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Abstract

Pinto, Marcelo Durães Capeleiro; Klein, Silvius (Advisor).
Lyapunov Exponents of Random Linear Cocycles: Regu-
larity and Statistical Properties. Rio de Janeiro, 2025. 149p.
Tese de Doutorado – Departamento de Matemática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

This work is concerned with the study of the regularity and the statistical
properties of Lyapunov exponents of random locally constant linear cocycles.
We investigate both the case when the support of the underlying measure
consists of only invertible matrices, as well as the case when it also contains
non-invertible matrices. It turns out that these two settings exhibit strikingly
different behaviors.

In the invertible case we study the regularity of the Lyapunov exponent
as a function of the underlying measure relative to two different topologies.
We establish its Hölder continuity in the generic setting with respect to the
Wasserstein distance and its analyticity with respect to the total variation
norm. In the non-invertible case, under appropriate assumptions, we obtain a
characterization of uniform hyperbolicity via multi-cones and use it to establish
a dichotomy between the analyticity and the discontinuity of the Lyapunov
exponent. We also derive large deviations estimates and a central limit theorem
for all of these models.

While there are many interesting remaining open problems, our re-
sults attempt to provide an almost complete picture in the context of two-
dimensional random locally constant cocycles with finitely supported measu-
res.

Keywords
Dynamical Systems; Ergodic Theory; Linear Cocycles; Lyapunov

Exponents; Markov Operators.



Resumo

Pinto, Marcelo Durães Capeleiro; Klein, Silvius. Expoentes de
Lyapunov de Cociclos Lineares Aleatórios: Regularidade e
Propriedades Estatísticas. Rio de Janeiro, 2025. 149p. Tese de
Doutorado – Departamento de Matemática, Pontifícia Universidade
Católica do Rio de Janeiro.

Este trabalho estuda a regularidade e as propriedades estatísticas dos
expoentes de Lyapunov de cociclos lineares aleatórios localmente constantes.
Investigamos tanto o caso em que o suporte da medida subjacente consiste
apenas em matrizes invertíveis, quanto o caso em que também contém matrizes
não invertíveis. Esses dois cenários exibem comportamentos notavelmente
diferentes.

No caso invertível, estudamos a regularidade do expoente de Lyapunov
como função da medida subjacente em relação a duas topologias diferentes.
Estabelecemos sua continuidade de Hölder no caso genérico em relação à dis-
tância de Wasserstein e sua analiticidade em relação à norma de variação total.
No caso não invertível, sob hipóteses apropriadas, obtemos uma caracterização
da hiperbolicidade uniforme por meio de multicones e a usamos para estabe-
lecer uma dicotomia entre a analiticidade e a descontinuidade do expoente de
Lyapunov. Também provamos estimativas de grandes desvios e um teorema
central do limite para todos esses modelos.

Embora existam muitos problemas interessantes ainda em aberto, nossos
resultados tentam fornecer uma imagem quase completa no contexto de
cociclos aleatórios bidimensionais localmente constantes com medidas com
suporte finito.

Palavras-chave
Sistemas Dinâmicos; Teoria Ergódica; Cociclos Lineares; Expoentes de

Lyapunov; Operadores de Markov.
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1
Introduction and Statements

1.1
Lyapunov exponents and linear cocycles

Dynamical systems are an incredibly vast and active area of research in
mathematics.

A dynamical system is a pair (X, f), which consists of a (usually compact)
metric space X and a (usually continuous) transformation f : X → X. Given
any point x ∈ X, we can consider its iterates

x, f(x), f 2(x) = f(f(x)), . . . , fn(x) = f(fn−1(x)), . . . ,

which we call the (forward) orbit of x. There are many different points of view
from which one can study a dynamical system.

One way is trying to understand it from a topological point of view, by
answering questions such as: is the orbit of a point x periodic; is the orbit
dense; are there any fixed points for f?

Another interesting approach is to try to understand the relation between
the geometry of the space X and the transformation f . If X is a manifold,
how does its curvature influence the behavior of the orbits? Does the geometry
generate any rigidity property on the dynamics?

Furthermore, one can also look at the same problem from a probabilistic
point of view, trying to understand the behavior of the orbits on average. Do
most of them share similar properties? Do they satisfy any limit laws? This
probabilistic approach is what we call ergodic theory and it lies at the heart
of this thesis.

Let us take a detour and recall some probabilistic results about random
additive processes. Consider a sequence of i.i.d. random variables {Xn}n≥0.
Let Sn = X0 + · · · + Xn−1 denote their partial sums. An important question
concerns the behavior of the (arithmetic) average process 1

n
Sn as n → ∞.

The law of large numbers (LLN) says that this sequence of averages
converges to the expected value of X0 almost surely. In particular, it also
converges in probability.



Chapter 1. Introduction and Statements 12

That is, for all ε > 0,

P
{∣∣∣∣ 1nSn − EX0

∣∣∣∣ > ε
}

→ 0 as n → ∞. (1.1)

The next natural question is whether there is an explicit rate of conver-
gence to 0 in equation (1.1). The large deviations principle (LDP) of Cramér
says that under general conditions,

P
{∣∣∣∣ 1nSn − EX0

∣∣∣∣ > ε
}

≍ e−c(ε)n as n → ∞, (1.2)

where c(ε) ≈ c0ε
2, for some c0 > 0.

Note that the previous result is of an asymptotic type. Let us now
describe Hoeffding’s inequality, an effective, non-asymptotic (or finitary) large
deviations type (LDT) estimate. If

∣∣∣X0

∣∣∣ ≤ c almost surely, then the inequality

P
{∣∣∣∣ 1nSn − EX0

∣∣∣∣ > ε
}

≤ 2e−(2c)−2ε2n (1.3)
holds for all n ∈ N.

Finally, one can ask what is the typical size of the difference Sn −nEX0.
The central limit theorem (CLT) says that in a certain sense, Sn−nEX0 ≍

√
n.

More precisely, if EX2
0 < ∞ and if X0 is not almost surely constant, then we

have the following convergence in law to a Gaussian distribution:
Sn − nEX0√

n
d−→ N (0, σ2). (1.4)

Let us describe in probabilistic terms the central element of this work,
which is the multiplicative analogue of the law of large numbers. Consider a
multiplicative (semi)group of d×d matrices G, for instance SLd(R), or GLd(R)
or Mat+

2 (R), the set of d× d matrices with nonnegative determinant. Let µ be
a probability measure over G, which we will assume to have compact support.

Let g0, g1, . . . , gn, . . . be an i.i.d. sequence of matrices in G, chosen ac-
cording to the distribution µ. Let Πn := gn−1 · · · g1 g0 denote the corresponding
multiplicative process and consider the geometric average ∥Πn∥1/n. This prod-
uct of random matrices typically grows exponentially, therefore we consider
the logarithm of this expression.

By the celebrated theorem of Furstenberg and Kesten [28], under a
general integrability condition, this average process converges almost surely
to a constant. More precisely, with full probability,

L1(µ) = lim
n→∞

1
n

log∥gn−1 · · · g1g0∥ (1.5)

where the almost sure limit L1(µ) is called the first or the top Lyapunov
exponent of the process.
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Replacing the norm (that is, the first singular value) of the matrices Πn

by their second, their third and so on singular values, we obtain, respectively,
the second Lyapunov exponent L2(µ), the third Lyapunov exponent L3(µ) and
so on (until de dimension d).

An interesting question is whether there are also multiplicative analogues
of the other statistical properties, such as large deviations estimates and
a central limit theorem. Although the theory of additive processes is well
developed, our understanding of the theory of multiplicative random processes
is still much more limited. Part of this work is dedicated to exploring some new
settings where we can establish LDT estimates and central limit theorems.

A difficult and important problem in the study of multiplicative processes
concerns the regularity of the Lyapunov exponent, the limit quantity in (1.5),
as a function of the input data. More precisely, the first Lyapunov exponent
is a function of the probability measure µ, so the question is how would a
small perturbation of µ affect the limit L1(µ). This is a very subtle question
that has motivated a lot of research from renowned mathematicians over
the last decades. It turns out that the type of perturbation considered, the
corresponding topology, will greatly influence the answer.

Some classical results in this direction are due to Furstenberg and Kifer
[29] who proved the continuity of the Lyapunov exponents under some generic
conditions, to Le Page [38], who proved a Hölder modulus of continuity, also
in the generic setting and to Peres [39], who established the analyticity of
the Lyapunov exponent with respect to the transition probabilities when the
support of µ is a finite set.

A recent result, considered to be a breakthrough in this theory, is due to
Avila, Eskin and Viana [3] and it establishes the continuity of the Lyapunov
exponents of random matrix products in any dimension and without any
further genericity conditions compared to the classical result of Furstenberg
and Kifer.

The concepts and problems mentioned previously were described in
probabilistic terms. It turns out that they can be studied in a much more
general, dynamical systems framework, that of linear cocycles. A linear cocycle
is a skew product transformation F : M ×Rd → M ×Rd determined by a pair
(f, A), where f : M → M is a base transformation (usually assumed to be
ergodic), A : M → G is a measurable fiber map and

F (x, v) = (f(x), A(x)v).
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The n-th iterate of F is then F n(x, v) = (fn(x), An(x)v), where

An(x) := A(fn−1(x)) · · ·A(f(x))A(x).

Moreover, by Furstenberg-Kesten’s theorem (or by a more general result,
the Kingman subadditive ergodic theorem), the limit

L1(F ) = lim
n→∞

1
n

log∥An(x)∥

exists (and it is constant) for µ-a.e. x ∈ M and it is called the first Lyapunov
exponent of the cocycle F .

Random products of matrices fit this general framework as follows.
Consider a measure µ on a semigroup G of d × d matrices. Assume that the
support Σ of this measure is compact and let M be the space of sequences ΣZ,
equipped with the product measure µZ. Let A : M → G be the projection
of a sequence g = {gn}n∈Z to its zeroth coordinate g0, let σ : M → M

be the Bernoulli shift σ(g) = {gn+1}n∈Z, and let F be the linear cocycle
corresponding to the pair (σ,A). Then the n-th iterate of the fiber map An(g) is
exactly the random product of matrices gn−1 . . . g1 g0 and the limiting quantity
L1(F ) = L1(µ). Such a cocycle will be referred to as a random linear cocycle
as its fiber iterates encode products of i.i.d. matrices.

Note that, a priori, the map A could be chosen to be much more general.
However, a celebrated theorem of Mañé-Bochi [9] says that given any measure
preserving dynamical system (M, f, µ) where f is an aperiodic (meaning its
set of periodic points has measure zero) homeomorphism, for any fiber map
A : M → SL2(R), either the cocycle associated with A is hyperbolic over the
support of µ or else A is approximated in the C0 topology by fiber maps with
zero Lyapunov exponent. Regarding the Lyapunov exponent as a function of
the fiber map, it follows that if L1(A) > 0, then the first Lyapunov exponent
is either analytic (this holds by a theorem of Ruelle [40] when A is hyperbolic)
or it is discontinuous at A in the C0 topology of SL2(R)-valued cocycles. In
other words, the regularity of the first Lyapunov exponent exhibits a strongly
dichotomic behavior, analyticity versus discontinuity.

Therefore, in order to establish regularity properties of the Lyapunov
exponent (when the cocycle is not uniformly hyperbolic), the map A is often
assumed to be highly regular. That is also why we will restrict our attention
to the case when A is the projection of a sequence of matrices to the zeroth
coordinate, in other words A is a locally constant map and the corresponding
cocycle is called a random, locally constant linear cocycle. All of the results
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in this manuscript are concerned with this model, which for simplicity will be
referred to only as a random cocycle.

Another commonly assumed hypothesis is that the semigroup G where
the fiber map takes values consists only of invertible matrices. All of the three
classical results that we cited before, as well as [3], fit into this setting, that of
locally constant linear cocycles determined by invertible matrices. The reason
for this assumption is made more apparent by example 6.1, which also appears
in both [20] and [3]. In this example the support of the measure µ consists
of two matrices, one hyperbolic, hence invertible and the other a projection,
which, in particular, is singular (it has zero determinant). A straightforward
computation shows that the Lyapunov exponent is discontinuous at µ, when
regarded as a function of the matrices determining the fiber map. This example
will be explained in more details in chapter 6. Moreover, in [3], Avila, Eskin and
Viana stated that “there is no hope to obtain any general regularity result for
Lyapunov exponents in this more general setting” (of non invertible matrices).

Although the last paragraph suggests that we should restrict ourselves
to the classical setting of invertible matrices, this manuscript also explores the
case in which the cocycle admits singular matrices. Surprisingly, it turns out
that this setting admits a very rich theory, while at the same time we can
confirm that the previous quote is indeed correct, as it will be explained later.

1.2
Main results

We are now ready to formulate some of the main results of this
manuscript. We start with the study of the regularity of the map µ 7→ L1(µ)
for GLd(R)-valued cocycles, relative to two different topologies: the weak star
and the one induced by the total variation norm.

We will use a certain concept of irreducibility for random linear cocycles.
Irreducibility usually refers to the non-existence of a proper, invariant sub-
bundle for the skew-product dynamics. We will need a slightly weaker property,
the quasi-irreducibility, which may allow the existence of such proper, invariant
sub-bundle, as long as the first Lyapunov exponent along it coincides with the
first Lyapunov exponent L1(µ) on the entire space.

Relative to the weak star topology, we prove a more general version of
Le Page’s theorem, based on the author’s Master’s thesis [27] and on [4]. In
what follows, W1 refers to the Wasserstein’s metric, a distance in the space
of measures that metrizes the weak star topology. Precise definitions will be
given in chapter 4.
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Theorem 1.1 Let Σ ⊂ GLd(R) be a compact set and let µ ∈ Prob(Σ). Assume
that µ is quasi-irreducible and that L1(µ) > L2(µ). Then there exist δ > 0,
C > 0 and α ∈ (0, 1] such that given µ1, µ2 ∈ Prob(Σ) satisfying W1(µi, µ) < δ

for i ∈ {1, 2}, we have that

|L1(µ1) − L1(µ2)| ≤ CW1(µ1, µ2)α.

Relative to the total variation norm, we generalize the result of Peres [39]
proving the analyticity of the Lyapunov exponent, from probability measures
with finite support to probability measures with compact, possibly infinite
support. Precise definitions of the total variation norm and the concept of
analyticity in this setting are given in chapter 5. This theorem is part of
a joint work with Amorim and Melo [1]. We obtained two results, one that
assumes the quasi-irreducibility of the measure/cocycle, and one without this
assumption, but instead the measure has to have full support.

Theorem 1.2 Let Σ ⊂ GLd(R) be a compact set, let µ0 ∈ Prob(Σ) and
assume that L1(µ0) > L2(µ0).

(1) If µ0 is quasi-irreducible, then the map Prob(Σ) ∋ µ 7→ L1(µ) is real
analytic with respect to the total variation norm in a neighborhood of µ0.

(2) If supp(µ0) = Σ, then the map Prob(Σ) ∋ µ 7→ L1(µ) is real analytic
with respect to the total variation norm in a neighborhood of µ0.

The next results are part of two projects with Duarte, Graxinha and
Klein: [18] and [19]. We study cocycles in Mat+

2 (R)k, the semigroup of two
dimensional matrices with non-negative determinant. The starting point of
these projects is a generalization of the works of Yoccoz [44] and Avila, Bochi
and Yoccoz [2] providing a characterization of the dominated splitting property
(also referred to as projective uniform hyperbolicity) in terms of multi-cones.
We extend the scope of the results in [44], [2] from SL2(R)-valued cocycles to
Mat+

2 (R)-valued cocycles.
We fix a probability vector p = (p1, . . . , pk) with ∑k

i=1 pi = 1 and pi > 0
for all indices i and consider random linear cocycles with finitely supported
measures, thus determined by a k-tuple A = (A1, . . . , Ak) ∈ Mat+

2 (R)k and
by the probability vector p. We identify the cocycle with the tuple A that
determines it.

Let P(R2) denote the real projective line. An invariant multi-cone for
such a cocycle A is an open subset of M ⊂ P(R2) such that M̄ ̸= P(R2) and
AiM ⊂ M for every index 1 ≤ i ≤ k.
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Theorem 1.3 Given a random linear cocycle A = (A1, . . . , Ak) ∈ Mat+
2 (R)k,

A is projectively uniformly hyperbolic if and only if A admits an invariant
multi-cone.

This characterization is one of the main tools in the study of rank one
cocycles. We say that A = (A1, . . . , Ak) ∈ Mat+

2 (R)k has rank 1 if there is at
least one index j such that Aj is singular (i.e. non-invertible) and there are no
null words (i.e. finite products of matrices).

The next theorem has the flavor of Mañé-Bochi’s dichotomy. Surprisingly,
this dichotomy holds in the high regularity setting of locally constant random
linear cocycles, rather than the C0-topology of Mañé-Bochi’s celebrated result.

Theorem 1.4 Let A ∈ Mat+
2 (R)k be a locally constant random linear cocycle

of rank 1. Then either A is projectively uniformly hyperbolic or else there exists
a sequence of random linear cocycles {An}n → A such that An has a null word
and, in particular, L1(An) = −∞ for every n ∈ N.

Moreover, using Ruelle’s theorem [40], we conclude the following.

Corollary 1.1 Given A ∈ Mat+
2 (R)k with at least one singular and one

invertible component, if L1(A) > −∞ then the following dichotomy holds:
either the Lyapunov exponent L1 is analytic at A or it is discontinuous at A.

An argument involving subharmonic functions (see Corollary 6.3) shows
that in fact L1(A) > −∞ holds for Lebesgue almost every A ∈ Mat+

2 (R)k with
at least one singular and one invertible component. Therefore, the previous
corollary applies to almost every cocycle and the aforementioned quote from
[3] proves to be very accurate: if the cocycle is not projectively uniformly
hyperbolic, then it is a discontinuity point of the Lyapunov exponent.

Furthermore, using a topological argument, the set of continuity points
of L1 is a Baire residual subset of Mat+

2 (R)k.

Putting together other recent results on random two dimensional cocycles
in finite symbols, we obtain the following almost complete picture on the
regularity of their first Lyapunov exponent L1.

At any invertible cocycle A, L1 is a continuous function on GLd(R)k (an
open set in Matd(R)k) and, moreover, its regularity varies from log-Hölder
continuous1 to analytic (see [40], [11], [35], [41], [25], [22], [24]).

In the algebraic variety

R1 =
{
A ∈ Mat+

2 (R)k : rank(Ai) = 1 ∀ 1 ≤ i ≤ k
}

1Given a metric space (M, d), a function ϕ : M → R is said to be log-Hölder continuous
if
∣∣ϕ(x) − ϕ(y)

∣∣ ≤ C
(

log 1
d(x,y)

)−1
for some C < ∞ and all x, y ∈ M .
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the map L1 is always continuous. Moreover, every A ∈ R1 is a continuity point
of the Lyapunov exponent L1 in Mat+

2 (R)k. Furthermore, (see Theorem 6.4) a
cocycle A ∈ R1 is projectively uniformly hyperbolic if and only if L1(A) > −∞,
which is equivalent to the absence of null words (i.e. vanishing finite products
of components of A). This latter condition holds for almost every such cocycle.
Therefore L1 is analytic at Lebesgue almost every A ∈ R1.

In the remaining case, given a cocycle A ∈ Mat+
2 (R)k with at least

one invertible and one non-invertible component, either L1 is analytic or it
is discontinuous at A.

Consider now the problem of statistical properties (large deviations and
the central limit theorem) in the singular setting. We obtain the following
results.

Theorem 1.5 For Lebesgue almost every cocycle A ∈ Mat+
2 (R)k with at least

one singular and one invertible component and for every ε > 0 it holds that

P
{∣∣∣ 1
n

log∥An∥ − L1(A)
∣∣∣ > ε

}
≤ C e−c0(ε)n1/3

where C < ∞, c0(ε) > 0 is an explicit function of ε and P = pZ refers to the
Bernoulli measure on the space of sequences of matrices.

