the process &,: X — A, §,(w) := w, is a stationary Markov chain in
A with probability transition matrix P and initial distribution law ¢. Then
(X, 0, 1) is a measure preserving dynamical system.

The stochastic matrix P determines a directed weighted graph on the
vertex set A with an edge j + ¢, from j to ¢, whenever p;; > 0. Sequences in
X describing paths in this graph are called P-admissible. The set Xp of all
P-admissible sequences is the support of the Markov measure . Given a finite
admissible word (ig, i1, ...,4,) € A" and k € Z, the set

[ksigy i1y yin) i={w € Xp:wpy =10 forall 0 <1 <n}
is called a cylinder of length n + 1 in Xp. Its (Markov) measure is then

M ([k’;io, ila s 7271]) = Qig Pisjio " Pinyin—_1 -
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We will assume that the matrix P is primitive, i.e. there exists n > 1 such
that pf, > 0 for all entries of the power matrix P". Then lim,, .. pj; = ¢; > 0
for all 1 < 4,7 < k and the corresponding Markov shift (X, u, o) is ergodic and
mixing. As before, a k-tuple A = (Ay, ..., A;) € Maty(R)* determines a locally
constant linear cocycle over this base dynamics, which we refer to as a random
Markov cocycle. Its first Lyapunov exponent is denoted by Li(A) = Li(A, P, q).

Consider a random Markov linear cocycle F': Xp x R? — Xp x R?
determined by the data (P, g, A) where A := (A;);eq € Maty (R).

By a slight abuse of notation, in the Markov setting we also write
A;: A x P(R?) — A x P(R?) to denote, for each i € A, the non-invertible
map A;(j,0) := (i, A; 0).

In what follows we introduce a series of analogous definitions to the main
concepts from chapter 6. All results proven in the Bernoulli setting in chapter
6 extend to the Markov setting, using the definitions below and ideas similar
to the ones presented above, properly adapted to this more general setting.
Definition 8.1 An invariant multi-cone for A is a set M C A x P(R?) that

satisfies the following properties

(1) M is an open subset of A x P(R?),
(2) the closure of each fiber of M is a proper subset of {i} x P(R?),

(3) A;M € M for everyi e A .
Definition 8.2 For i € Agyg, consider r; := Range(A;) and k; := Ker(4;)

and set

K(A) :
R

{(jki): i € Aging,j € A},
(4) = {(

( Tl')i 1€ Asing}-

The complement A x P(R?) \ K(A) is the common domain of all maps

A; with i € Asing, while R(A) is the union of the ranges of these same maps.

Definition 8.3 Given i € Agng, a branch departing from i is any P-admissible
word w = (wo, wy, -+ ,wyp) € A" with n > 0 such that wy = i and w; € Ay
foralll = 1,...,n. Similarly, a branch arriving at i is a P-admissible word
w = (wo,w1, "+ ,wyp) €A™ with n > 0 such that w, =1 and w; € Ay, for all
[=0,...,n—1.

Denote by B (i) the set of all branches w = (wg, w1, -+ ,wy) € A*™! de-
parting from ¢ and by B, (i) the set of all branches w = (wg, wy, -+ * ,w,) € A"
arriving at i. For w € B (i) we write A" }w) := A,, _, ... A,, A,, while for
w € B, (i) we write A=V (w) = AZVAZ LU AZY = (Au, o A, AT

These matrices are invertible by definition of a branch.
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Definition 8.4 The subset W C A x P(R?) is defined to be the closure of the
union of the ranges of compositions of the partial maps flwl along all branches
departing from i while the subset W= C A x P(R?) is the closure of the union
of the pre-images of 0 under compositions of the partial maps /Alwl along all

branches arriving at i.

In the Markov case, K¥, 6 and K:_  are subsets of A x P(R?). Firstly,
the multi-cone is to be interpreted according to definition 8.1 and P(R?) \ M
replaced by A x P(R?) \ M. Secondly, the matrix products A, ---4;, are to
be substituted by composition of the maps A; o ---o flil along admissible

invertible words.

8.6
Statistical properties in the singular setting

The cocycle (P,q,A) determines the operator Q: L®(A x P(R?)) —
L>(A x P(R?)) defined by

(Qe)(5,0) :==Y_ (i, A; 0) pyj

1€A
= > (i, A0)pi+ D (i, 1) piy.
1€Ainv leAimg

Let m: A x P(R?) — A denote the canonical projection in the first
coordinate. If n € Prob(A x P(R?)) is O-stationary, then its push-forward
measure via 7 is the P-stationary measure ¢ on A, that is, m.n = q.

Since 71 projects down via m to g, we can consider its disintegration
{ni}iea C Prob(P(R?)), which is characterized by

3 (5 %) 2
/AXP(RQ) (i, 0) dn(i, 0) =3 q; / ©(i,0) dni(0) Vo € L®(A x P(R?)).

2
i€A P(R?)

1
n=> q¢dé xn and n(E)=—n({i} x E) Vi € A, E C P(R*) Borel.
4

i€A

Givenn > 1, s € Agng and | € A, let B, (s,1) denote the set of admissible

words w = (wp, . . . ,wy) of length n + 1 such that wy = s, w, = and w; € Ay
for all i = 1,...,n — 1. For such a word we write A"(w) := A, ... A, Au,
and also p(w) := Pu,w,1 *** Py wo-

With these notations, we have the following explicit formula for a (or,

a-posteriori, the unique) Q-stationary measure.
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Proposition 8.1 Letn = Z q;0; X n; where for all j € A,
jeA

mm e Y Y Y ped (5.3)

J s€Asing n=1weB,(s,5)
Then n is a (P,q, A)-stationary probability measure on A x P(R?).