Theorem 1.6 For Lebesgue almost every cocycle A ∈ Mat+
2 (R)k with at least

one singular and one invertible component, there exists σ > 0 such that the
following convergence in distribution to the normalized Gaussian holds:

log∥An∥ − nL1(A)
σ

√
n

d→ N(0, 1) .

We note that these statistical properties are sensitive to perturbations
of the cocycle, that is, the parameters appearing in these estimates are not
uniform in a neighborhood of A. This is unlike the case of invertible matrices,
where the LDT estimates are uniform in the data, something that can be
used directly to deduce a modulus of continuity of the Lyapunov exponent,
see [21, 22].

The table below summarizes what it is known regarding the minimal
regularity of the Lyapunov exponent (R-LE), namely its modulus of continuity2

2Given a metric space (M, d), a function ϕ : M → R is said to be weak-Hölder continuous
if
∣∣ϕ(x) − ϕ(y)

∣∣ ≤ C exp
(

−α logb 1
d(x,y)

)
for some C < ∞, α, b ∈ (0, 1] and all x, y ∈ M .

When b = 1, this corresponds to α-Hölder continuity.
Moreover, if

∣∣ϕ(a)−ϕ(x)
∣∣ ≤ C d(a, x)α holds for a given point a and all x, we call ϕ pointwise

Hölder at a.
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or whether it is discontinuous (Disc.) as well as the availability of large
deviations type (LDT) estimates and of a central limit theorem (CLT) for
invertible or Mat+

2 (R)-valued Bernoulli cocycles A ∈ Mat+
2 (R)k, k ≥ 2. For

the purpose of this table, we assume that L1 > L2 (so L1 > −∞ as well).
There are three possibilities for such a given cocycle A: rank = 2, meaning
its components are all invertible; rank = 1, meaning its components are all
singular; rank = 1&2, where some components are singular and some are
invertible with positive determinant. The last two cases are treated in chapters
6 and 7.

R-LE LDT CLT
rank = 2 (Weak) Hölder(a) Yes(b) Yes(c)

rank = 1 Cω (Cor. 6.4) Yes (Rmk. 7.6) Yes (Rmk. 7.6)
rank = 1&2 Disc. (Cor. 1.1) Yes (Thm. 1.5) Yes (Thm. 1.6)

(a) Locally Hölder for quasi-irreducible cocycles [38], [21]; locally weak-
Hölder in the remaining case [24]; pointwise Hölder always [41].

(b) Locally uniform LDT of exponential type in the quasi-irreducible
case [21]; locally uniform LDT of sub-exponential type in the remain-
ing case [24]; non-uniform LDT of exponential type holds always [24].

(c) See [37] and [6].

Table 1.1: Random two dimensional cocycles.

Recall that in the remaining cases, if the cocycle is projectively uniformly
hyperbolic then the Lyapunov exponent is analytic, while when L1 = L2 the
Lyapunov exponent is automatically continuous and in fact pointwise log-
Hölder continuous (see [41]) in the invertible case.

Moreover, in chapter 8, we state that the results on the second and third
lines of the table also hold for the more general setting of mixing Markov
cocycles. Furthermore, in this setting, the results on the first line are available
only in the generic (irreducible) case (see [21, Chapter 5]), but we expect
their analogues from the Bernoulli setting to still hold without the generic
assumption.

Finally, it is also worth mentioning theorems 8.1 and 8.3, which are
part of a joint work with Cai, Klein and Melo, where we prove a Markovian
analogue of both Furstenberg-Kifer’s multiplicative ergodic theorem and Le
Page’s theorem. In the interest of the readability of the manuscript, we chose
to present all the results of this manuscript and their proofs in the i.i.d.
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(rather than the Markovian) setting, therefore the proofs of these theorems
were omitted, but they can be found in [15].

The work presented in this manuscript uses concepts, methods and tools
from many different fields, including hyperbolic dynamics, ergodic theory,
probabilities, spectral theory, holomorphic functions in Banach spaces, po-
tential theory (the theory of subharmonic functions), as well as parameter
elimination arguments.

The rest of this manuscript is organized as follows. In chapter 2 we
introduce some of the main elements present in the text: the Markov operators
and the stationary measures, as well as classical results that will be used
all throughout. In chapter 3 we give a detailed proof of Furstenberg-Kifer’s
multiplicative ergodic theorem, also known as Furstenberg-Kifer’s non-random
filtration. This is a key result in the study of random linear cocycles, which
appears in essentially every work related to the regularity of the Lyapunov
exponents of random linear cocycles. In chapter 4 we prove theorem 1.1. For
completion, we also included a section with the proof of statistical properties
for this model. In chapter 5 we prove theorem 1.2. In chapter 6 we study
the regularity of the Lyapunov exponents for cocycles in Mat+

2 (R) and we
prove theorems 1.3 and 1.4. In chapter 7 we study the statistical properties
for cocycles in Mat+

2 (R) and we prove theorems 1.5 and 1.6. In chapter 8 we
discuss how we can generalize the results in the previous chapters to Markov
cocycles and we also formulate some further problems and questions related
to the singular setting.



2
Markov Operators and Stationary Measures

In this chapter we introduce the main elements that will appear through-
out the text: the Markov operator and the stationary measure. They are the
foundation for all the results in this thesis.

In section 2.1 we define the Markov operator and explain why it is an
essential tool in the study of the Lyapunov exponents of random linear cocycles.
In section 2.2 we study three types of dynamics related to linear cocycles, one
deterministic and two stochastic, and explain the relation between the invariant
measure (for the deterministic dynamics) and the stationary measure (for the
stochastic dynamics). This will be very useful later, since we will be able to
switch between these settings and choose which one is more adequate to work
with, according to the specific problem. In section 2.3 we present two abstract
theorems that are used to establish statistical properties (large deviations and
central limit theorem) for Lyapunov exponents. Therefore, whenever we plan to
prove such properties, we have to verify that the hypotheses of those theorems
are fulfilled.

2.1
The Markov operator

2.1.1
Stochastic dynamical systems and Markov kernels

A deterministic dynamical system (DDS) is defined by a pair (M, f),
where M is a compact metric space and f : M → M is a continuous
transformation that acts on M . In this setting, for each point x ∈ M , the
law f determines its trajectory:

x → f(x) → f 2(x) → · · · → fn(x) → . . .

We denote by Prob(M) the set of all probability measures over M .
Endowed with the weak-star topology, Prob(M) is a compact, metrizable
topological space.

A probability measure µ ∈ Prob(M) is called f -invariant if f∗µ = µ,
where f∗µ is the push-forward measure defined by f∗µ(E) = µ(f−1(E)) for
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all Borel sets E ⊂ M . It is easy to verify that µ is f -invariant if and only if
µ =

∫
M δf(x) dµ(x).
A stochastic dynamical system (SDS) is a pair (M,K), where M is still

a compact metric space and K : M → Prob(M) is a continuous map which
associates to each point x ∈ M a probability measure Kx ∈ Prob(M). This
map is called a Markov (or a transition) kernel. Given any Borel set E ⊂ M ,
the number Kx(E) denotes the probability that x transitions to E.

One can also consider the iterated kernels Kn : M → Prob(M) defined
inductively for every n ∈ N as follows. K1

x = Kx, K2
x =

∫
M Ky dKx(y) and

Kn+1
x =

∫
Kn
y dKx(y). An intuitive meaning of Kn

x (E) is that it represents the
probability that x transitions to E in n steps.

Remark 2.1 Note that given any DDS (M, f) one can define an SDS via
the following Markov kernel: Kx = δf(x). Thus every deterministic dynamical
system is also a stochastic dynamical system.

Definition 2.1 A measure µ ∈ Prob(M) is called K-stationary if it satisfies

µ =
∫
M
Kx dµ(x).

We also write the equation above as µ = K ∗ µ.

It is important to note that stationary measures do exist. Let π ∈
Prob(M) and consider

πn : = 1
n

n∑
j=1

Kj
x ∗ π

which belongs to Prob(M). Since we assume M to be compact, Prob(M) is
weak star compact, thus there exists a subsequence {πnj

}j that converges to
some measure µ ∈ Prob(M) which, by construction, is K-stationary.

The triplet (M,K, µ), where M is a compact metric space, K a continu-
ous Markov kernel and µ a K-stationary measure is called a Markov system.

2.1.2
Markov operators

Let L∞(M) denote the set of measurable and bounded functions. Given
a Markov kernel K, we associate to it a Markov operator Q = QK , defined as

Q : L∞(M) → L∞(M)

Qφ(x) =
∫
M
φ(y) dKx(y).

Note that Q satisfies the following properties:
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(i) Constant functions are invariant under Q.

(ii) Q is a bounded linear operator.

(iii) If φ ≥ 0, then Qφ ≥ 0.

Operators that satisfy the third property are called positive, so the Markov
operator is a positive operator taking constant functions to constant functions.

Moreover, note that µ is a K-stationary measure if and only if∫
M
Qφ dµ =

∫
M
φ dµ for every φ ∈ L∞(M). (2.1)

This characterization is very useful and will be used many times throughout
the text.

Lemma 2.1 Given a Markov kernel K : M → Prob(M), the following relation
holds

QKn = Qn
K .

Proof. Let φ ∈ L∞(M). The relation is trivial when n = 1. For n = 2

Q2
Kφ(x) =

∫
M

∫
M
φ(z) dKy(z)dKx(y)

=
∫
M
φ(z) dK2

x(z) = QK2(x)

The proof follows by induction. ■

2.1.3
Random linear cocycles

Consider the quadruple (M, f,B, µ), where M is a compact metric space,
B is a sigma algebra, f : M → M is a measurable transformation and µ

is a probability measure. We say that (M, f,B, µ) is a measure preserving
dynamical system if µ(f−1(E)) = µ(E) holds for every E ∈ B.

Moreover, an ergodic dynamical system is a measure preserving dynam-
ical system such that if E is an f -invariant set (meaning that f−1(E) = E)
then µ(E) = 0 or µ(E) = 1.

Given an ergodic dynamical system (M, f,B, µ), we recall the concept of
Birkhoff sums. Let φ : M → R be a bounded observable and let n ≥ 1. The
n-th Birkhoff sum of φ, which we denote by Snφ is defined as follows:

Snφ : M → R

Snφ(x) = φ(x) + φ(f(x)) + · · · + φ(fn−1(x)).
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Furthermore, by Birkhoff’s ergodic theorem,

1
n
Snφ →

∫
M
φ dµ µ− a.e.

We will introduce the stochastic analogue of Birkhoff sums, but in order
to present this concept, we recall the notion of Markov chains. Let (Ω,B,P)
be a probability space. A Markov chain is a sequence {Zn}n≥0 of random
variables with values in M that satisfy the Markov property. More precisely,
Zn : Ω → M is such that for every E ∈ B,

P(Zn+1 ∈ E|Zn, . . . Z0) = P(Zn+1 ∈ E|Zn).

Given a Markov kernel K : M → Prob(M) and a probability measure
π ∈ Prob(M), we say that {Zn}n≥0 is a Markov chain with transition K and
initial distribution π if ∀E ∈ B, ∀x ∈ M and ∀n ∈ N the following hold:

(i) P(Z0 ∈ E) = π(E),

(ii) P(Zn+1 ∈ E|Zn = x) = Kx(E).

Given a Markov chain {Zn}n≥0 and an observable φ : M → R, we define
the n-th stochastic Birkhoff sum of φ as

Snφ = φ ◦ Z0 + φ ◦ Z1 + · · · + φ ◦ Zn−1.

An important example that illustrates the previous concept is the study
of the stochastic dynamical system associated to a linear cocycle.

Let µ ∈ Prob(GLd(R)) be a probability measure, where supp(µ) = Σ is a
compact set. The measure µ determines the random linear cocycle (that is, the
locally constant linear cocycle over the Bernoulli shift) F : ΣN ×Rd → ΣN ×Rd

given by
F (g, v) : = (σg, g0v),

where g = {gn}n∈N is a sequence in ΣN and σ : ΣN → ΣN is the Bernoulli shift.
The iterates of F are given by F n(g, v) = (σng, gn−1 . . . g0v).

A natural SDS associated to this linear cocycle is obtained by choosing
M = Σ×Sd−1 and K : Σ×Sd−1 → Prob(Σ×Sd−1) such that K(g0,v) = µ×δ g0v

∥g0v∥
.

This Markov kernel induces the following Markov chain:

Z0(g, v) = (g0, v) → Z1(g, v) =
(
g1,

g0v

∥g0v∥

)
→ Z2(g, v) =

(
g2,

g1g0v

∥g1g0v∥

)
→ . . .
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Moreover, once we have the Markov kernel, we can explicitly write the
associated Markov operator Q : L∞(Σ × Sd−1) → L∞(Σ × Sd−1)

Qφ(g0, v) =
∫
M
φ

(
g1,

g0v

∥g0v∥

)
dµ(g1).

An important observable in this setting is Φ: Σ × Sd−1 → R given by

Φ(g0, v) = log∥g0v∥.

Let us describe the stochastic Birkhoff sum SnΦ(g, v):

SnΦ(g, v) = Φ(g0, v) + Φ
(
g1,

g0v

∥g0v∥

)
+ · · · + Φ

(
gn−1,

gn−1 . . . g0v

∥gn−1...g0v∥

)

= log∥g0v∥ + log ∥g1g0v∥
∥g0v∥

+ · · · + log ∥gn−1 . . . g0v∥
∥gn−2 . . . g0v∥

= log∥gn−1 . . . g0v∥.

Therefore, we conclude that the study of the properties of random linear
cocycles and their Lyapunov exponents can be reduced to the study of an
associated Markov system.

2.2
Stationary measures

We denote by ProbK(M) the set of K-stationary measures on M . Since
to each Markov kernel K we can also associate a Markov operator Q, we also
use the notation ProbQ(M) to denote this set.

2.2.1
The three levels of dynamics

Consider the linear cocycle that was introduced in the previous section
F : ΣN × Rd → ΣN × Rd such that

F (g, v) := (σg, g0v),

where g = {gn}n∈N is a sequence in ΣN and σ : ΣN → ΣN is the Bernoulli shift.
This is an example of a DDS. We already discussed an example of a

natural SDS associated to it, that will be very useful in the study of Lyapunov
exponents. We will introduce other natural dynamical systems associated to
this linear cocycle, which we divide into three different levels.
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(i) In the first level, more similar to the original cocycle, we have the pro-
jective (or projectivized) cocycle, which is also a deterministic dynamical
system (DDS). It is important to note that it acts on ΣN ×P(Rd), a com-
pact space, where P(Rd) is the projective space over Rd, and we denote
by v̂ the projective point corresponding to the nonzero vector v ∈ Rd.
This skew-product dynamical system is defined as

F̂ : ΣN × P(Rd) → ΣN × P(Rd)

(g, v̂) 7→ (σg, ĝ0v̂),

where given a matrix (linear map) g ∈ GLd(R), ĝ denotes the induced
projective map on P(Rd), namely ĝv̂ = ĝ v.

(ii) In the second level we define a stochastic dynamical system (SDS) as
follows. The ambient compact space is Σ × P(Rd) and the transition
kernel is

K̄ : Σ × P(Rd) → Prob(Σ × P(Rd))

(g0, v̂) 7→ µ× δĝ0v̂.

Its corresponding Markov operator is

Q̄ : L∞(Σ × P(Rd)) → L∞(Σ × P(Rd))

Q̄φ(g0, v̂) =
∫

Σ×P(Rd)
φ(ĝ1, ĝ0v̂) dµ(g1).

Moreover, consider the Markov chain {Z̄n}n≥0 given by:

Z̄n : ΣN × P(Rd) → Σ × P(Rd)

Z̄n(g, v̂) = (ĝn, ĝn−1 . . . ĝ1ĝ0v̂).

It is easy to verify that the transition kernel of this Markov chain is
precisely the kernel K̄ defined above. As an initial distribution of this
chain one may choose the (not necessarily stationary) measure µ× δv̂, in
order to begin in a specific direction v̂, or a stationary measure, which
turns out to always be of the form µ × η, for some measure η on the
projective space.

(iii) The third level is also an SDS, but it acts on the smaller space P(Rd),
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therefore it is usually easier to deal with. It is defined by

K : P(Rd) → Prob(P(Rd))

v̂ 7→
∫

Σ
δĝ0v̂ dµ(g0).

Its corresponding Markov operator is

Q : L∞(P(Rd)) → L∞(P(Rd))

Qφ(v̂) =
∫
P(Rd)

φ(ĝ0v̂) dµ(g0).

Furthermore, the associated K-Markov chain {Zn}n≥0 is given by

Zn : ΣN × P(Rd) → P(Rd)

Zn(g, v̂) = ĝn−1 . . . ĝ1ĝ0v̂.

Similarly to the second level, natural choices for the initial distribution
are δv̂ or a stationary measure η.

Moreover, this three levels of dynamics are closely related in regards to
their Markov operators, Markov kernels, and stationary measures. In what
follows we will describe some of these relations.

Proposition 2.1 Given η ∈ ProbQ(P(Rd)), the following are equivalent:

(i) η is a Q-stationary measure.

(ii) µ× η is a Q̄-stationary measure.

(iii) µN × η is F̂ -invariant.

Proof. We start by proving that (i) ⇐⇒ (ii). Note that η isQ-stationary if and
only if η = K∗η. Moreover, µ×η is Q̄-stationary if and only if µ×η = K̄∗(µ×η).
Hence, it is enough to prove that K̄ ∗ (µ × η) = µ × (K ∗ η). In other words,
it is sufficient to prove that for every φ ∈ C0(Σ × P(Rd))∫

φ d(K̄ ∗ (µ× η)) =
∫
φ dµd(K ∗ η). (2.2)

Therefore, let us expand both sides using the definitions of K and K̄. First
note that

K̄ ∗ (µ× η) =
∫
K(g0,v̂) dµ(g0)dη(v̂) =

∫
µ× δĝ0v̂ dµ(g0)dη(v̂) and

K ∗ η =
∫
Kv̂dη(v̂) =

∫
δĝ0v̂ dµ(g0)dη(v̂).
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Now we substitute the previous computation in equation (2.2) as follows.
∫
φ d(K̄ ∗ (µ× η)) =

∫
φ(g1, ĝ0v̂) dµ(g1)dµ(g0)dη(v̂)

=
∫
φ dµd(K ∗ η).

Now we prove that (i) ⇐⇒ (iii). Note that µN × η is F̂ -invariant if and only
if for every φ ∈ C0(ΣN × P(Rd))∫

φ d(µN×η) =
∫
φ◦F̂ d(µN×η) =

∫
φ(σg0, ĝ0v̂) dµN(g0, g1, . . . )dη(v̂). (2.3)

Consider the map Ψ: P(Rd) → R, such that Ψ(v̂) =
∫
φ(g′, v̂) dµN(g′).

Since φ is arbitrary, so is Ψ. Note that the left-hand side of equation (2.3) is
equal to

∫
Ψ dη, while its right hand side is equal to

∫
Ψ(ĝ0v̂) dµ(g0)dη(v̂),

which can be written as
∫
QΨ(v̂) dη(v̂). Therefore µN × η is F̂ -invariant if and

only if
∫

Ψ dη =
∫
QΨ(v̂) dη(v̂), which is equivalent to η being Q-stationary.

■

2.2.2
Ergodic stationary measures

By equation (2.1), stationary measures are fixed points of Q∗, the dual
of the Markov operator Q. Therefore ProbQ(M) is closed, thus compact in
the weak-star topology. Moreover, ProbQ(M) is also convex. Indeed, given two
different Q-stationary measures η1 and η2 and t ∈ (0, 1),

∫
M
Qφ d(tη1 + (1 − t)η2) = t

∫
M
Qφ dη1 + (1 − t)

∫
M
Qφ dη2

= t
∫
M
φ dη1 + (1 − t)

∫
M
φ dη2

=
∫
M
φ d(tη1 + (1 − t)η2),

showing that tη1 + (1 − t)η2 is also Q-stationary.
Let X be a topological vector space which is Hausdorff and locally convex.