Moreover, with this stationary measure, we are able to establish analo-
gous theorems to all of the results in chapter 7. In particular, we describe the

Furstenberg’s Formula for the Markov setting.
Consider the following observable ¥: A x P(R?) — [—00, c0),

| 4;vl]
ol

U(j,0) = > pi log

1€A

Theorem 8.5 (Furstenberg’s Formula) If the cocycle (P,q,A) has rank

one then

Li(4) = [wan,

All the proofs follow in a generally similar manner to the ones presented
in chapter 7. However, some of them are much more technical, which is why we
preferred to write the text in the Bernoulli context. In particular, the proofs of
the LDT estimates and of the CLT in the singular setting for Markov cocycles
also follow a similar scheme to the one shown above, but using the stationary

measure described by the more complex expression (8.3).

8.7
More about the singular setting

In this section we address other extensions and questions related to the

study of linear cocycles in the singular setting.

We start by explaining some technical difficulties that made us chose to
work with matrices in Maty (R) instead of Maty(RR) in chapters 6 and 7. This
assumption was made for different reasons in each chapter. Regarding chapter
7, we only introduced this hypothesis in order to use the winding property so
that we could estimate how much time the orbit of a range stays close to a
kernel. Therefore, it is merely a technical assumption which we believe that
it could be removed by using a different approach. The one we plan to use is
based more heavily on the properties of subharmonic functions (arising from
considering analytic curves of cocycles) rather than on the positive winding

property, which limits us to Mat (R)-valued cocycles.
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On the other hand, a great part of the work in chapter 6 was to extend
Avila, Bochi, Yoccoz (ABY) theory from SLo(R) to Mat] (R). In order to
extend this theory to Mats(R)-valued cocycles, the strategy would be to
first extend the results of Avila, Bochi, Yoccoz to cocycles with matrices in
SLy(R) := {A € GLy(R): det A = £1} and then use our approach to further
extend from SLj(R)-valued to Maty(R)-valued cocycles.

We believe that some of the results from this text, especially the local
ones, such as the multi-cone criteria, should not be difficult to be extended
to SL)(R)-valued cocycles. However, there are other results that rely on a
global understanding of the boundaries of the set of uniformly hyperbolic (UH)
cocycles and of the set of elliptic (€) cocycles. These type of problems are still
far from being completely understood.

One example of such a result proven in [44] for SLy(R)-valued cocycles,
says that the complement of the uniformly hyperbolic cocycles is exactly the
closure of the elliptic cocycles: UH® = £. It is an open question whether this

result still holds in SL;(IR) or not. Therefore we propose the following questions.

Question 1. Is every random linear cocycle with rank 1 in Mats(RR)
either projectively uniformly hyperbolic or approximated by cocycles with null

words (in particular with Lyapunov exponent —oo)?

A weaker version of this question is the following.

Question 1°. Is Lebesgue almost every random linear cocycle with rank
1 in Maty(R) either projectively uniformly hyperbolic or approximated by

cocycles with null words (in particular with Lyapunov exponent —oo)?
Some related, potentially useful questions are the following.

Question 2. Is it true that in the space of SL}(R)-valued cocycles we
have UH® = £7?

Question 2’ Ts it true that in the space of SL)(IR)-valued cocycles, the
identity UH® = £ holds at least modulo a Lebesgue zero measure set of such

cocycles?

Moreover, in [44] Yoccoz asks whether OUH = OE or not. This is proved
to be true in the case of the full shift in two symbols, see [2, Theorem 3.3].
However, the answer to this question is negative for the full shift with N > 3
symbols, see [32] and [17]. The type of counter example provided in both papers
shows that there are elements from € which are not in OUUH. An interesting
question that could lead to some progress regarding questions 2 and 2’ is the

following.
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Question 3. Consider the set of random SL)(R)-valued cocycles. Is
there any cocycle that belongs to OUH but not to 0E7

A further extension would be regarding the support of the measure. In
this work, we only consider linear cocycles over a finitely supported measure in
order to use ABY theory of multi-cones. Since that result is available only for a
finite number of matrices, we followed this direction. However, we believe that
if one could extend the ABY theory to infinitely supported measures, then it
would also be possible to obtain a similar theory to the one in this manuscript

for singular cocycles with infinitely supported measure.

Question 4. Does theorem 6.3 still hold for infinitely supported

measures?

Another direction that we would like to investigate in the future is the
study of singular cocycles in higher dimensions. Some steps in this direction are
already available, since in [10], Bochi and Gourmelon developed an analogous
theory of multi-cones in higher dimensions. Moreover, recently, Avila, Eskin
and Viana proved the continuity of the Lyapunov exponents for random linear
cocycles of dimension d for invertible matrices, i.e., with full rank. We would
like to understand the regularity of the Lyapunov exponents for random linear
cocycles of dimension d and rank k£ < d.

In dimension 2, for random, locally constant linear cocycles with a
finitely supported measure we now have an almost complete understanding
of the regularity of the Lyapunov exponent. When the rank k£ = 2, it is
at least continuous due to [11], with several results in the generic setting
for intermediate modulus of continuity. When the £ = 1, the present work
shows that it satisfies an almost everywhere dichotomy between analyticity
and discontinuity (at least in Mat; (R)).

All the other cases for d > 3 and & < d are still not known and we believe
that they should present another type of behavior. Although these cocycles do
not have full rank, our best guess now would be that there are cases where
the Lyapunov exponent still has some good intermediate regularity, differently
from the dichotomic behavior observed in dimension 2. Therefore, we complete

this work with one last question.

Question 5. Study the continuity properties of the Lyapunov exponents

of random cocycles in dimension d and rank k.
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