Given a set V ⊂ X, we say that p is an extremal point of V if whenever x, y ∈ V

and t ∈ (0, 1) are such that p = tx+ (1 − t)y, we necessarily have that x = y.

Theorem 2.1 (Krein-Milman) If K ⊂ X is compact, convex and non empty,
then K has at least an extremal point. Moreover, the closed convex hull of the
extreme points of K is equal to K.

Let X be the topological vector space of signed measures on M and let
K = ProbQ(M). Since ProbQ(M) is compact, convex and non empty, the
Krein-Milman theorem is applicable, therefore there exist extremal stationary
measures.
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Definition 2.2 Let (M,K, η) be a Markov system. A function ϕ ∈ L∞(M) is
called Q-stationary if Qϕ = ϕ η-a.e. Moreover, a Borel set F ⊂ M is called
Q-stationary if its indicator function 1F is Q-stationary.

The next result (which should be well known but we could only find
a version thereof in a more particular setting, see [42, Proposition 5.11])
characterizes the ergodicity of a Markov system.

Proposition 2.2 Let η ∈ ProbK(P(Rd)). The following are equivalent:

(i) η is an extremal point of ProbK(P(Rd)).

(ii) If a Borel set F ⊂ P(Rd) is Q-stationary, then η(F ) = 0 or η(F ) = 1.

(iii) If φ ∈ L∞(P(Rd)) is Q-stationary, then φ is constant η-a.e.

(iv) The projective cocycle F̂ : ΣN × P(Rd) → ΣN × P(Rd) is an ergodic
dynamical system when endowed with the invariant measure µN × η.

Proof. We start with (i) ⇒ (ii). Assume that there exists a Q-stationary Borel
set F ⊂ P(Rd) such that η(F ) = t ∈ (0, 1). Then F c := P(Rd) \ F is also
Q-stationary and η(F c) = 1 − t ∈ (0, 1). Let ηF and ηF c be the probability
measures on P(Rd) given by ηF (E) = η(E∩F )

ν(F ) and ηF c(E) = η(E∩F c)
η(F c) . Note that

ηF ̸= ηF c and η = tηF + (1 − t)ηF c .
We show that ηF and ηF c are Q-stationary, which will imply that η is

not an extremal point of ProbQ(P(Rd)). Indeed, since the indicator function
1F is stationary, ∀v̂ ∈ P(Rd), it holds that

1F (v̂) = Q1F (v̂) =
∫
1F (ĝ0v̂) dµ(g0)

so 1F (v̂) = 1F (ĝ0v̂) for µ-a.e. g0 ∈ Σ. This combined with the fact that η is
Q-stationary shows that ∀ϕ ∈ L∞(P(Rd)),
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∫
P(Rd)

Qϕ(v̂) dηF (v̂) = 1
η(F )

∫
F
Qϕ(v̂) dη(v̂)

= 1
η(F )

∫
P(Rd)

∫
P(Rd)

ϕ (ĝ0v̂)1F (v̂) dµ(g0) dη(v̂)

= 1
η(F )

∫
P(Rd)

∫
P(Rd)

ϕ (ĝ0v̂)1F (ĝ0v̂) dµ(g0) dη(v̂)

= 1
η(F )

∫
P(Rd)

∫
P(Rd)

(ϕ1F ) (ĝ0v̂) dµ(g0) dη(v̂)

= 1
η(F )

∫
P(Rd)

Q(ϕ1F )(v̂) dη(v̂)

= 1
η(F )

∫
P(Rd)

(ϕ1F )(v̂) dη(v̂)

= 1
η(F )

∫
F
ϕ(v̂) dη(v̂) =

∫
P(Rd)

ϕ dηF .

Therefore ηF is a Q-stationary probability measure. Similarly, ηF c is also
Q-stationary, therefore η is not an extremal point of ProbQ(P(Rd)).

Now we prove that (ii) implies (iii). Let φ ∈ L∞(P(Rd)) be a Q stationary
function. Fix c ∈ R and consider the set E = {v̂ : φ(v̂) < c}. It is enough to
prove that E isQ stationary, because then, by (ii), either η(E) = 0 or η(E) = 1;
since c is arbitrary, this would imply the existence of a constant c∗ such that
φ = c∗ η-a.e. Let

S =
{
ψ ∈ L∞(P(Rd)) : ψ is Q-stationary

}
.

It is clear that S is a linear space. We show that S is a lattice, i.e if
ϕ ∈ S, |ϕ| ∈ S and if ϕ, ψ ∈ S, then min{ϕ, ψ} ∈ S and max{ϕ, ψ} ∈ S. Let
φ ∈ S. Then φ(v̂) = Qφ(v̂) η-a.e v̂. Hence for η almost every v̂,

|φ(v̂)| = |Qφ(v̂)| =
∣∣∣∣∫ φ(ĝ0v̂) dµ(g0)

∣∣∣∣ ≤
∫

|φ(ĝ0v̂)| dµ(g0) = Q|φ|(v̂).

Thus |φ| ≤ Q|φ| for η-a.e. v̂ ∈ P(Rd). Since η ∈ ProbQ(P(Rd)), it follows
that

∫
Q|φ| dη =

∫
|φ| dη and we conclude that |φ| = Q|φ| η almost

everywhere, hence |φ| ∈ S. Moreover, since min{ϕ, ψ} = ϕ+ψ
2 − |ϕ−ψ|

2 and
max{ϕ, ψ} = ϕ+ψ

2 + |ϕ−ψ|
2 , using the linearity of S we conclude that S is a

lattice.
Now consider φn(v̂) = min{1, nmax{c − φ(v̂), 0}}. Note that for every

φn ∈ S and v̂ ∈ P(Rd), φn → 1E as n → ∞. Hence Qφn → Q1E and
Qφn = φn → 1E. We conclude that Q1E = 1E which means that E is Q-
stationary.

We now suppose that (iii) is true and prove that µN ×η is F̂ -ergodic. Let
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ψ ∈ L∞(ΣN × P(Rd)) be a F̂ -invariant function, so ψ(F̂ (g, v̂)) = ψ(g, v̂) for
µN × η almost every (g, v̂). We have to show that ψ is constant µN × η-a.e.

Let ϕ : P(Rd) → R, ϕ(v̂) =
∫
ψ(g, v̂)) dµN(g). We start by showing that

it is constant η-a.e. By (iii), it is enough to prove that ϕ is Q-stationary.
For all v̂ ∈ P(Rd),

ϕ(v̂) =
∫
ψ(g, v̂)) dµN(g) =

∫
ψ(F̂ (g, v̂)) dµN(g)

=
∫
ψ({gn}n≥1, ĝ0v̂) dµN(g)

=
∫
ψ(g′, ĝ0v̂) dµN(g′)dµ(g0)

=
∫
ϕ(ĝ0v̂) dµ(g0) = (Qϕ)(v̂) .

It follows that ϕ is constant η-a.e., that is, there are c ∈ R and E ⊂ P(Rd)
with η(E) = 0 such that

ϕ(v̂) =
∫
ψ(g, v̂) dµN(g) = c ∀v̂ /∈ E .

This shows that ψ does not depend η-a.s. on the variable v̂. We will show that
it also does not depend µN-a.s. on g.

For every k ∈ N let Fk be the σ-algebra generated by cylinders Ck ⊂
ΣN ×P(Rd), where Ck is a cylinder in the coordinates (g0, g1, . . . , gk−1, v̂). This
sequence of σ-algebras forms a filtration which generates the Borel σ-algebra of
ΣN×P(Rd). We show that the conditional expectation (with respect to µN×η)
E(ψ|Fk) is constant µN × η-a.e. for all k ∈ N. Indeed, given any k ∈ N,

E(ψ|Fk) =
∫
ψ(g, v̂) dµN × η({gn}n≥k, v̂)

=
∫
ψ(F̂ k(g, v̂)) dµN × η({gn}n≥k, v̂) = ϕ(ĝ0ĝ1 . . . ĝk−1v̂) = c.

provided that ĝ0ĝ1 . . . ĝk−1v̂ /∈ E.
Let π denote the projection π : Prob(Σ × P(Rd)) → Prob(P(Rd)). Since

F̂ is µN × η-invariant and µN × η projects to η, (π)∗(µN × η) = η, it holds that

µN × η
{
(g, v̂) : ĝ0ĝ1 . . . ĝk−1v̂ ∈ E

}
= µN × η

(
(F̂ k)−1(π−1E)

)
= µN × η

(
π−1E

)
= η(E) = 0,

hence E(ψ|Fk) = c holds µN × η-a.e. Therefore, given any k ∈ N and any
F ∈ Fk, by the definition of the conditional expectation we conclude that

∫
F
ψ dµN × η =

∫
F
E(ψ|Fk) dµN × η =

∫
F
c dµN × η.
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Since ⋃k∈N Fk generates the Borel σ-algebra of ΣN × P(Rd), we then conclude
that ψ = c holds µN × η-a.e.

It remains to prove that (iv) implies (i). Assume by contradiction that
η is not an extremal point of ProbQ(P(Rd)), so there are t ∈ (0, 1) and η1 ̸=
η2 ∈ ProbQ(P(Rd)) such that η = tη1 + (1 − t)η2. Since η1, η2 ∈ ProbQ(P(Rd)),
both µN × η1 and µN × η2 are F̂ -invariant. Then the F̂ -invariant measure
µN × η = t(µN × η1) + (1 − t)(µN × η2) is not an extremal point for the set of
invariant measures over Σ × P(Rd), hence µN × η is not F̂ -ergodic. ■

2.3
Mixing and statistical properties

2.3.1
Abstract LDT and CLT

Let L∞(M) denote the Banach space of all measurable and bounded func-
tions from M to R, which is endowed with the norm ∥φ∥∞ = supx∈M |φ(x)|.
Let (E , ∥·∥E) be a Banach subspace of (L∞, ∥·∥∞) that satisfies the following
properties:

(i) ∥φ∥∞ ≤ ∥φ∥E .

(ii) It is invariant under the Markov operator: Q(E) ⊂ E .

(iii) Q|E is a bounded operator.

(iv) The constant function 1 belongs to E .

Definition 2.3 A Markov system (M,K, ν) is called strongly mixing in
(E , ∥·∥E) if there exist constants c ∈ R and σ ∈ (0, 1) such that

∥Qnφ−
∫
φ dν∥∞ ≤ cσn∥φ∥E ∀ φ ∈ E .

This property will play a central role throughout the text, because it is
closely related to the statistical properties of the Lyapunov exponents, as we
will show in the remaining of this section. It turns out that it is also related
to the regularity of the Lyapunov exponents.

The next theorem is due to Cai, Duarte, Klein [13]. It is an abstract
result that guarantees large deviations type estimates under much more
general assumptions than the commonly used spectral gap property of the
transfer/transition operators. The exponential rate of convergence of Qnφ to∫
φ dν in definition 2.3 is not strictly necessary, any rate will do.
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Theorem 2.2 Let (M,K, ν) be a strongly mixing Markov system on (E , ∥·∥E).
Then, for all φ ∈ E and ε > 0 there are c(ε) > 0 and n(ε) ∈ N such that for
all n ≥ n(ε) ,

P
{∣∣∣∣ 1nSnφ−

∫
M
φ dν

∣∣∣∣ > ε
}

≤ 8e−c(ε)n. (2.4)

The rate function c(ε) is essentially of order ε2 ∥φ∥−2
E .

Next we state an abstract central limit theorem (CLT) theorem due to
Gordin-Livšic [31].

Let φ ∈ L2(M, ν) be an observable with
∫
φ dν = 0. If ∑∞

n=0∥Qnφ∥2 < ∞
then we can define g ∈ L2(M, ν) by

g :=
∞∑
n=0

Qnφ.

Then φ = g −Qg. Let σ2(φ) = ∥g∥2
2 − ∥Qg∥2

2.

Theorem 2.3 (Gordin-Livsic) Let (M,Q, ν) be an ergodic Markov system and
let φ ∈ L2(M) with

∫
φ dν = 0. Assume that

∞∑
n=0

∥Qnφ∥2 < ∞ and σ2(φ) ∈ (0,∞).

Then the following central limit theorem holds:

Snφ

σ
√
n

→ N (0, 1).

We note that this result holds not only relative to the Markov probability with
initial distribution η, but also with initial distribution δx for ν-a.e. x ∈ M .

A version of this abstract result, more immediately applicable to dynam-
ical systems was derived in [13]. We formulate it below.

Proposition 2.3 Let (M,K, ν) be a strongly mixing Markov system in
(E , ∥·∥E), where E is a dense subspace of C0(M). Assume that for every open
set U ⊂ M with ν(U) > 0, there exists Φ ∈ E such that 0 ≤ Φ ≤ 1U and∫

Φ dν > 0.
Then given any observable φ ∈ E such that it is not ν-a.e constant, it

follows that σ2(φ) > 0 and theorem 2.3 holds:

Snφ

σ
√
n

→ N (0, 1).

Theorems 2.2 and 2.3 are abstract in the sense that they hold for very
general Markov chains and so they are applicable in principle to a wide class



Chapter 2. Markov Operators and Stationary Measures 34

of dynamical systems. In order to apply them to our setting, that of random
linear cocycles, and prove statistical properties for the Lyapunov exponent, we
need to consider the special observable

Φ: Σ × P(Rd), Φ(g0, v̂) = log ∥g0v∥
∥v∥

. (2.5)

This observable is relevant because its stochastic Birkhoff average associated
to the K̄-Markov chain define above is (easily show to be) given by

1
n
SnΦ(g, v̂) = 1

n
log∥gn−1 . . . g1g0v∥ − 1

n
log∥v∥

which converges almost surely to the top Lyapunov exponent L1(µ).
In particular, in order to prove statistical properties for the Lyapunov

exponent we will need to prove that under appropriate hypotheses, the Markov
system (Σ×P(Rd), K̄) is strongly mixing in a suitable Banach space E such that
Φ ∈ E . This is how we will proceed in chapter 4. Later, in chapter 7, we will
deal with non invertible matrices, hence this observable becomes unbounded
and the approach is much more delicate.

2.3.2
The reduction from the second to the third level

Now we show that in order to prove that the Markov system on the
second level (Σ × P(Rd), K̄, µ× η) is strongly mixing, it suffices to prove that
the Markov system on the third level (P(Rd), K, η) is strongly mixing. Here η is
a K-stationary measure, that always exists, and under the various additional
assumptions we will eventually impose, it will be unique. Since the third level
is simpler to deal with, we will thus work with a smaller degree of complexity.

Lemma 2.2 Consider the following projection map

π : L∞(Σ × P(Rd)) → L∞(P(Rd)), πφ(v̂) =
∫
φ(g0, v̂) dµ(g0).

Then for every φ ∈ L∞(Σ × P(Rd)), the following hold:

(i) π ◦ Q̄ = Q ◦ π.

(ii) Q̄φ(g0, v̂) = (πφ)(ĝ0v̂).

(iii) Q̄nφ(g0, v̂) = Qn−1(πφ)(ĝ0v̂) for every n ∈ N.

Proof. Items (i) and (ii) are straightforward computations. Note that

Q̄φ(g0, v̂) =
∫
φ(g1, ĝ0v̂) dµ(g1) = πφ(ĝ0v̂).
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Item (iii) follows by induction, where the base case is item (ii). For the
induction step, assume that item (iii) holds for n = k. Then

Q̄k+1φ(g0, v̂) = Q̄kQ̄φ(g0, v̂) = Qk−1(πQ̄φ)(ĝ0v̂) = Qk(πφ)(ĝ0v̂).

■

Proposition 2.4 The Markov system in the second level (Σ×P(Rd), K̄, µ×η)
is strongly mixing in a Banach space E if and only if the Markov system in the
third level (P(Rd), K, η) is strongly mixing in π(E).

Proof. Consider an arbitrary φ ∈ L∞(P(Rd)). Let φ̄ ∈ L∞(Σ × P(Rd)) be such
that πφ̄ = φ and ∥φ̄∥E = ∥πφ̄∥π(E). Then

∫
P(Rd)

φ dη =
∫
P(Rd)

πφ̄ dη =
∫

Σ×P(Rd)
φ̄. dµ× η

Therefore, by lemma 2.2, we conclude that

∥Q̄nφ̄−
∫

Σ×P(Rd)
φ̄ dµ× η∥∞ ≤ cσn∥φ̄∥E ⇐⇒

∥Qn−1(πφ) −
∫
P(Rd)

πφ̄ dη∥∞ ≤ cσn∥πφ̄∥π(E)

which concludes the proof. ■



3
Furstenberg-Kifer’s Multiplicative Ergodic Theorem

The goal of this chapter is to introduce Furstenberg-Kifer’s Multiplicative
Ergodic Theorem, which is one of the main tools in the study of random linear
cocycles. This theorem was first proved in [29], then generalized by Kifer in
his monograph [34]. In this chapter we provide a detailed proof of this classical
result, which we believe to benefit the reader, as the argument in Kifer’s
monograph may be found rather difficult to read. In a joint work [15] with
Cai, Klein and Melo we further extend this result to a more general context
which we will discuss in chapter 8.

This type of result, also referred to as Furstenberg-Kifer’s non-random
filtration, is used in essentially every proof of continuity of the Lyapunov ex-
ponents of random linear cocycles, e.g.: in the original result in the generic,
i.i.d. setting of Furstenberg and Kifer [29]; in the more recent results, eliminat-
ing this generic condition, by Avila, Eskin and Viana, see [43] and [3]; in the
quantitative results like the ones in [12], [21, Chapter 5] and chapters 4 and 5
of this manuscript; in the study of other types of random-type linear cocycles
(e.g. mixed random-quasiperiodic) as in [14] and related works.

This chapter is organized as follows. In section 3.1 we prove the classical
Furstenberg’s Formula and we also introduce some important elements of
the proof of Furstenberg-Kifer’s multiplicative ergodic theorem, which is then
derived in section 3.2. In section 3.3 we formally introduce the concept of
irreducible random cocycle and relate it to the main result of the chapter.

3.1
Furstenberg’s formula

3.1.1
Martingale construction

Consider a probability space (Ω,F , µ), where Ω is a compact set, F is a
σ-algebra and µ is a probability measure on Ω. For every n ∈ N, let ξn : Ω → R
be a random variable. A martingale is a sequence {(ξn,Fn)}n≥1 that satisfies

(i) {Fn}n≥1 is a filtration of σ-algebras with Fn ⊂ Fn+1 for every n ∈ N.

(ii) E|ξn| < ∞ for all n.
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(iii) ξn is Fn-measurable for all n.

(iv) E(ξn+1|Fn) = ξn for all n.

Recall that given any random variable ξ : Ω → R, the sigma algebra
generated by ξ is defined as σ(ξ) = {ξ−1(B) : B ∈ F}. This is the smallest
sigma algebra relative to which ξ is a measurable function.

Example 3.1 (The random walk) Let {ξn}n be a sequence of i.i.d real random
variables satisfying E(ξ1) = 0 and E|ξ1| < ∞. Let Sn = ξ1 + · · · + ξn and let
Fn = σ(ξ1, . . . , ξn), the sigma algebra generated by {ξi : 1 ≤ i ≤ n}. Then
{Sn,Fn}n is a martingale.

Indeed, properties (i)-(iii) are clearly satisfied and we only verify (iv):

E(Sn+1|Fn) = E(ξn+1 + Sn|Fn) = E(ξn+1|Fn) + E(Sn|Fn) = 0 + E(Sn).

Theorem 3.1 (Doob’s martingale convergence theorem) Let {(ξn,Fn)}n be
a martingale in (Ω,F , µ) such that supn E(|ξn|) < ∞. Then there exists
ξ∞ ∈ L1(µ) such that

(i) ξn → ξ∞ a.s.

(ii) E(ξ∞|Fn) = ξn

(iii) ξ∞ is F∞ measurable, where F∞ = σ(∪n≥1Fn).

A proof of this theorem can be found at [26].
The following result is due to Furstenberg and Kifer, see [29].

Theorem 3.2 Let (Ω,F , µ) be a probability space. Let M be a compact metric
space and let K : M → Prob(M) be a continuous Markov kernel. Given a K-
Markov chain {Zn : Ω → M}n≥0, for any observable φ ∈ C0(M), the following
hold for µ-almost every ω ∈ Ω:

(i) lim sup
n→∞

1
n

n−1∑
j=0

φ(Zj) ≤ max
{∫

M
φ dη : η ∈ ProbK(M)

}
.

(ii) If for some β ∈ R,
∫
M
φ dη = β for all η ∈ ProbK(M), then

lim
n→∞

1
n

n−1∑
j=0

φ(Zj) = β.



Chapter 3. Furstenberg-Kifer’s Multiplicative Ergodic Theorem 38

Proof. Note that since ProbK(M) is compact and the map η 7→
∫
M
φ dη is

continuous, there exists the maximum of the set {
∫
M φ dη : η ∈ ProbK(M)},

which we will denote by β.
Let Q be the Markov operator of the transition kernel K, that is,

Qφ(x) =
∫
M
φ(y) dKx(y).

We split the proof of item (i) into two steps. In the first step, we prove
the claim for co-boundary observables, which are observables φ that satisfy
the hypothesis that φ = Qg − g for some g ∈ C0(M). Then we extend the
result to any observable φ ∈ C0(M).

Note that when φ is a co-boundary,
∫
M φ dη =

∫
M Qg dη −

∫
M g dη = 0

for all η ∈ ProbK(M). We will then have to prove that

lim
n→∞

1
n

n−1∑
j=0

φ(Zj) = 0 a.s.

Consider the sequence of random variables ξn : Ω → M ,

ξn =
n∑
j=1

Qg(Zj−1) − g(Zj)
j

,

which depends on Z0, Z1, . . . , Zn. Let Fn : = σ(Z0, Z1, . . . , Zn).
We claim that {(ξn,Fn)} is a martingale which, moreover, satisfies the

assumptions of Doob’s martingale convergence theorem above.
We begin with the proof of the fourth item of the martingale definition

(the other items are obvious). Note that

ξn+1 = ξn + 1
n

[Qg(Zn) − g(Zn+1)] .

Therefore, applying the conditional expectation to both sides,

E(ξn+1|Fn) = ξn + 1
n+ 1 [E(Qg(Zn)|Fn) − E(g(Zn+1)|Fn)] .

Note that E(Qg(Zn)|Fn) = Qg(Zn). Moreover,

E(g(Zn+1)|Fn) = E(g(Zn+1)|Z0, Z1, . . . , Zn) = E(g(Zn+1)|Zn),

where the last equality is due to the Markov property. By the definition of a
K-Markov chain, given any E ∈ F , we get µ(Zn+1 ∈ E|Zn = x) = Kx(E).
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Thus,
E(g(Zn+1)|Zn) =

∫
M
g dKZn = Qg(Zn).

We conclude that E(ξn+1|Fn) = ξn, hence {(ξn,Fn)} is a martingale.

Let us now check that supn E(|ξn|) < ∞. In order to prove this, we start
with the following lemma which was explained to the author by P. Duarte.

Lemma 3.1 Let f ∈ C0(M). Consider the random variables

∆n : = (Qf)(Zn−1) − f(Zn) = E(f(Zn)|Zn−1) − f(Zn)

= E(f(Zn)|Fn) − f(Zn),

where Fn = σ(Z0, Z1, . . . , Zn). Then these random variables are pairwise
uncorrelated, that is,

E(∆k∆n) = 0 for all 0 ≤ k < n.

Proof. Let η be a K-stationary measure and let B be the Borel sigma algebra
of M . Note that

E(∆n|Fn) = E(E(f(Zn)|Fn) − f(Zn)|Fn)

= E(f(Zn)|Fn) − E(f(Zn)|Fn)) = 0.

Let us recall that given sub sigma algebras G1 ⊂ G2 ⊂ B, we have that
E(f |G1) = E(E(f |G2)|G1). Moreover, if G0 = {∅,M} is the trivial sigma algebra,
then E(f) = E(f |G0). Thus

E(∆n) = E(∆n|G0) = E(E(∆n|Fn)|G0) = 0.

Given k < n, it follows that

∆n∆k = ∆n(E(f(Zk)|Fk) − f(Zk)) = ∆n(gk − hk),

where gk = E(f(Zk)|Fk) and hk = f(Zk).
Since gk is Fk measurable,

E(∆ngk|Fk) = gkE(∆n|Fk) = E(E(∆n|Fn)|Fk) = 0.

The first equality in the previous expression holds because given any f, g ∈
L2(M,B, η) with g being F measurable, we have that E(fg|F) = gE(f |F).
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Therefore,

E(∆ngk) = E(∆ngk|F0) = E(E(∆ngk|Fk)|F0) = 0.

Similarly, since hk is Fk-measurable,

E(∆nhk|Fk) = hkE(∆n|Fk) = hkE(E(∆n|Fn)|Fk) = 0.

Therefore, it follows that

E(∆nhk) = E(∆nhk|F0) = E(E(∆nhk|Fk)|F0) = 0.

Together, these facts imply that E(∆n∆k) = 0, which proves the lemma. ■

Using this orthogonality property of the random variables, the
Pythagorean theorem implies that the martingale random variables

ξn+1 :=
n∑
k=0

1
k

(Qg)(Zk) − g(Zk+1) =
n∑
k=0

1
k

∆k+1

satisfy the following inequality

∥ξn∥2
L2 ≤ 4∥g∥∞

∞∑
k=1

1
k2 .

Therefore, by the Cauchy-Schwarz inequality, we conclude that
supn E(|ξn|) < ∞, so Doob’s martingale convergence theorem is indeed
applicable to the martingale process {(ξn,Fn)} and we conclude that

lim
n→∞

n∑
j=1

Qg(Zj−1) − g(Zj)
j

exists and it is finite for almost every ω ∈ Ω.
Recall the following Kronecker lemma: if {an}n ⊂ R is such that ∑∞

n=1 an

converges, then lim
n→∞

1
n

∞∑
j=1

jaj = 0. Hence

lim
n→∞

1
n

n∑
j=1

[Qg(Zj−1) − g(Zj)] = 0 a.e.

By expanding the terms in this telescopic sum, we conclude that for µ-a.e.
ω ∈ Ω,

lim
n→∞

1
n

n∑
j=1

φ(Zj) = 0

which completes the first step of the proof of item (i).
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Now we proceed to proving that (i) holds for every φ ∈ C0(M).
Since M is compact, C0(M) is separable, hence there exists a countable
set {g1, . . . , gk, . . . } which is dense in C0(M). Therefore, we may apply the
previous result to every φk : = Qgk − gk. Thus, for every k ∈ N, there exists
Ωk ⊂ Ω, with µ(Ωk) = 1 and such that for every ω ∈ Ωk,

lim
n→∞

1
n

n−1∑
j=0

φk(Zj(ω)) = 0.

Let Ω∗ = ∩kΩk and note that µ(Ω∗) = 1. Fix an arbitrary ω ∈ Ω∗ and
for every n ∈ N, define the following measure

ηn : = 1
n

n−1∑
j=0

δZj(ω) ∈ Prob(M).

Note that
∫
M Qgk − gk dηn → 0 for every k ∈ N. Since {g1, . . . , gk, . . . }

is dense in C0(M), it also holds that
∫
M Qg− g dηn → 0 for every g ∈ C0(M).

Therefore, every limit point η∞ of {ηn}n is Q-stationary.
Note that there exists a subsequence {nk}k such that

lim sup
n→∞

1
n

log
n−1∑
j=0

φ(Zj) = lim
k→∞

1
nk

log
nk−1∑
j=0

φ(Zj) = lim
k→∞

∫
M
φ dηnk

.

Finally, since Prob(M) is compact, there exists a further subsequence
{ηnki

}i that converges to some η∞, which, by the previous argument belongs
to ProbQ(M). Thus, we conclude that

lim sup
n→∞

1
n

log
n−1∑
j=0

φ(Zj) = lim
i→∞

∫
M
φ dηnki

=
∫
M
φ dη∞

≤ max
{∫

M
φ; dη : η ∈ ProbQ(M)

}
.

Next we prove item (ii). We apply item (i) to −φ and conclude that
for a.e ω ∈ Ω, we have that lim supn→∞

1
n

log∑n−1
j=0 −φ(Zj) ≤ −β. Thus

− lim infn→∞
1
n

log∑n−1
j=0 φ(Zj) ≤ −β, hence lim infn→∞

1
n

log∑n−1
j=0 φ(Zj) ≥ β.

Thuswe conclude that

lim sup
n→∞

1
n

log
n−1∑
j=0

φ(Zj) = lim inf
n→∞

1
n

log
n−1∑
j=0

φ(Zj) = β

which completes the proof. ■
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3.1.2
Application to random linear cocycles

Consider the random linear cocycle F generated by a probability measure
µ ∈ Prob(GLd(R)) with compact support Σ = supp(µ). The cocycle is
defined as the skew-product map F : ΣN × P(Rd) → ΣN × P(Rd) such that
F (g, v̂) = (σg, ĝ0v̂), where σ : ΣN → ΣN is the Bernoulli shift.

Consider the Markov kernel K from the third level, defined in sec-
tion 2.2.1, namely

K : P(Rd) → Prob(P(Rd))

v̂ 7→
∫

Σ
δĝ0v̂ dµ(g0) .

Consider the special observable defined in (2.5),

Φ(g0, v̂) = log∥g0v∥

where v is a unitary representative of the projective point v̂ ∈ P(Rd).
We define a linear functional α : ProbK(P(Rd)) → R as follows:

α(η) =
∫

Σ×P(Rd)
Φ(g0, v̂) dµ(g0)dη(v̂). (3.1)

Moreover, since ProbK(P(Rd)) is compact and α is continuous, its max-
imum is attained. Then let

β := max
{
α(η) : η ∈ ProbK(P(Rd))

}
.

Theorem 3.3 For every vector v ∈ Rd\{0} the following hold.

(i) For µN-almost every g ∈ ΣN,

lim sup
n→∞

1
n

log∥gn−1 . . . g1g0v∥ ≤ β.

(ii) If α(η) = β for every η ∈ ProbK(P(Rd)), then for µN-a.e g ∈ ΣN,

lim
n→∞

1
n

log∥gn−1 . . . g1g0v∥ = β.

Proof. Consider the Markov kernel K̄ from the second level, defined in
section 2.2.1 by K̄ : Σ × P(Rd) → Prob(Σ × P(Rd)), K̄(g0, v̂) = µ× δĝ0v̂.
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Fix any v̂ ∈ P(Rd) and consider the K̄-Markov chain

Z̄n : ΣN × P(Rd) → Σ × P(Rd)

Z̄n(g, v̂) = (gn, ĝn−1 . . . ĝ1ĝ0v̂) ,

where the space Ω = ΣN × P(Rd) is equipped with the probability µZ × δv̂.
Recall that for all (g, v̂),

1
n

n−1∑
j=0

Φ(Zj(g, v̂)) = 1
n

log∥gn−1 . . . g0v∥ .

By theorem 3.2, we conclude that for every v ∈ Rd\{0} and µN-a.e g ∈ ΣN,

lim sup
n→∞

1
n

log∥gn−1 . . . g1g0v∥ ≤ max
{ ∫

Σ×P(Rd)
Φ dm : m ∈ ProbK̄(Σ×P(Rd))

}
.

We claim that the right hand side of the previous equation is equal to

max
{ ∫

Φ dµdη : η ∈ ProbK(P(Rd))
}

= β ,

where, again, K is the Markov kernel from the third level. In fact, the following
lemma implies the claim which will then conclude the proof of item (i).

Lemma 3.2 If m ∈ ProbK̄(Σ × P(Rd)) then there exists η ∈ ProbK(P(Rd))
such that m = µ × η. Conversely, if η ∈ ProbK(P(Rd)) then the product
µ× η ∈ ProbK̄(Σ × P(Rd)).

Proof. Consider the following projection nmap:

Π: C(Σ × P(Rd)) → C(P(Rd)), Πφ(v̂) =
∫

Σ
φ(g0, v̂) dµ(g0).

Note that if m ∈ ProbK̄(Σ × P(Rd)), then its associated Markov operator is
given by

Q̄φ(g0, v̂) =
∫

Σ
φ(g1, ĝ0v̂) dµ(g1) = Πφ(ĝ0v̂).

If Πφ1 = Πφ2, then Q̄φ1 = Q̄φ2. Therefore,
∫

Σ×P(Rd)
Q̄φ1 dm =

∫
Σ×P(Rd)

Q̄φ2 dm.

Since m is a K̄-stationary measure,
∫

Σ×P(Rd)
φ1 dm =

∫
Σ×P(Rd)

φ2 dm.
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For any Ψ ∈ C(P(Rd)), consider

I(Ψ): =
∫

Σ×P(Rd)
φ dm,

where Πφ = Ψ. Note that I is well defined, since Πφ1 = Πφ2 implies that∫
φ1 dm =

∫
φ2 dm. Moreover, I is a positive linear functional, thus by

the Riesz-Markov-Kakutani representation theorem there exists a measure
η ∈ Prob(P(Rd)) such that I(Ψ) =

∫
Ψ dη. Therefore, ∀φ ∈ C(Σ × P(Rd)),

∫
φ dm = I(Ψ) =

∫
Ψ dη =

∫
Πφ dη =

∫ ∫
φ dµdη

showing that m = µ× η.
It is easy to derive the K-stationarity of η from that of m. Moreover, the

reverse statement is a simple calculation. ■

Returning to the proof of the theorem, by the previous lemma we have
that if α(η) = β for every η ∈ ProbK(P(Rd)) then

∫
Φ dm = β for every

m ∈ ProbK̄(Σ × P(Rd)). Therefore, by item (ii) of theorem 3.2 we have

lim
n→∞

1
n

log∥gn−1 . . . g1g0v∥ = lim
n

1
n

n−1∑
j=0

Φ(Zj) = β

which establishes item (ii) of the theorem and completes its proof. ■

Theorem 3.4 (Furstenberg’s formula) Given any compactly supported proba-
bility measure µ on GLd(R),

L1(µ) = max
{∫

Σ×P(Rd)
Φ dµdη : η ∈ ProbK(P(Rd))

}
,

where Φ: Σ × P(Rd) → R is the observable given by Φ(g, v̂) = log ∥gv∥
∥v∥ .

Proof. Let {e1, . . . , em} be the canonical basis of Rd and let g ∈ GLd(R).
Consider the norm ∥g∥′ = maxj∥gej∥. Note that for µN almost every {gn}n

L1(µ) = lim
n→∞

1
n

log∥gn−1 . . . g0∥

= lim
n→∞

1
n

log∥gn−1 . . . g0∥′

= max
1≤j≤m

lim sup
n→∞

1
n

log∥gn−1 . . . g0ej∥ ≤ β,

by item (i) of the previous theorem, so L1(µ) ≤ β.
We proceed to proving that β ≤ L1(µ). Let

B :=
{
η ∈ ProbK(P(Rd)) : α(η) = β

}
.
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Then B is a non empty, convex and closed set, therefore it is also compact. By
Krein-Milman’s theorem, there exists η0 ∈ B which is an extremal point of B.

Let us show that η0 is also an extremal point of the whole set
ProbK(P(Rd)). Indeed, if η0 = tη1 + (1 − t)η2 for some η1, η2 ∈ ProbK(P(Rd))
and t ∈ (0, 1), then α(η0) = β = tα(η1) + (1 − t)α(η2). Since α(η1) and
α(η2) ≤ β and α(η2) ≤ β, both of them must be equal to β. Hence η1, η2 ∈ B.
Since we assumed η0 to be an extremal point of B, we conclude that η1 = η2,
therefore η0 is an extremal point of ProbK(P(Rd)).

Let Φ̃ : ΣZ × P(Rd) → R, Φ̃(g, v̂) := Φ(g0, v̂). We then clearly have that
the stochastic Birkhoff sums of the observable Φ corresponding to the Markov
chain {Zn} are equal to the Birkhoff sums of the observable Φ̃ relative to the
projective cocycle dynamics F̂ : ΣZ×P(Rd) → ΣZ×P(Rd), F̂ (g, v̂) = (σg, ĝ0v̂),
namely SnΦ = SnΦ̃ for all n ≥ 1.

By proposition 2.2, µN × η0 is ergodic for the projective cocycle F̂ .
Therefore, by Birkhoff’s ergodic theorem, for µN × η0-a.e (g, v̂) we have

1
n

log∥gn−1 . . . g0v∥ = 1
n
SnΦ(g, v̂) = 1

n
SnΦ̃(g, v̂) →

∫
Φ̃ dµNdη0.

But ∫
Φ̃ dµNdη0 =

∫
Φ dµdη0 = α(η0) = β.

We conclude that for µN-a.e. g and for η0-a.e v̂,

β = lim
n→∞

1
n

log∥gn−1 . . . g0 v∥ ≤ lim sup
n→∞

1
n

log∥gn−1 . . . g0∥ = L1(µ)

which completes the proof of the theorem. ■

3.2
Furstenberg-Kifer’s multiplicative ergodic theorem

3.2.1
The construction of the filtration

Let µ be a compactly supported probability measure on GLd(R) and let
K be the corresponding Markov kernel as above. Consider the set of values at
the extremal points of the linear functional α defined above, that is, let

S(µ) :=
{
α(η) : η is an extremal point of ProbK(P(Rd))

}
.

Lemma 3.3 S(µ) ⊂ {L1(µ), . . . , Ld(µ)}. In particular, S(µ) is finite.
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Proof. Let Φ̃ : ΣN × P(Rd) → R given by Φ̃(g, v̂) = log ∥g0v∥
∥v∥ denote the

natural extension of Φ as in the previous proof. Let η be an extremal point of
ProbK(P(Rd)). Then by proposition 2.2, the measure µN × η is F̂ -ergodic, so,
by Birkhoff’s ergodic theorem,

α(η) =
∫

Φ(g0, v̂) dµ(g0)dη(v̂) =
∫

Φ̃(g, v̂) dµN(g)dη(v̂)

= lim
n→∞

1
n

log∥gn−1 . . . g0v∥.

By the Oseledets multiplicative ergodic theorem, this limit is equal to
one of the Lyapunov exponents, thus we conclude that S(µ) is contained in
the Lyapunov spectrum of µ. ■

Let us introduce some notation. In what follows, we often write An(g)
to denote the product gn−1 . . . g0. Let β0 > β1 > · · · > βr denote the elements
of S(µ). We will call them the Furstenberg-Kifer exponents. Note that, by
Furstenberg’s formula, we already know that L1(µ) = β = β0.

Theorem 3.5 (Furstenberg-Kifer’s nonrandom filtration) Given a measure
µ ∈ Prob(GLd(R)) with Σ := supp(µ) a compact set, there exists a filtration
of Rd

{0} = Lr+1 ⊊ Lr ⊊ · · · ⊊ L1 ⊊ L0 = Rd,

such that the following hold.

(i) ∀ 0 ≤ j ≤ r, Lj is µ-invariant, i.e. gLj = Lj for µ-a.e. g ∈ Σ.

(ii) ∀ 0 ≤ j ≤ r and ∀v ∈ Lj\Lj+1 we have that

lim
n→∞

1
n

log∥An(g)v∥ = βj for µN-a.e g ∈ ΣN.

(iii) ∀ 0 ≤ j ≤ r, if η is an extremal point of ProbK(P(Rd)) such that α(η) =
βj, then η(L̂j) = 1 and η(L̂j+1) = 0, where L̂j = {v̂ : v ∈ Lj \ {0}}.

Moreover, each subspace Lj of the filtration is given explicitly by

Lj =
{
v ∈ Rm : lim sup

n→∞

1
n

log∥An(g)v∥ ≤ βj for µN-a.e. g ∈ ΣN
}
.

The argument is quite elaborate and consists of various lemmas and other
technical results and concepts which will be described in this and in the next
subsection.



Chapter 3. Furstenberg-Kifer’s Multiplicative Ergodic Theorem 47

Lemma 3.4 If the linear functional α is constant on ProbK(P(Rd)) then the
theorem holds for the trivial filtration L0 = Rd and L1 = {0}.

Proof. Since α(η) = β for every η ∈ ProbK(P(Rd)), by theorem 3.3, for all
v ̸= 0 and µN-a.e. g,

lim
n→∞

1
n

log∥gn−1 . . . g0v∥ = β.

This immediately shows that in this case the trivial filtration L0 = Rd and
L1 = {0} satisfies items (i), (ii) and (iii) and the result follows. ■

We will assume from now on that the linear functional α is not constant in
ProbK(P(Rd)). By Krein-Milman’s theorem, since there exist extremal points
in ProbK(P(Rd)), the restriction of α to the extremal points of ProbK(P(Rd))
is also not constant. Therefore #S(µ) > 1.

In the next lemma we define the first non trivial subspace of the filtration.

Lemma 3.5 Consider the following set:

L1 =
{
v ∈ Rd : lim sup

n→∞

1
n

log∥gn−1 . . . g0v∥ ≤ β1 for µN-a.e. g ∈ ΣN
}
.

The following statements hold.

(i) L1 is a vector subspace of Rd.

(ii) L1 is µ-invariant.

(iii) If η is an extremal point of ProbQ(P(Rd)) such that α(η) = β1, then
η(L̂1) = 1.

(iv) If η is an extremal point of ProbQ(P(Rd)) such that α(η) = β0, then
η(L̂1) = 0.

(v) L1 is proper.

Proof. If v ∈ L1, then for any scalar λ ̸= 0,

lim sup
n→∞

1
n

log∥An(g)λv∥ = lim sup
n→∞

1
n

log∥An(g)v∥ + lim sup
n→∞

1
n

log |λ|

= lim sup
n→∞

1
n

log∥An(g)v∥ ≤ β1.

If λ = 0 then the lim sup above is equal to −∞ and the inequality still holds.
Hence λv ∈ L1. Furthermore, given v1, v2 ∈ L1, then

lim sup
n→∞

1
n

log∥An(g)(v1 + v2)∥ ≤ lim sup
n→∞

1
n

log
[
2 max{∥An(g)v1∥, ∥An(g)v2∥}

]
≤ lim sup

n→∞
max

{ 1
n

log∥An(gv1)∥,
1
n

log∥An(gv2)∥
}

+ log 2
n

≤ β1.
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This implies that v1 + v2 ∈ L1 and that L1 is a vector subspace of Rd.
By definition of L1, if v ∈ L1, then

lim sup
n→∞

1
n

log∥An(g)v∥ ≤ β1

for µN-a.e. (g0, g1, . . . ). Thus g0v ∈ L1 for µ-a.e g0. Therefore g0L1 ⊂ L1.
Since g0 is invertible, dim g0L1 = dim L1. Hence g0L1 = L1 for µ-a.e g0 and we
conclude that L1 is µ-invariant.

Let η0 be an extremal point of ProbQ(P(Rd)) such that α(η0) = β0.
Hence, µN × η0 is F̂ -ergodic and by Birkhoff’s theorem

lim
n→∞

1
n

log∥An(g)v∥ = α(η0) = β0 > β1

for µN × η0-a.e (g, v̂). Hence, for η0-a.e v̂ the previous limit holds for µN-a.e g
and we conclude that η0(L̂1) = 0.

Similarly, let η1 be an extremal point of ProbQ(P(Rd)) and assume that
α(η1) = β1. Then the measure µN × η1 is ergodic and by Birkhoff’s ergodic
theorem

lim
n→∞

1
n

log∥An(g)v∥ = α(η1) = β1

for µN × η1-a.e (g, v̂). Moreover, for η1-a.e v̂ the previous limit holds for µN-a.e
g. Hence η1(L̂1) = 1.

By the previous two arguments, L1 is a proper subspace of Rd, which
concludes the proof of the lemma. ■

3.2.2
The induced cocycle

Let L ⊊ Rd be a proper µ-invariant subspace, i.e g0L = L for µ-a.e
g0 ∈ Σ and dim L = k < d. One can then consider the induced (or restricted)
cocycle

FL : ΣN × L → ΣN × L, FL(g, v) = (σg, g0v).

Furthermore, we also consider its projective version:

F̂L : ΣN × P(L) → ΣN × P(L), F̂L(g, v̂) = (σg, ĝ0v̂).

In fact, all the theory presented in the previous sections applies in
the same way to the cocycle restricted to the invariant subspace L. Let us
summarize the main objects and introduce the relevant notations.

Define the observable ΦL = Φ|Σ×L and the induced Markov opera-
tor QL = Q|P(L). Similarly one may consider the induced linear functional
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αL : ProbQL(P(L)) → R and its maximum value βL.
We can also consider the quotient vector space Rd/L = {[v] : v ∈ Rd},

where v is in the same equivalence class as w if v − w ∈ L. Analogously to
what we did before, we can also induce a cocycle in the quotient vector space.
Therefore it is also possible to define FRd/L, F̂Rd/L, ΦRd/L, QRd/L, αRd/L, βRd/L.

Remember that dim L = k < d. Let {e1, . . . , ek} be a basis in L
and {Ek+1, . . . , Ed} be a basis in Rd/L. Choose the representatives ek+1 ∈
Ek+1, . . . , ed ∈ Ed. Then {e1, . . . , ed} is a basis in Rd. Hence, by a change of
coordinates, we identify L = Rk × (0) ⊂ Rd and Rd/L = (0) × Rd−k ⊂ Rd.

Thus, in this basis, any matrix g ∈ Σ is written in blocks as g =
b c

0 d

, where

b is a k×k block, c is a k× (m−k) block and d is an (m−k) × (m−k) block.
Therefore, the cocycle A : ΣN → GLd(R) and its iterates are written as

A =
B C

0 D

 , and An =
Bn Cn

0 Dn

 , (3.2)

where B is the cocycle FL : ΣN → GLk(R) and D is the cocycle FRd/L : ΣN →
GLd−k. Moreover, Bn, Dn are the iterates of the induced cocycles and Cn =∑n−1
i=0 B

n−i−1CDi.

Lemma 3.6 If L is a µ-invariant subspace of Rd, then β = max{βL, βRd/L}.

Proof. By Furstenberg’s formula, β = L1(F ). Applying Furstenberg’s formula
to the induced cocycles FL and FRd/L, we conclude that βL = L1(FL) and
βRd/L = L1(FRd/L). Note that by the decomposition above,

β = L1(F ) = lim
n→∞

1
n

log∥An∥ = max
{

lim
n→∞

1
n

log∥Bn∥, lim
n→∞

1
n

log∥Dn∥
}

= max
{
L1(FL), L1(FRd/L)

}
= max{βL, βRd/L}.

■

Lemma 3.7 Let L1 be the µ-invariant subspace defined in lemma 3.5. Then
βL1 = β1.

Proof. By Furstenberg’s formula applied to the induced cocycle FL1 , for µN-a.e.
g ∈ ΣN we have that

βL1 = L1(FL1) = lim
n→∞

1
n

log∥AnL1(g)∥

= max
ej∈L1

lim
n→∞

1
n

log∥An(g)ej∥ ≤ β1.
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On the other hand, β1 = α(η1) for some η1 which is an extremal point of
ProbQ(P(Rd)). By Birkhoff’s ergodic theorem,

β1 = α(η1) = lim
n→∞

1
n

log∥An(g)v∥

for µn × η1-a.e. (g, v̂). Hence there exists ŵ ∈ P(Rd) such that

1
n

log∥An(g)w∥ → β1

for almost every g ∈ ΣN, thus w ∈ L1. Furthermore,

β1 = lim
n→∞

1
n

log∥An(g)w∥ ≤ lim
n→∞

1
n

log∥AnL1(g)∥ = βL1 ,

thus establishing the equality of the two quantities. ■

Corollary 3.1 βRd/L1 = β.

Proof. By lemma 3.6, β = max
{
βL1 , βRd/L1

}
. By lemma 3.7 we have βL1 =

β1 < β0 = β. It follows that β = βRd/L1 . ■

Lemma 3.8 If L ⊂ Rd is a µ-invariant subspace and βL < β, then βL ≤ β1.

Proof. Recall that

βL = max {αL(ηL) : ηL is an extremal point of ProbQL(P(L))} .

Let ηL be such that βL = αL(ηL). Consider the extension η ∈ Prob(P(Rd))
of ηL such that η(P(L)c) = 0. We claim that η is Q stationary and it is an
extremal point of ProbQ(P(Rd)). For every φ ∈ L∞(P(Rd)),

∫
Qφ dη =

∫
P(L)

QLφL dηL =
∫
φL dηL =

∫
φ dη.

Moreover, if η is not extremal, then η = tη1 + (1 − t)η2 for some η1 ̸= η2.
Since η(P(L)c) = 0, both ηi(P(L)c) = 0 for i = 1, 2. However ηL is extremal,
therefore η1 must be equal η2 and we get a contradiction. Thus, we conclude
that

βL = αL(ηL) =
∫

ΦL dηL =
∫

Φ dη,

where η is an extremal point of ProbQ(P(Rd)). Hence, βL =
∫

Φ dη ∈
{β0, β1, . . . , βr}. By hypothesis, βL < β0, so it must be that βL ≤ β1. ■

Lemma 3.9 The linear functional αRd/L1 : ProbQRd/L1
(P(Rd/L1)) → R is

constant.
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Proof. Assume by contradiction that αRd/L1 is not constant. Therefore, there
exists a proper subspace V1 ⊂ Rd/L1 which is invariant. Hence, V1 = L/L1,
where L ⊂ Rd is an invariant subspace such that L ⊃ L1. Note that
βV1 < βRd/L1 = β. Moreover,

βL = max
{
βL1 , βL/L1

}
= max {βL1 , βV1} < β.

Thus, by lemma 3.8, βL ≤ β1. By the definition of L1, this implies that L ⊂ L1.
We conclude that L = L1, so V1 is a trivial subspace, contradicting the fact of
being proper. ■

Lemma 3.10 If v ∈ Rd/L1 then for µN-a.e. g ∈ ΣN we have that

lim
n→∞

1
n

log∥An(g)v∥ = β0.

Proof. We already know that for every v ̸= 0 and for µN-a.e g ∈ ΣN,

lim sup
n→∞

1
n

log∥An(g)v∥ ≤ β0.

Therefore it suffices to prove that for every v ∈ Rd/L1 and for µN-a.e g,

lim inf
n→∞

1
n

log∥An(g)v∥ ≥ β0.

By the change of coordinates described before, we can write the cocycle
A and its iterates as in (3.2), where B represents the cocycle induced in the
invariant subspace L1 and D the cocycle induced in the quotient Rd/L1. Then,
a vector v ∈ Rd can be written as v = (v1, v2) with v1 ∈ Rk and v2 ∈ Rd−k.
Let v ∈ Rd/L1, then v = (v1, v2) with v2 ̸= 0. Thus

An(g)v =
Bn(g) Cn(g)

0 Dn(g)

v1

v2

 =
Bn(g)v1 + Cnv2

Dn(g)v2

 .
Hence ∥An(g)v∥ ≥ ∥Dn(g)v∥ for every n ∈ N and for every g ∈ ΣN.

Moreover, it holds that

lim inf
n→∞

1
n

log∥An(g)v∥ ≥ lim inf
n→∞

1
n

log∥Dn(g)v2∥

= lim
n→∞

1
n

log∥Dn(g)v2∥ = βRd/L1 = β0

which establishes the claim. ■

We are finally ready to complete the proof of theorem 3.5.
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Proof. Recall that r + 1 is the cardinality of the set of values of the linear
functional α(η) at extremal points of ProbK(P(Rd)). The case r = 0 was
treated in lemma 3.4. Combining all the previous results, we conclude that if
r = 1, then theorem 3.5 holds. Otherwise, r ≥ 2 and we can apply the same
procedure to the induced cocycle FL1 to get another invariant subspace L2,
which is a proper invariant subspace of L1 such that for every v ∈ L1\L2 and
µN-a.e g,

lim
n→∞

1
n

log∥An(g)v∥ = β1.

The completion of the proof follows by induction. ■

Remark 3.1 Although both Oseledets and Furstenberg-Kifer’s multiplicative
ergodic theorems produce filtrations, they do not need to coincide, see example
3.2 in [3]. As a consequence, Furstenberg-Kifer’s exponents also do not need
to coincide with the Lyapunov exponents. What holds, however, is that the set
of Furstenberg-Kifer exponents is contained in the Lyapunov spectrum (the set
of all Lyapunov exponents given by the Furstenberg-Kesten or the Oseledets
theorem), as we saw in lemma 3.3. Moreover, by Furstenberg’s formula, the
first (largest) exponents in each set coincide.

Remark 3.2 Another interesting fact is that the Oseledets filtration is random
in the sense that for each point g ∈ ΣN, the filtration possibly depends on all
of its coordinates. On the other hand, Furstenberg-Kifer’s filtration is non-
random, in the sense that it does not depend on the point g ∈ ΣN. In chapter
8 we will introduce a version of Furstenberg-Kifer’s filtration for Markovian
cocycles, which turns out to be only slightly random, since it depends just on
the zeroth coordinate of g.

3.3
Irreducibility

In this section we discuss the concept of irreducibility, which is very
important in the study of the Lyapunov exponents.

3.3.1
Introduction to the concept

There are many different versions of this concept in the literature, but
we introduce only three of them. For a more detailed study of the topic, see
[8] and the references therein.

Let µ be a probability measure on GLd(R). Then µ is
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(i) strongly irreducible if there is no finite family of proper subspaces of Rd

which is invariant under µ-a.e. g ∈ GLd(R);

(ii) irreducible if there is no proper subspace of Rd which is invariant under
µ-a.e. g ∈ GLd(R);

(iii) quasi-irreducible if it is irreducible or else there exists a proper subspace
V of Rd invariant under µ-a.e. g ∈ GLd(R) but the Lyapunov exponent
of the cocycle restricted to V is equal to the top Lyapunov exponent of
the cocycle, that is, L1(F |V ) = L1(F ).

Remark 3.3 When a random linear cocycles satisfies one of the previous
irreducibility conditions, it is often referred to as being in a generic setting.
This is due to [33, Theorem 1.1], where Kifer proved that irreducibility is an
open and dense property in Prob(GLd(R)) with respect to the weak* topology.

Remark 3.4 If the Lyapunov exponent of the cocycle restricted to a maximal
proper invariant subspace is strictly smaller than the top Lyapunov exponent
of the cocycle, then that subspace is referred to as the “equator” in [3].

It is clear that strong irreducibility implies irreducibility which implies
quasi-irreducibility. We provide some examples of cocycles that satisfy the
definitions above.

Example 3.2 A strongly irreducible cocycle:

g1 =
 2 0

0 1
2

 g2 =
 cos(2πθ) − sin(2πθ)

sin(2πθ) cos(2πθ)


In this example, we consider θ ∈ R\Q and both matrices with positive weights:
p1 > 0, p2 > 0 and p1 + p2 = 1. Note that g1 is a hyperbolic matrix that fixes
both the x and the y axes and g2 is an irrational rotation that does not leave
any finite family of subspaces invariant.

Note also that by a theorem of Furstenberg, the Lyapunov exponent of
this cocycle is positive. Moreover, if the p1 = 0, the cocycle generated by g2 is
still strongly irreducible, but has zero Lyapunov exponent.

Example 3.3 An irreducible cocycle which is not strongly irreducible:

g1 =
 2 0

0 1
2

 g2 =
 cos(π2 ) − sin(π2 )

sin(π2 ) cos(π2 )


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This is a slight variation of the previous example. In this case, we chose θ to
be rational (θ = 1

4) and the situation is completely different. In this case, g2

still does not leave any subspace invariant, but it keeps the finite family of
x and y axes invariant. Therefore, this cocycle is strongly irreducible but not
irreducible.

Moreover, note that if p1 > 0 and p2 > 0, then the cocycle has zero
Lyapunov exponent. On the other hand, if p2 = 0, the Lyapunov exponent
is positive. This is known is the “Kifer’s example” of discontinuity of the
Lyapunov exponents.

Example 3.4 A quasi-irreducible cocycle which is not irreducible:

g1 =
 2 1

0 1


The cocycle generated by this triangular matrix preserves the x-axis. Thus it
is not irreducible. However, the Lyapunov exponent along the x-axis is equal
to log 2, which is the same as the top Lyapunov exponent generated by g1,
hence it is a quasi-irreducible cocycle.

In [8], the authors provide a general criterion for the quasi-irreducibility
of an SL2(R)-valued triangular cocycle, depending on the matrix entries and
the weights (the probability vector).

Example 3.5 A (completely) reducible cocycle (or not quasi-irreducible):

g1 =
 2 0

0 1
2


This is a diagonal cocycle, so it preserves both axes. Along the x-axis the
Lyapunov exponent is maximal, however, along the y-axis the Lyapunov
exponent is smaller than the maximal. Therefore, this cocycle is not quasi-
irreducible.

3.3.2
Relation with Furstenberg-Kifer’s filtration

In this manuscript we work with the third, hence weakest concept of ir-
reducibility, the quasi-irreducibility. Furstenberg-Kifer’s non-random filtration
in theorem 3.5 provides the following characterization of this concept.

Corollary 3.2 A random cocycle (or equivalently, the measure generating it)
is quasi-irreducible if and only if its corresponding Furstenberg-Kifer filtration
is trivial, that is, L0 = Rd and L1 = {0}.
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Proof. If a cocycle is quasi-irreducible, then either it does not have any proper
invariant subspace, in which case Furstenberg-Kifer’s filtration is trivial, or
else it has an invariant subspace V and

1
n

log∥gn−1 . . . g1g0v∥ → L1(µ) = β0 = β (3.3)

for µN-a.e. g ∈ ΣN and every nonzero v ∈ V . In this case the filtration is also
trivial.

If we assume that the filtration is trivial, then equation (3.3) holds for
µN-a.e. g ∈ ΣN and for every v ∈ Rd. Thus if the cocycle admits an invariant
subspace, its top Lyapunov exponent must be attained along it, as it is attained
in any direction. ■



4
Hölder Continuity of the First Lyapunov Exponent in the
Generic Setting

We study the regularity of the Lyapunov exponent of locally constant
random linear cocycles, as a function of the measure µ driving the multi-
plicative process, under the quasi-irreducibility hypothesis (which represents
the generic setting). As we will see, the regularity can be extremely differ-
ent according to the topology that we choose. In this chapter we consider the
weak-star topology, which is metrizable by the Wasserstein’s metric.

The main result of this chapter is a general version of Le Page’s theorem,
that proves the Hölder continuity of the Lyapunov exponent in the generic
setting. The proof we present in this chapter is based on the author’s Master’s
thesis [27], which generalizes a result in [4, Theorem 1, item1].

One of the main elements in this proof is the so called strong mixing
property of the Markov operator (see definition 2.3) associated to a measure µ
on the group of matrices. By strong mixing we mean the uniform convergence
of the powers of the Markov operator to its (a posteriori) unique stationary
measure. This property plays a central role in the proof because one can reduce
the study of the regularity of the Lyapunov exponent to the regularity of the
stationary measure, via Furstenberg’s formula. By the strong mixing property,
the latter can then be deduced from the fact that the Markov operator and its
powers depend nicely on the measure µ.

The strong mixing property also implies, by general principles, statistical
properties (such as large deviations and a central limit theorem) for the
Lyapunov exponent. These results are not new in this specific setting, but
we include them for completeness.

In section 4.1 we introduce the Wasserstein’s metric, some technical facts
about the convolution of measures and the relation between them. In section
4.2 we prove the strong mixing of the Markov operator, which is then used to
prove the Hölder continuity of the Lyapunov exponent in section 4.3 and the
statistical properties in section 4.4.
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4.1
Convolution of measures

The weak-star topology on the set of probability measures is metrizable
in various ways, of which, the Wasserstein metric is one of the most useful.
Our result on the Hölder continuity of the Lyapunov exponent is formulated
relative to this metric.

Definition 4.1 Let (X, d) be a compact metric space and let Prob(X) denote
the set of Borel probability measures on X. Given two measures µ, ν ∈
Prob(X), a coupling between µ and ν is a measure π ∈ Prob(X × X) with
marginals µ and ν.

More precisely, the push forward of π via the projections proj1, proj2
in the first and second coordinates are µ and ν, that is, (proj1)∗π = µ and
(proj2)∗π = ν.

Given two measures µ, ν ∈ Prob(X), let Π(µ, ν) denote the set of
all possible couplings between µ and ν. Note that the product measure
µ× ν ∈ Π(µ, ν), hence Π(µ, ν) is not empty.

Definition 4.2 Given µ, ν ∈ Prob(X),

W1(µ, ν) := inf
π∈Π(µ,ν)

∫
X×X

d(x, y) dπ(x, y)

is called the Wasserstein distance (of order 1).

Kantorovich-Rubinstein’s duality theorem gives a characterization of W1

in terms of Lipschitz functions. It says that for all µ, ν ∈ Prob(X),

W1(µ, ν) = sup
φ∈Lip1(X)

∣∣∣∣∫
X
φ dµ−

∫
X
φ dν

∣∣∣∣ ,
where Lip1(X) denotes the space of Lipschitz continuous functions with
Lipschitz constant less than or equal to 1.

Remark 4.1 It turns out that there exists π∗ ∈ Π(µ, ν) such that the infimum
in definition 4.2 is attained. Moreover, there also exists φ∗ ∈ Lip1(X) such
that the supremum Kantorovich-Rubinstein’s duality theorem is attained.

Definition 4.3 Let G be a group that acts on a set M . Let µ be a measure in
G and let ν a be measure in M . Then we define the convolution of µ and ν as
the measure µ ∗ ν on M such that:

(µ ∗ ν)(E) =
∫
G

∫
M

1E(gx) dν(x)dµ(g)

for every measurable set E ⊂ M .
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Given a measure µ ∈ Prob(G) and k ≥ 2 we define

µ∗k := µ ∗ · · · ∗ µ (k times)

to be the k-th convolution power of µ. We also set µ∗1 := µ or think of µ∗1 as
the convolution of µ with a Dirac measure centered at the identity element of
the group G.

Let G be a multiplicative subgroup of Matd(R). Given Σ ⊂ G a compact
set, µ ∈ Prob(Σ) and n ≥ 1, the next proposition shows that the convolution
power map µ 7→ µ∗n is Lipschitz (with Lipschitz constant depending on n and
Σ) with respect to the Wasserstein metric.

Proposition 4.1 Let Σ ⊂ G be a compact set and let n ∈ N. Then the map
Prob(Σ) ∋ µ 7→ µ∗n is Lipschitz with respect to the Wasserstein metric.

Proof. We split the proof into the three following lemmas.

Lemma 4.1 Given n ∈ N, the map µ 7→ µ× ...×µ (n times) is Lipschitz with
respect to the Wasserstein metric, with Lipschitz constant n.

Proof. Let φ ∈ Lip1(Σ × Σ). Observe that
∫

Σ×Σ
φ(g, h) dµ(g)dµ(h) −

∫
Σ×Σ

φ(g, h )dν(g)dν(h) =∫
Σ×Σ

φ(g, h) d(µ− ν)(g)dµ(h) +
∫

Σ×Σ
φ(g, h) d(µ− ν)(h)dν(g).

Now fix h. The map g 7→ φ(g, h) is 1-Lipschitz. Then
∫

Σ×Σ
φ(g, h) d(µ− ν)(g)dµ(h) ≤

∫
Σ×Σ

W1(µ, ν) dµ(h) ≤ W1(µ, ν),

since µ ∈ Prob(Σ). The same result is true for the other term:
∫

Σ×Σ
φ(g, h) d(µ− ν)(h)dν(g) ≤ W1(µ, ν).

Therefore we conclude that W1(µ×µ, ν × ν) ≤ 2W1(µ, ν) because φ was
chosen arbitrarily. By induction, we conclude the lemma. ■

Lemma 4.2 Let µ ∈ Prob(Σ) and let {φn}n∈N be the group action of G
on itself, φn : G × G × · · · × G → G, φn(g1, g2, . . . , gn) = g1g2 · · · gn. Then
µ∗n = (φn)∗(µ× µ× · · · × µ) and φn is Lipschitz.

Proof. We only prove the case n = 2, the general case following by induction.
For simplicity, we denote φ2 by φ. Given a measurable set E ⊂ G, by the
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definition of the convolution of measures,

µ ∗ µ(E) =
∫
G×G

1E(g1g2) dµ(g1)dµ(g2)

=
∫
G×G

1E(φ(g1, g2)) dµ(g1)dµ(g2)

=
∫
G

1E(g) dφ∗(µ× µ)(g)

= φ∗(µ× µ)(E).

Since E was arbitrary, we conclude that µ ∗ µ = φ∗(µ× µ).
It remains to show that φ is Lipschitz. We consider the distance

d((g1, g2), (h1, h2)) := d(g1, h1) + d(g2, h2) on G×G . Hence,

d(φ(g1g2), φ(h1h2)) = d((g1g2), (h1h2))

≤ d ((g1g2), (h1g2)) + d ((h1g2), (h1h2))

≤ ∥g2∥d(g1, h1) + ∥h1∥d(g2, h2).

Since µ has support in the compact set Σ, there exists a uniform constant
C > 0 (depending on Σ) such that ∥g∥ ≤ C for all g ∈ supp(µ). Therefore,

∥g2∥d(g1, h1) + ∥h1∥d(g2, h2) ≤ C[d(g1, h1) +d(g2, h2)] = Cd ((g1, g2), (h1, h2)) .

This proves that d (φ(g1g2), φ(h1h2)) ≤ Cd ((g1, g2), (h1, h2)), so φ is
Lipschitz continuous, and its Lipschitz constant depends only on the compact
support Σ. ■

Lemma 4.3 If φ : X → Y is Lipschitz with Lipschitz constant C, then the
map µ 7→ φ∗µ is Lipschitz with the same Lipschitz constant.

Proof. By remark 4.1, there exists f ∈ Lip1(Y ) such that

W1(φ∗µ, φ∗ν) =
∫
Y
f d(φ∗µ− φ∗ν) =

∫
X
f ◦ φ d(µ− ν).

Since φ has Lipschitz constant C, then φ
C

∈ Lip1(X). Also the composition
1
C
f ◦ φ ∈ Lip1(X). Therefore

∫
X f ◦ φ d(µ− ν) ≤ CW1(µ, ν) and we conclude

that
W1(φ∗µ, φ∗ν) ≤ CW1(µ, ν),

which proves the lemma. ■

Finally, by lemma 4.2, µ∗n = (φn)∗(µ×µ×· · ·×µ) where φn is Lipschitz.
By lemmas 4.1 and 4.3, the map µ 7→ (φn)∗(µ× µ× · · · × µ) is also Lipschitz,
which concludes the proof of the proposition. ■
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4.2
Mixing of the Markov operator

Let Σ ⊂ GLd(R) be a compact set and let µ be a probability measure on
Σ, that is, µ ∈ Prob(Σ). We can define the Markov operator Qµ : L∞(P(Rd)) →
L∞(P(Rd)) associated to µ as follows:

Qµ(φ)(v̂) =
∫

Σ
φ(ĝv̂) dµ(g), (4.1)

where ĝ : P(Rd) → P(Rd) is the projective action of g defined by ĝv = ĝv̂.
The goal of this section is to prove that if L1(µ) > L2(µ) and if µ satisfies

the quasi-irreducibility condition then the associated Markov operator Qµ is
strongly mixing. Note that the Markov operator defined above is the one from
the third level (already defined in section 2.2.1) and by proposition 2.4, if it
is indeed strongly mixing, then the related Markov operator from the second
level also satisfies this strong mixing property. A general reference for this and
related concepts in this section is [22].

4.2.1
Uniform convergence to the top Lyapunov exponent

We start with an important consequence of Furstenberg-Kifer’s multi-
plicative ergodic theorem. Together with the hypothesis above, the finite time
averages of the special observable log∥gp∥ converge uniformly in p̂ ∈ Sd−1 to
the top Lyapunov exponent. This is a key property needed in order to establish
the strong mixing property.

Proposition 4.2 Let µ ∈ Prob(Σ) be a quasi irreducible measure with
L1(µ) > L2(µ). Then

lim
n→∞

1
n

∫
Σ

log ∥gp∥ dµ∗n(g) = L1(µ),

with uniform convergence in p ∈ Sd−1 = {v ∈ Rd : ∥v∥ = 1}.

Proof. Since µ is quasi irreducible, by remark 3.2, the Furstenberg-Kifer’s non
random filtration is trivial. Therefore, for every p ∈ Rd\{0}, we have that
almost everywhere:

lim
n→∞

1
n

log ∥gn−1 · · · g0p∥ = L1(µ).

By the definition of the n-th convolution power and dominated convergence
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we get that for every p ∈ Sd−1,

lim
n→∞

1
n

∫
Σ

log ∥gp∥ dµ∗n(g) = lim
n→∞

1
n

∫
ΣN

log ∥gn−1 · · · g0p∥ dµn(gn−1, . . . , g0)

= L1(µ).

Hence we establish the pointwise convergence in p. Assume by contradiction
that the convergence above is not uniform in p ∈ Sd−1. Then there exists a
sequence of unitary vectors {pn}n ∈ Rd and δ > 0 such that for all large n,

1
n

∫
Σ

log ∥gpn∥ dµ∗n(g) ≤ L1(µ) − δ.

By the compactness of the unitary circle, there exists a subsequence
{pnk}k that converges to a unit vector p ∈ Rd. We claim that

lim
k→∞

1
nk

∫
Σ

log ∥gpnk∥ dµ∗nk(g) = L1(µ),

which would contradict the previous assumption.
Note that by proposition 2.22 of [21],

∥gnk−1 · · · gn0 pnk∥
∥gnk−1 · · · gn0∥

≥ cos∠ (pnk
u(gnk−1 · · · gn0)) = |pnk

· u(gnk−1 · · · gn0)|,

where u(gnk−1 · · · gn0) is the most expanded unit vector of the matrix
gnk−1 · · · gn0 . Moreover, by proposition 4.4 of [21], the limit

u(µ) := lim
k→∞

u(gnk−1 · · · gn0)

exists µ-almost everywhere, so |pnk
· u(gnk−1 · · · gn0)| → |p · u(µ)|.

We claim that for µ-almost every sequence g, it holds that |p · u(µ)| >
0. Note that u(µ) is the most expanded direction of the adjoint cocycle
(see Proposition 2.4.2 from [27]), which is, for almost every sequence g,
orthogonal to all the less expanding Oseledets directions E2(g), . . . , Ed(g) (see
the beginning of the proof of Theorem 4.4 from [21]).

Since µ is quasi-irreducible, we know that

lim
n

1
n

log∥gn−1 . . . g0v∥ = L1(µ)

for every v and µ-almost every g. Hence, if p · u(µ) = 0, then p belongs to an
Oseledets direction different from the most expanded one, which happens with
zero probability. Therefore, the claim holds.
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Hence,
lim inf
k→∞

∥gnk−1 · · · gn0pnk
∥

∥gnk−1 · · · gn0∥
≥ |p · u(µ)| > 0

µN-almost everywhere. Then

lim inf
k→∞

1
nk

log ∥gnk−1 · · · gn0pnk
∥

∥gnk−1 · · · gn0∥
= 0

µN-almost everywhere. Finally, using the definition of the convolution power
and the dominated convergence theorem,

lim
k→∞

1
nk

∫
Σ

log ∥gpnk∥ dµ∗nk(g) = lim
k→∞

1
nk

∫
Σ

log ∥g∥ dµ∗nk(g)

+ lim
k→∞

1
nk

∫
Σ

log ∥gpnk∥
∥g∥

dµ∗nk(g)

= L1(µ).

This proves the claim and concludes the proof of the proposition. ■

4.2.2
The contracting property of the Hölder seminorm

We start by showing the relation between the iterates Qn
µ of the Markov

operator and the Markov operator Qµ∗n of the measure µ∗n.

Lemma 4.4 Let µ ∈ Prob(Σ). Then

Qµ∗n = Qn
µ.

Proof. The proof proceeds by induction. Let φ ∈ L∞(P(Rd)) and v̂ ∈ P(Rd).
The statement is trivial when n = 1. For n = 2 we have

(Qµ)2(φ)(v̂) =
∫

Σ

∫
Σ
φ(ĝ1ĝ0v̂) dµ(g1)dµ(g0)

=
∫

Σ

∫
Σ
φ(ĝ1g0v̂) dµ(g1)dµ(g0)

=
∫

Σ
φ(ĝv̂) dµ∗2(g) = Qµ∗2(φ)(v̂).

Now suppose that it is true for every k ≤ n− 1. We are going to prove that is
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also true when k = n.

(Qµ)n(φ)(v̂) =
∫

Σ
· · ·

∫
Σ
φ(ĝn−1 · · · ĝ0v̂) dµ(gn−1) · · · dµ(g0)

=
∫

Σ

∫
Σ
φ(ĝ(ĝ0v̂)) dµ∗(n−1)(g)dµ(g0)

=
∫

Σ
φ(ĝv̂) dµ∗n(g) = Qµ∗n(φ)(v̂).

■

Given p̂, q̂ ∈ P(Rd), denote by δ : P(Rd) × P(Rd) → [0,∞) the projective
distance on P(Rd):

δ(p̂, q̂) := ∥p ∧ q∥
∥p∥∥q∥

. (4.2)

Definition 4.4 Let µ ∈ Prob(Σ) and let α ∈ (0, 1]. We define the average
α-Hölder constant of the projective action ĝ : PRd → PRd by

kα(µ) := sup
p̂ ̸=q̂

∫
Σ

(
δ(ĝp̂, ĝq̂)
δ(p̂, q̂)

)α
dµ(g).

Lemma 4.5 kα(µ∗n) is sub-multiplicative:

kα(µ∗(n+m)) ≤ kα(µ∗n) kα(µ∗m).

Proof. By a straightforward computation:

kα(µ∗(n+m)) = sup
p̂ ̸=q̂

∫
Σ

(
δ(ĝp̂, ĝq̂
δ(p̂, q̂)

)α
dµ∗(n+m)(g)

= sup
p̂ ̸=q̂

∫
Σn+m

(
δ(ĝn+m−1 · · · ĝ0p̂, ĝn+m−1 · · · ĝ0q̂

δ(p̂, q̂)

)α
dµ(gn+m−1) . . . dµ(g0)

≤ sup
p̂ ̸=q̂

∫
Σm

(
δ(ĝn+m−1 · · · ĝn−1 · · · ĝ0p̂, ĝn+m−1 · · · ĝn−1 · · · ĝ0q̂

δ(ĝn−1 · · · ĝ0p̂, ĝn−1 · · · ĝ0q̂)

)α
dµm(gn+m−1, . . . , gn)

× sup
p̸̂=q̂

∫
Σn

(
δ(ĝn−1 · · · ĝ0p̂, ĝn−1 · · · ĝ0q̂)

δ(p̂, q̂)

)α
dµn(gn−1, . . . , g0)

= kα(µ∗m)kα(µ∗n).

■

Given φ ∈ L∞(P(Rd)) and 0 ≤ α ≤ 1 define the Hölder semi-norm

vα(φ) := sup
v̂1 ̸=v̂2

|φ(v̂1) − φ(v̂2)|
δ(v̂1, v̂2)α

.

If vα(φ) < ∞ then φ is α-Hölder continuous. Let Cα(P(Rd)) be the space
of all Hölder continuous functions, which we endow with its natural norm
∥·∥α = ∥·∥∞ + vα(·).



Chapter 4. Hölder Continuity of the First Lyapunov Exponent in the Generic
Setting 64

Lemma 4.6 For all ϕ ∈ Cα(PRd),

vα (Qµ ϕ) ≤ kα(µ) vα(ϕ).

Proof. Given ϕ ∈ Cα(PRd) and p̂, q̂ ∈ P(Rd),

|(Qµϕ)(p̂) − (Qµϕ)(q̂)|
δ(p̂, q̂)α ≤

∫
Σ

∣∣∣∣∣ϕ(ĝp̂) − ϕ(ĝq̂)
δ(p̂, q̂)α

∣∣∣∣∣ dµ(g)

≤ vα(ϕ)
∫

Σ

∣∣∣∣∣δ(ĝp̂, ĝq̂)αδ(p̂, q̂)α

∣∣∣∣∣ dµ(g).

Take the supremum in p̂ ̸= q̂ on both sides and conclude the proof. ■

Lemma 4.7 Given a measure µ ∈ Prob(GLd(R)) with supp(µ) ⊆ Σ, a
compact set, then for every α > 0,

kα(µ) ≤ sup
p̂∈PRd

∫
Σ

(
s1(g)s2(g)

∥gp∥2

)α
dµ(g),

where s1(g) and s2(g) are the first and second singular values of g and p is a
unit representative of p̂ ∈ PRd.

Proof. By the properties of the exterior algebra,

∥gp ∧ gq∥ = ∥(∧2g)(p ∧ q)∥ = s1(g)s2(g)∥p ∧ q∥.

Hence, by the definition of the projective distance and the fact that the
geometric mean is less than or equal to the arithmetic mean,

kα(µ) = sup
p̂ ̸=q̂

∫
Σ

(
∥gp ∧ gq∥
∥gp∥∥gq∥

∥p∥∥q∥
∥p ∧ q∥

)α
dµ(g)

= sup
p̂ ̸=q̂

∫
Σ

(
s1(g)s2(g)
∥gp∥∥gq∥

)α
dµ(g)

≤ sup
p̸̂=q̂

∫
Σ

(
s1(g)s2(g)

2

)α { 1
∥gp∥2α + 1

∥gq∥2α

}
dµ(g).

■

Proposition 4.3 Let µ ∈ Prob(Σ) be a quasi-irreducible measure with
L1(µ) > L2(µ). There are numbers 0 < α ≤ 1, θ > 1, C > 0 and δ > 0
such that for all n ∈ N and for all ν ∈ Prob(Σ) satisfying W1(µ, ν) < δ we
have that

kα(ν∗n) ≤ Cθ−n. (4.3)
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Proof. Note that

lim
n→∞

1
n

∫
Σ

log ∥gp∥−2 dµ∗n(g) = −2L1(µ) < 0 (by proposition 4.2)

with uniform convergence in p ∈ Sd−1.
Thus for every ϵ > 0 and every p ∈ Sd−1, there exists some N ∈ N (that

does not depend on p) such that for every n > N we have that

−2L1(µ) − ϵ ≤ 1
n

∫
Σ

log ∥gp∥−2 dµ∗n(g) ≤ −2L1(µ) + ϵ.

Hence, by choosing ϵ small enough, e.g ϵ < 1
4(L1(µ) − L2(µ)), and n

sufficiently large, we conclude that∫
Σ

log ∥gp∥−2 dµ∗n(g) ≤ n (−2L1(µ) + ϵ) . (4.4)

Moreover, since for a cocycle A, the first Lyapunov exponent L1(∧2A) of
its second exterior power ∧2A is equal to L1(A) + L2(A), for large enough n

we get
∫

Σ
log |s1(g) s2(g)| dµ∗n(g) =

∫
Σ

log | ∧2 g| dµ∗n(g) ≤ n(L1(µ) + L2(µ) + ϵ).

We combine these two estimates to conclude that, for n sufficiently large,

lim
n→∞

1
n

∫
Σ

log
[
s1(g)s2(g)

∥gp∥2

]
dµ∗n(g) ≤ −1,

since L1(µ) > L2(µ).
By the classical inequality ex ≤ 1 +x+ x2

2 e
|x|, we conclude that for every

p ∈ R2,

kα(µ∗n) ≤
∫

Σ

[
s1(g)s2(g)

∥gp∥2α

]
dµ∗n(g) ≤

≤
∫

Σ

[
1 + α log s1(g)s2(g)

∥gp∥2 + α2

2 log2
(
s1(g)s2(g)

∥gp∥2

)
e

∣∣∣α log s1(g)s2(g)
∥gp∥2

∣∣∣]
dµ∗n(g)

≤ 1 − α + α2

2 C(µ, n).

Note that C is a constant that depends only on µ and n. Thus, by taking
α sufficiently small we conclude that

kα(µ∗n) ≤ sup
p̂∈PRd

∫
Σ

[
s1(g)s2(g)

∥gp∥2α

]
dµ∗n(g) < 1.

Finally, note that kα(µ∗n) depends continuously on µ∗n and that the map
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µ 7→ µ∗n is Lipschitz by proposition 4.1. Therefore, there exists δ > 0 such
that for every ν satisfying W1(ν, µ) < δ we have kα(ν∗n) < 1. By the sub-
multiplicative property of kα we conclude that there exists C > 0 and θ > 1
such that the inequality 4.3 holds for every n ∈ N. ■

Corollary 4.1 Let µ ∈ Prob(Σ) be quasi-irreducible and L1(µ) > L2(µ). Then
there exists 0 < α ≤ 1, θ > 1, C > 0 and a neighborhood V ⊂ Prob(Σ) of
µ with respect to the Wasserstein distance, such that for every n ∈ N, every
ν ∈ V and every φ ∈ Cα(P(Rd)) we have

vα(Qn
νφ) ≤ C θ−n vα(φ).

Proof. By the previous proposition, there exists 0 < α ≤ 1, θ > 1, C > 0 and
a neighborhood V ⊂ Prob(Σ) of µ with respect to the Wasserstein distance,
such that for every n ∈ N and every ν ∈ V , kα(ν∗n) ≤ Cθ−n. Together with
proposition 4.6, we conclude that for every φ ∈ Cα(P(Rd)),

vα(Qn
νφ) ≤ kα(ν∗n) vα(φ) ≤ Cθ−n vα(φ).

■

4.2.3
The strong mixing property

A consequence of corollary 4.1 is that for every ν in the neighborhood
V ⊂ Prob(Σ) of µ, the associated Markov operator Qν satisfies the strong
mixing property. More precisely we get the following.

Proposition 4.4 Let µ ∈ Prob(Σ) be quasi-irreducible with L1(µ) > L2(µ).
There exist α ∈ (0, 1], θ ∈ (0, 1) and C < ∞ such that for every ν ∈ V ⊂
Prob(Σ), every n ∈ N and every φ ∈ Cα(P(Rd)),

∥Qn
νφ−

∫
P(Rd)

φ dην∥α ≤ Cθn∥φ∥α, (4.5)

where ην is a Qν-stationary measure on P(Rd).

Proof. Note that

∥φ−
∫
φ dην∥∞ =

∣∣∣∣φ(v̂) −
∫
φ(p̂) dην(p̂)

∣∣∣∣
≤
∫

|φ(v̂) − φ(p̂)| dην(p̂) ≤ v0(φ) ≤ vα(φ).
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Therefore, since ην is Qν stationary,

∥Qnφ−
∫
φ dην∥∞ = ∥Qnφ−

∫
Qn
νφ dην∥∞ ≤ vα(Qn

νφ) ≤ Cθ−n ∥φ∥α.

Moroever,
vα

(
Qnφ−

∫
φ dην

)
= vα (Qnφ) ≤ Cθ−n ∥φ∥α,

which completes the argument. ■

We claim that ην is the unique Qν-stationary measure of the cocycle.
Indeed, if there exists another Qν-stationary measure η′

ν , then by integrating
the inequality (4.5) with respect to η′

ν , we conclude that
∫
P(Rd)

φ dη′
ν =

∫
P(Rd)

Qn
νφ dη

′
ν →

∫
P(Rd)

φ dην ,

where the last convergence holds because η′
ν is a probability measure. Therefore

it must hold that η′
ν = ην .

For each measure ν ∈ V , consider the observable Φν : P(Rd) → R given
by

Φν(v̂) =
∫

Σ
log ∥gv∥

∥v∥
dν(g), (4.6)

which belongs to Cα(P(Rd)).
Since every ν ∈ V ⊂ Prob(Σ) admits a unique stationary measure, the

Furstenberg’s formula implies that

L1(ν) =
∫
P(Rd)

Φν(v̂) dην .

Remark 4.2 Note that for every probability measure ν it is possible to as-
sociate a linear functional αν as we did in equation (3.1) for the measure
µ. The uniqueness of the stationary measure ην implies that αν is constant,
hence ν admits a trivial Furstenberg-Kifer’s filtration. This means that every
ν ∈ V ⊂ Prob(Σ) is also quasi-irreducible.

4.3
Hölder continuity of the Lyapunov exponent

Proposition 4.5 Let µ ∈ Prob(Σ). Assume that µ is quasi-irreducible and
L1(µ) > L2(µ). Then there exist δ > 0, C < ∞ and 0 < α ≤ 1 such that
for all µ1, µ2 ∈ Prob(Σ) satisfying W1(µi, µ) < δ, for all n ∈ N and for all
φ ∈ Cα(PRd), we have

∥Qn
µ1(φ) −Qn

µ2(φ)∥∞ ≤ CW1(µ1, µ2)α. (4.7)
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Proof. For n = 1 we have that

∥Qµ1(φ) −Qµ2(φ)∥∞ = sup
p̂∈PRd

∣∣∣∣∫
Σ
φ(ĝ1(p̂))dµ1(g1) −

∫
Σ
φ(ĝ2(p̂)) dµ2(g2)

∣∣∣∣
= sup

p̂∈PRd

∣∣∣∣∫
Σ×Σ

φ(ĝ1(p̂)) − φ(ĝ2(p̂)) dπ(g1, g2)
∣∣∣∣ ∀π ∈ Π(µ1, µ2)

≤ sup
p̂∈PRd

∫
Σ×Σ

|φ(ĝ1(p̂)) − φ(ĝ2(p̂))| dπ(g1, g2) ∀π ∈ Π(µ1, µ2)

≤ vα(φ) sup
p̂∈PRd

∫
Σ×Σ

δ (ĝ1p̂, ĝ2p̂)α dπ(g1, g2) ∀π ∈ Π(µ1, µ2)

≤ vα(φ) sup
p̂∈PRd

∫
Σ×Σ

∥g1 − g2∥α max
{

1
∥g1(p)∥

,
1

∥g2(p)∥

}α
dπ(g1, g2),

for every π ∈ Π(µ1, µ2). The last inequality follows from lemma 2.9 of [21].
Since Σ is compact, there exists C1 > 0 such that for every p̂ ∈ PRd,

max
{

1
∥g1(p)∥ ,

1
∥g2(p)∥

}
≤ C1.

Then, for every π ∈ Π(µ1, µ2),

∥Qµ1(φ) −Qµ2(φ)∥∞ ≤ Cα
1 vα(φ)

∫
Σ×Σ

∥g1 − g2∥α dπ(g1, g2)

≤ Cα
1 vα(φ)

(∫
Σ×Σ

∥g1 − g2∥ dπ(g1, g2)
)α

≤ Cα
1 vα(φ)W1(µ1, µ2)α,

where on the second line we used Jensen’s inequality and the concavity of
the function t 7→ tα, which holds when t ∈ [0,∞) and α ∈ (0, 1]. Hence we
conclude that inequality (4.7) holds for n = 1. For now, we keep explicitly the
term vα(φ) in the conclusion instead of saying it is a constant, because it will
play an important role in the induction process.

Now observe that the difference Qn
µ1 −Qn

µ2 can be written as a telescopic
sum as follows:

Qn
µ1 −Qn

µ2 =
n−1∑
i=0

Qi
µ2 ◦ (Qµ1 −Qµ2) ◦Qn−i−1

µ1 .

We use the previous relation to prove the desired estimate:
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∥Qn
µ1(φ) −Qn

µ2(φ)∥∞ = ∥
n−1∑
i=0

Qi
µ2 ◦ (Qµ1 −Qµ2) ◦

(
Qn−i−1
µ1 (φ)

)
∥∞

≤
n−1∑
i=0

∥Qi
µ2 ◦ (Qµ1 −Qµ2) ◦

(
Qn−i−1
µ1 (φ)

)
∥∞

≤
n−1∑
i=0

∥ (Qµ1 −Qµ2) ◦
(
Qn−i−1
µ1 (φ)

)
∥∞

≤
n−1∑
i=0

Cα
1 vα

(
Qn−i−1
µ1 (φ)

)
W1(µ1, µ2)α

≤ Cα
1 W1(µ1, µ2)α

n−1∑
i=0

vα
(
Qi
µ1(φ)

)
≤ Cα

1 W1(µ1, µ2)α
∞∑
i=0

C2θ
−i

≤ CW1(µ1, µ2)α.

In the previous estimate, C2 and θ > 1 are the constants from corollary 4.1. ■

Corollary 4.2 Let µ ∈ Prob(Σ). Assume that µ is quasi-irreducible and
L1(µ) > L2(µ). There exist δ > 0, C < ∞ and 0 < α ≤ 1 such that for
every µ1, µ2 satisfying W1(µi, µ) < δ, for all n ∈ N and φ ∈ Cα(PRd) we have
that ∣∣∣∣∫

PRd
φ dηµ1 −

∫
PRd

φ dηµ2

∣∣∣∣ ≤ CW1(µ1, µ2)α,

where ηµ1 and ηµ2 are the unique stationary measures with respect to Qµ1 and
Qµ2, respectively.

Proof. By proposition 4.4,

lim
n→∞

Qn
µ1(φ) =

∫
PRd

φ dηµ1 and lim
n→∞

Qn
µ2(φ) =

∫
PRd

φ dηµ2 .

Hence, by proposition 4.5, we conclude that∣∣∣∣∫
PRd

φ dηµ1 −
∫
PRd

φ dηµ2

∣∣∣∣ = lim
n→∞

∥Qn
µ1(φ) −Qn

µ2(φ)∥∞ ≤ CW1(µ1, µ2)α.

■

Theorem 4.1 Let µ ∈ Prob(Σ). Assume that µ is quasi-irreducible and
L1(µ) > L2(µ). There exist δ > 0, C > 0 and α ∈ (0, 1] such that given
any µi, i ∈ {1, 2}, satisfying W1(µi, µ) < δ, we have that

|L1(µ1) − L1(µ2)| ≤ CW1(µ1, µ2)α.
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Proof. By Furstenberg’s formula,

L1(µi) =
∫
PRd

∫
Σ
φ dµidηµi

,

where φ(g, p̂) = log ∥gp∥
∥p∥ and ηµi

is the unique stationary measure with respect
to Qµi

, for i = 1, 2. Then

|L1(µ1) − L1(µ2)| =
∣∣∣∣∫

PRd

∫
Σ
φ dµ1dηµ1 −

∫
PRd

∫
Σ
φ dµ2dηµ2

∣∣∣∣
≤
∣∣∣∣∫

PRd

∫
Σ
φ dµ1dηµ1 −

∫
PRd

∫
Σ
φ dµ1dηµ2

∣∣∣∣+
+
∣∣∣∣∫

PRd

∫
Σ
φ dµ1dηµ2 −

∫
PRd

∫
Σ
φ dµ2dηµ2

∣∣∣∣
=
∣∣∣∣∫

Σ

∫
PRd

φ d (ηµ1 − ηµ2) dµ1

∣∣∣∣+ ∣∣∣∣∫
PRd

∫
Σ
φ d(µ1 − µ2)dηµ2

∣∣∣∣ .
By corollary 4.2, the first term is bounded by CW1(µ1, µ2)α. Note that

φ is Lipschitz on Σ with respect to the first coordinate with some Lipschitz
constant C ′. Then, using Kantorovich-Rubinstein’s theorem, the second term
is bounded by C ′ W1(µ1, µ2).

Hence, there exists a constant C > 0 and 0 < α ≤ 1 such that

|L1(µ1) − L1(µ2)| ≤ CW1(µ1, µ2)α.

This proves that the maximal Lyapunov exponent is Hölder continuous
in a neighborhood of µ. ■

Remark 4.3 Recently, Barrientos and Malicet obtained a similar result in [5],
using a moment condition instead of the compactness. Moreover, in private
communication with the authors, we were made aware of the independent work
of Duarte and Graxinha on a similar problem, but in the more general non
compact and not necessarily invertible setting.

4.4
Statistical Properties: LDT & CLT

In this section we explore statistical properties of the Lyapunov expo-
nents. We will use the machinery from section 2.3.

In proposition 4.4 we proved that given µ ∈ Prob(Σ), which is quasi-
irreducible and satisfies L1(µ) > L2(µ), for every ν in a neighborhood of µ,
the associated Markov system (P(Rd), Kν , ην) is strongly mixing in Cα(P(Rd)),
where Kν(v̂) =

∫
Σ δĝ0v̂ dν(g0).
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Moreover, by proposition 2.4, this implies that the Markov system on the
second level (Σ × P(Rd), K̄ν , ν × ην) is strongly mixing in Cα(Σ × P), where
K̄ν(g0, v̂) = µ× δĝ0v̂.

Remark 4.4 The Markov system (Σ × P(Rd), K̄ν , ν × ην) is also strongly
mixing in a slightly larger space, which we define as follows. First consider
the seminorm vPα which is the Hölder seminorm in the second coordinate:

vPα(φ) = sup
p̸=q
g∈Σ

|φ(g, p) − φ(g, q)|
δ(p, q)α .

Define the norm ∥φ∥P
α = ∥φ∥∞ + vPα(φ) and consider the space

Hα(Σ × P(Rd)) = {φ ∈ L∞(Σ × P(Rd)) : vPα(φ) < ∞}.

Moreover, the special observable φ(g0v̂) = log ∥g0v∥
∥v∥ belongs to both

Cα(Σ × P(Rd)) and Hα(Σ × P(Rd)). Therefore, theorem 2.2 is applicable and
we conclude that the following theorem holds.

Theorem 4.2 If µ ∈ Prob(Σ) is quasi-irreducible and L1(µ) > L2(µ), then
there exists δ > 0 such that for every ν satisfying W1(µ, ν) < δ, for every v ̸= 0
and for all ε > 0

νN
{
g ∈ ΣN :

∣∣∣∣ 1n log∥gn−1 . . . g1g0v∥ − L1(ν)
∣∣∣∣ > ε

}
≤ 8e−c(ε)n

where c(ε) > 0 depends explicitly on the data.

We now prove a central limit theorem for this random linear cocycle. We
already showed that the Markov system (Σ × P(Rd), K̄ν , ν × ην) is strongly
mixing in Cα(Σ × P(Rd)) for some α ∈ (0, 1). Thus, in order to apply
proposition 2.3 and conclude that the central limit theorem holds, we just
need to verify the following extra condition.

Lemma 4.8 For every open set U ⊂ Σ × P(Rd) with ν(U) > 0, there exists
Φ ∈ Cα(Σ × P(Rd)) such that 0 ≤ Φ ≤ 1U and

∫
Φ dν > 0.

Proof. Let U ⊂ Σ ×P(Rd) be an open set such that ν× ην(U) > 0. Then there
exist U1 ⊂ Σ and U2 ⊂ P(Rd) open sets such that U1 ×U2 ⊂ U and ν(U1) > 0,
ην(U2) > 0. The statement then follows by applying a version of Uryshon’s
lemma. ■

We conclude that the following CLT holds.
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Theorem 4.3 If µ ∈ Prob(Σ) is quasi-irreducible and L1(µ) > L2(µ), then
there exists δ > 0 such that for every ν satisfying W1(µ, ν) < δ and for every
v ̸= 0, we have that

log∥gn−1 . . . g1g0v∥ − nL1(ν)
σ

√
n

→ N (0, 1)

for some constant σ = σ(ν) ∈ (0,∞).



5
Analyticity of the Lyapunov Exponent

In the previous chapter we studied the regularity of the Lyapunov
exponent with respect to the weak-star topology. Now we study its regularity
with respect to the total variation norm. Although there are similar ideas
involved, it turns out that the Lyapunov exponent is much more regular in
this setting.

The main result of this chapter is the analyticity of the maximal Lya-
punov exponent as a function of the transition probabilities, which extends the
results and methods of Peres from a finite to an infinite (but compact) space
of symbols. This chapter is based on a joint work with Amorim and Melo [1].
Our approach combines the strong mixing property of the associated Markov
operator with the theory of holomorphic functions in Banach spaces.

By putting together ideas of Peres, Baraviera and Duarte and tools of
complex analysis in Banach spaces, we establish the analyticity of the top
Lyapunov exponent with respect to the total variation norm in two different
settings. Precise definitions of analyticity and total variation will be given in
section 5.1.1.

In the first setting, we assume a quasi-irreducibility hypothesis. In the
second one, instead of quasi-irreducibility, we assume that the probability
measure has full support (which is an analogue of the assumption that each
matrix has a positive probability in the finite support case of Peres [39]).

Remark 5.1 Similar results hold for absolutely continuous measures and for
random locally constant linear cocycles whose domain Σ is an arbitrary compact
set mapped to GLd(R) by a measurable and bounded function (see Section
5.2.3).

Remark 5.2 In section 5.2.3 we include an example where Σ is not compact
and the Lyapunov exponent is not even continuous.
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5.1
Holomorphic functions in Banach spaces and complex Markov operators

This section is divided into two parts, both of which serve the purpose
of constructing a setting that permits a generalization of Peres’ arguments.
The first part recalls the concept of analyticity in infinite dimensional Banach
spaces as well as a useful criteria thereof. The second part is devoted to the
study of complex Markov operators. We generalize the tools introduced in
chapter 4 to the broader scenario of complex measures and we show that the
analogue properties still hold.

5.1.1
Holomorphic functions in Banach spaces

Throughout this section, M and N will denote Banach spaces over C
and U will denote an open subset of M .

A function f : U → N is said to be holomorphic at a point a ∈ U if for all
n ∈ N there is an n-linear symmetric continuous map Tn : M × · · · ×M → N

(T0 is identically equal to a vector) such that:

f(x) =
∞∑
n=0

Tn(x− a)n,

for every x ∈ B(a, r) ⊂ U (for some r > 0), where Tnyn denotes Tn(y, y, . . . , y).
If f is holomorphic at every point of U then f is said to be holomorphic on U .

We introduce the following notation:

U(a, b) := {z ∈ C : a+ zb ∈ U}.

Definition 5.1 A map f : U → N is said to be Gâteux holomorphic (or G-
holomorphic) if for every a ∈ U and for every b ∈ M , the map

z 7→ f(a+ zb)

is holomorphic on U(a, b) ⊂ C.

It is clear that every holomorphic map is also G-holomorphic. However
the converse in general is not true when M is infinite dimensional. The
following theorem, see [16, Chapter 14], provides a criterion for when the
converse holds.

Theorem 5.1 Let U be an open subset of a Banach space and let f : U → N .
The following are equivalent:
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(i) f is holomorphic on U .

(ii) f is G-holomorphic and continous on U .

The variation of a complex measure µ is defined as

|µ| := sup
π

∑
A∈π

|µ(A)|

where the supremum is taken over all partitions π of a measurable set E into
a countable number of disjoint measurable sets.

Another characterization of the variation of a complex measure is the
following:

|µ|(E) = sup
{∣∣∣∣∫

E
f(g) dµ(g)

∣∣∣∣ : f ∈ L∞(µ) and ∥f∥∞ ≤ 1
}
.

Note that if f ∈ L1(µ), then:

∣∣∣∣∫
Σ
f(x) dµ(x)

∣∣∣∣ ≤
∫

Σ
|f(x)| d|µ|(x).

Let Σ be a compact metric space. The total variation of a complex
measure is defined as ∥µ∥ : = |µ|(Σ). If a measure satisfies ∥µ∥ < ∞, then we
say that µ is finite or that it is of bounded variation.

We will consider Σ to be a compact (but possibly infinite) space of
symbols. We denote by M(Σ) the set of complex valued measures over Σ with
bounded variation. The set M(Σ), endowed with the total variation norm, will
play the role of the Banach space M .

In this work, we consider slightly more general definitions of holomorphy
and G-holomorphy, in which the domain could also be a translation of a
Banach subspace. The following construction shows how one can transfer the
holomorphic structure from Banach spaces to affine subspaces via translation.

Let V ⊂ M be a closed subspace, v0 ∈ M and consider a closed affine
subspace V0 = V + v0 of M . Let U0 ⊂ V0 be an open set of V0. We consider a
function f0 : U0 → N to be holomorphic (G-holomorphic) at x0 ∈ U0 if there
exists a function f : U = U0 − v0 → N which is holomorphic (G-holomorphic)
at x0 − v0, such that f(x) = f0(x + v0) for every x ∈ U . Moreover, if f is
holomorphic (G-holomorphic) at every point of its domain, then so is f0.

It is then immediate that Theorem 5.1 also holds in this context.
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5.1.2
Complex Markov operators

Recall from the last chapter that given µ ∈ Prob(Σ), one can consider
the associated Markov operator Qµ : L∞(P) → L∞(P)

Qµ(φ)(v̂) =
∫

Σ
φ(ĝv̂) dµ(g).

In this chapter we consider small perturbations of µ given by complex
measures ν ∈ M(Σ) and their associated operators Qν . Although Qµ is a
Markov operator, Qν may not be a Markov operator. This can happen because
when ν is not a probability measure, it does not fix constants. Although the
operator Qν associated to a complex measure may not be a Markov operator,
we will show that it satisfies similar properties.

First, note that the relation Qn
µ = Qµ∗n described in lemma 4.4 still holds

when µ ∈ M(Σ) is a complex measure with bounded variation. The proof is
exactly the same.

Now we proceed to introduce an analogous version of the average Hölder
constant of the projective action kα. Note that when µ is a complex measure,
the image of kα (from definition 4.4) may not be a real number, thus, instead
of working with µ, we consider its variation |µ|, see below.

Definition 5.2 Let µ ∈ M(Σ) be a complex measure of bounded variation
and let α ∈ (0, 1]. We define the average α-Hölder constant of the projective
action ĝ0 : P(Rd) → P(Rd) by

kα(µ) := sup
v1 ̸=v2

∫
Σ

(
δ(ĝ0v̂1, ĝ0v̂2)
δ(v̂1, v̂2)

)α
d|µ|(g0).

Throughout this chapter, whenever we refer to kα one should consider
the one from the previous definition 5.2.

Lemma 5.1 For every two complex measures µ, ν ∈ M(Σ), it holds that
|µ ∗ ν| ≤ |µ||ν|. In particular, for every φ ∈ L∞(µ∗n), it holds that

∣∣∣∣∫ φ dµ∗n
∣∣∣∣ ≤

∫
|φ| d|µ∗n| ≤

∫
|φ| d|µ|∗n.
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Proof. Let φ ∈ L∞(µ ∗ ν). Then:
∣∣∣∣∫

Σ
φ(x) dµ ∗ ν(x)

∣∣∣∣ =
∣∣∣∣∫

Σ

∫
Σ
φ(gx) dν(x)dµ(g)

∣∣∣∣
≤
∫

Σ

∫
Σ

|φ(gx)| d|ν|(x)d|µ|(g)

=
∫

Σ
|φ(x)| d|µ| ∗ |ν|(x)

By restricting it to ∥φ∥∞ ≤ 1 and taking the supremum on both sides, it
follows that |µ ∗ ν| ≤ |µ||ν|. Moreover, applying the inequality above multiple
times with ν = µ concludes the result. ■

Now, we prove the analogues of lemmas 4.5 and 4.6 for the complex
analogue of the Markov operator.

Lemma 5.2 The sequence kα(µ∗n) is sub-multiplicative:

kα(µ∗(m+n)) ≤ kα(µ∗m) kα(µ∗n).

Proof.

kα(µ(m+n)) = sup
v1 ̸=v2

∫
Σ

(
δ(ĝv̂1, ĝv̂2)
δ(v̂1, v̂2)

)α
d|µ∗(m+n)|(g)

≤ sup
v1 ̸=v2

∫
Σ

(
δ(ĝv̂1, ĝv̂2)
δ(v̂1, v̂2)

)α
d|µ∗n| ∗ |µ∗m|(g)

= sup
v1 ̸=v2

∫
Σ

∫
Σ

(
δ(ĝ2ĝ1v̂1, ĝ2ĝ1v̂2)

δ(v̂1, v̂2)

)α
d|µ∗m|(g1)d|µ∗n|(g2)

= sup
v1 ̸=v2

∫
Σ

∫
Σ

(
δ(ĝ2ĝ1v̂1, ĝ2ĝ1v̂2)
δ(ĝ1v̂1, ĝ1v̂2)

· δ(ĝ1v̂1, ĝ1v̂2)
δ(v̂1, v̂2)

)α
d|µ∗m|(g1)d|µ∗n|(g2)

≤ sup
v1 ̸=v2

∫
Σ

(
δ(ĝ1v̂1, ĝ1v̂2)
δ(v̂1, v̂2)

)α
kα(µ∗n)d|µ∗m|(g1) = kα(µ∗m)kα(µ∗n).

■

Lemma 5.3 For every n ≥ 1, µ ∈ M(Σ) and φ ∈ Cα(P(Rd)), the following
inequality holds:

vα(Qn
µ(φ)) ≤ kα(µ∗n) vα(φ).
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Proof.

|Qn
µφ(v̂1) −Qn

µφ(v̂2)|
δ(v̂1, v̂2)α

= |
∫

Σ φ(ĝv̂1) dµ∗n(g) −
∫

Σ φ(ĝv̂2) dµ∗n(g)|
δ(v̂1, v̂2)α

=
∣∣∣∣∣
∫

Σ

φ(ĝv̂1) − φ(ĝv̂2)
δ(v̂1, v̂2)α

dµ∗n(g)
∣∣∣∣∣

≤
∫

Σ

|φ(ĝv̂1) − φ(ĝv̂2)|
δ(v̂1, v̂2)α

d|µ∗n|(g)

≤ vα(φ)
∫

Σ

δ(ĝv̂1, ĝv̂2)α
δ(v̂1, v̂2)α

d|µ∗n|(g)

We conclude the lemma by applying the supremum in v̂1 ̸= v̂2 to both sides.
■

5.2
The holomorphic extension of the Lyapunov exponent

This section is divided into three parts. The first one is devoted to proving
that the ideas in chapter 4 still hold for complex measures. We show that
the powers of the Markov operator Qµ converge to a number which, when
µ is a probability measure, is the Lyapunov exponent. In the second part
we use the concept of Gâteux holomorphy to write the Markov operator as a
polynomial. Therefore, using ideas of [39], we show that the Lyapunov exponent
of a probability measure has a holomorphic extension, which in turn implies
its analyticity, the main result of the chapter. In the last part of this section
we present some consequences of this result and we include one example that
shows the importance of the compactness of the support of the measure.

5.2.1
The convergence of the iterates of the Markov operator

Let µ0 be a probability measure on GLd(R) with support in the compact
set Σ. Assume that µ0 is quasi-irreducible. This implies that its Furstenberg-
Kifer’s filtration (see theorem 3.5) is trivial, that is, for every v ∈ Rd\{0} and
µN

0 -almost every {gn}n ∈ ΣN,

lim
n→∞

1
n

log∥gn−1 . . . g1g0v∥ = L1(µ0).

Moreover, together with the hypothesis that L1(µ0) > L2(µ0), a conse-
quence of the previous fact is proposition 4.2, which says that

lim
n→∞

1
n

∫
Σ

log∥gv∥dµ∗n
0 (g) = L1(µ0), (5.1)

with uniform convergence in v̂ ∈ P(Rd).
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Now, similarly to what we have done in chapter 4, we proceed to prove
that the complex analogue of the Markov operator associated to any complex
measure in a neighborhood of µ0 contracts the vα seminorm.

Lemma 5.4 For every µ ∈ M(Σ) and every α > 0,

kα(µ) ≤ sup
v̂∈P

∫
Σ

(
s1(g)s2(g)

∥gv∥2

)α
d|µ|(g),

where s1(g) and s2(g) are the first and second singular values of a matrix
g ∈ GLd(R).

Proof. Recall that
∥gp ∧ gq∥ = s1(g)s2(g)∥p ∧ q∥.

Hence, by (4.2), given α > 0, two points p̂, q̂ ∈ P and any g ∈ Σ, it holds that
[
δ(ĝp̂, ĝq̂)
δ(p̂, q̂)

]α
=
[
(s1(g)s2(g))

∥p∥∥q∥
∥gp∥∥gq∥

]α

≤ [s1(g)s2(g)]α

2

[
1

∥gp∥2α + 1
∥gq∥2α

]

since the geometric mean is less or equal the arithmetic mean.
Note that if we integrate with respect to the measure |µ| and take the

supremum in p̂ ̸= q̂ on both sides of this inequality, we conclude the lemma. ■

Proposition 5.1 Assume that µ0 ∈ Prob(Σ) is quasi-irreducible and L1(µ0) >
L2(µ0). Then there exist 0 < α ≤ 1, θ > 1, C > 0 and a neighborhood
V ⊂ M(Σ) of µ0 with respect to the total variation distance, such that for
every n ∈ N and for every µ ∈ V ,

kα(µ∗n) ≤ Cθ−n. (5.2)

Proof. We start the proof for µ0 by following the argument in proposition 4.3.
Since µ0 ∈ Prob(Σ), the same estimates from chapter 4 hold and we conclude
that

kα(µ∗n
0 ) ≤

∫
Σ

(
s1(g)s2(g)

∥gv∥2

)α
d|µ0|∗n =

∫
Σ

(
s1(g)s2(g)

∥gv∥2

)α
dµ∗n

0 ≤ 1 − α + C
α2

2

for some finite constant C that depends only on g, µ0 and n.
Thus, fixing n0 sufficiently large and considering α small enough, we

conclude by Lemma 5.4 that

kα(µ∗n0
0 ) ≤ 1 − α + C

α2

2 < 1.
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Note that for a fixed n, the quantity
∫ ( s1(g)s2(g)

∥gv∥2

)α
d|µ0|∗n, which bounds

from above kα(µ∗n
0 ), depends continuously on the measure µ0. Then the

previous inequality extends to a neighborhood of µ0. There exists κ < 1 and
a neighborhood V ⊂ M(Σ) of µ0 with respect to the total variation distance,
such that kα(µ∗n0) ≤ κ < 1 for every µ ∈ V .

Because of the sub-multiplicative property of kα, we conclude that there
exists C > 0 and θ > 1, such that inequality 5.2 holds for every n ∈ N. ■

Corollary 5.1 Assume that µ0 ∈ Prob(Σ) is quasi-irreducible and L1(µ0) >
L2(µ0). Then there exist 0 < α ≤ 1, θ > 1, C > 0 and a neighborhood
V ⊂ M(Σ) of µ0 with respect to the total variation distance, such that for
every n ∈ N, for every µ ∈ V and every φ ∈ Cα(P(Rd)),

vα(Qn
µφ) ≤ Cθ−n vα(φ).

Proof. By proposition 5.1, there exist 0 < α ≤ 1, θ > 1, C > 0 and a
neighbourhood V ⊂ M(Σ) of µ0 with respect to the total variation distance,
such that for every n ∈ N and for every µ ∈ V , we have that kα(µ∗n) ≤ Cθ−n.
Together with lemma 5.3, we conclude that

vα(Qn
µ(φ)) ≤ kα(µ∗n) vα(φ) ≤ Cθ−n.

■

We already showed in proposition 4.4 that when µ is a probability
measure on Σ, a consequence of the previous corollary is that Qµ is strongly
mixing. There exist α ∈ (0, 1], θ ∈ (0, 1) and C < ∞ such that for every n ∈ N
and every φ ∈ Cα(P(Rd)),

∥Qn
µφ−

∫
φ dηµ∥α ≤ Cθn∥φ∥α, (5.3)

where ηµ is the unique µ-stationary measure on P(Rd).
Consider the observable φ : P(Rd) → R given by

φ(v̂) =
∫

Σ
log ∥gv∥

∥v∥
dµ(g). (5.4)

If µ is a probability measure, then, by Furstenberg’s formula,
∫
P(Rd)

φ(v̂) dηµ = L1(µ).

Remark 5.3 When µ is a probability measure, for a fixed v̂ ∈ P(Rd) the
iterates Qn

µφ(v̂) converge uniformly to the top Lyapunov exponent L1(µ).
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5.2.2
The domain of holomorphy

Now we establish a holomorphic extension of the Lyapunov exponent L1.
We start by defining the domain where L1 will be shown to be analytic.

Let M0(Σ) be the set of finite complex measures that give measure zero
to Σ. Therefore, every µ ∈ M0(Σ) satisfies µ(Σ) = 0.

Lemma 5.5 M0(Σ) is a Banach space.

Proof. First note that M0(Σ) is a vector subspace of M(Σ). Moreover, it is the
kernel of the linear functional that assigns to each finite measure, its measure
of the whole space: ν 7→ ν(Σ). Therefore, it is a closed subspace of M(Σ),
hence it is also a Banach space. ■

Let M1(Σ) denote the set of finite complex measures that give measure
one to Σ. Note that M1(Σ) is an affine subspace of M(Σ), namely M1(Σ) =
M0(Σ) + µ0, for some µ0 ∈ Prob(Σ). Therefore M1(Σ) can be endowed with
an analytic structure as seen in section 2.1.

We are going to prove that L1 admits a holomorphic extension to
V ∩ M1(Σ), where V is the neighborhood of µ0 from proposition 5.1. In fact,
all the proofs from the previous sections were done in M(Σ), but could have
been done directly in M1(Σ). Thus, from now on, we are going to consider the
neighborhood V to be in M1(Σ) and we will write just V instead of V ∩M1(Σ).

Lemma 5.6 For every µ ∈ V ⊂ M1(Σ), v̂1 ̸= v̂2 ∈ P(Rd) and φ ∈ Cα(P(Rd))
it holds that ∣∣∣Qn

µφ(v̂1) −Qn
µφ(v̂2)

∣∣∣ ≤ Cθ−n. (5.5)

Proof. By lemma 5.3, for every µ ∈ M(Σ) and every φ ∈ Cα(P(Rd)),

vα(Qn
µφ) ≤ vα(φ)kα(µ∗n).

Therefore, it also holds that for every v̂1 ̸= v̂2 ∈ P(Rd),
∣∣∣Qn

µφ(v̂1) −Qn
µφ(v̂2)

∣∣∣ ≤ vα(φ)kα(µ∗n).

Using proposition 5.1 we conclude the proof. ■

Proposition 5.2 For every µ ∈ V ⊂ M1(Σ) and v̂1 ̸= v̂2 ∈ P(Rd),
∣∣∣Qn+1

µ φ(v̂) −Qn
µφ(v̂)

∣∣∣ ≤ Cθ−n.
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Proof. Note that for every v̂1 ̸= v̂2 ∈ P(Rd),

∣∣∣Qn+1
µ φ(v̂) −Qn

µφ(v̂)
∣∣∣ =

∣∣∣∣∫
Σ
Qn
µφ(ĝv̂) dµ−Qn

µφ(v̂)
∣∣∣∣ .

Moreover, for every µ ∈ V ⊂ M1(Σ) and v̂1 ̸= v̂2 ∈ P(Rd),
∣∣∣∣∫

Σ
Qn
µφ(ĝv̂) dµ−Qn

µφ(v̂)
∣∣∣∣ =

∣∣∣∣∫
Σ
Qn
µφ(ĝv̂) −Qn

µφ(v̂) dµ
∣∣∣∣ ≤ Ce−n.

■

We are ready to state and prove the main result of this chapter.

Theorem 5.2 Let Σ ⊂ GLd(R) be a compact subset, µ0 ∈ Prob(Σ) and
assume that L1(µ0) > L2(µ0).

(1) If µ0 is quasi-irreducible, then µ 7→ L1(µ) is real analytic with respect to
the total variation norm in a neighbourhood of µ0.

(2) If supp(µ0) = Σ, then µ 7→ L1(µ) is real analytic with respect to the total
variation norm in a neighbourhood of µ0.

Proof. For a fixed v̂ and φ given in equation 5.4, the sequence {Qn
µφ(v̂)}n is

Cauchy. Therefore its limit, denoted by Q∞
µ φ(v̂), exists. Moreover, note that

µ 7→ Qn
µφ(v̂) is continuous. Since µ 7→ Q∞

µ φ(v̂) is a uniform limit of continuous
functions, it is also continuous. Furthermore, when µ is a probability measure,
Q∞
µ φ(v̂) = L1(µ), the top Lyapunov exponent (as shown in remark 5.3).

We want to prove that µ 7→ Q∞
µ φ(v̂) is holomorphic. For this, we are

going to use theorem 5.1. Since we already know that the limit is continuous,
it suffices to prove that it is also G-holomorphic.

As we stated, M1(Σ) is not a Banach space, therefore, we need to
transfer the holormphic structure from M0(Σ) to it. Intuitively, G-holomorphy
means to be holomorphic along complex lines, hence to say that the map
µ 7→ Q∞

µ φ(v̂) from V ⊂ M1(Σ) to C is Gâteaux holomorphic means
that ∀µ ∈ V , ∀ν ∈ M0(Σ), the map z 7→ Q∞

µ+zνφ(v̂) is holomorphic on
V (µ, ν) = {z ∈ C : µ+ zν ∈ V }.

Consider measures µz of the form µz = µ + zν, where µ ∈ V and ν

is any finite complex measure with ν(Σ) = 0. Note that, since µ ∈ M1(Σ),
we have that µz ∈ M1(Σ) for every z ∈ C. Consider small perturbations of
the Markov operator in the following sense: for each z ∈ C, let the operator
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Qµ+zν : L∞(P,C) → L∞(P,C) be defined by

Qµ+zν(φ)(v̂) =
∫

Σ
φ(ĝv̂) d(µ+ zν)(g)

=
∫

Σ
φ(ĝv̂) d(µ) + z

∫
Σ
φ(ĝv̂) d(ν)

= Qµ(φ)(v̂) + zQν(φ)(v̂).

Note that, for a fixed vector v̂, each Qn
µz

(φ)(v̂) is a polynomial of degree
smaller or equal to n, in particular, the map z 7→ Qn

µz
(φ)(v̂) is holomorphic for

µz ∈ V . Therefore, for every z ∈ V (µ, ν), the limit function is a uniform limit
of holomorphic functions, hence z 7→ Q∞

µz
φ(v̂) is holomorphic. In other words,

the Lyapunov exponent is G-holomorphic in the neighbourhood V ⊂ M1(Σ)
of µ0. Together with the continuity, we conclude that it is indeed holomorphic.
This concludes the proof of item (1) the theorem.

Let us now prove item (2). We drop the assumption of irreducibility of
µ0 and instead we assume that suppµ0 = Σ. Let W be a non trivial vector
subspace of Rd that is invariant for µ0 almost every matrix g. We saw in section
3.2.2 that the measure µ0 defines the measures µ0,W and µ0,Rd/W in GLd(W)
and GLd(Rd/W). Moreover, they induce the linear cocycles restricted to W

and to Rd/W , with Lyapunov exponents L1(µ0,W ) and L1(µ0,Rd/W ).
By lemma 3.6, L1(µ0) = max{L1(µ0,W ), L1(µ0,Rd/W )}. Without loss of

generality, we may suppose that L1(µ0) = L1(µ0,W ). The other case is similar.
The fact that we consider suppµ0 = Σ implies that gW = W ∀g ∈ Σ.
Therefore, for every µ ∈ M1(Σ) also satisfies gW = W for µ-a.e g.

By corollary B of [39], if µn → µ0 in the weak star topology and suppµn ⊂
suppµ0 for every n, then L1(µn) → L1(µ0). Therefore, the continuity of the
Lyapunov exponents imply that for every µ sufficiently close to µ0, it holds that
L1(µ) = L1(µW ). This happens because L1(µ) = max{L1(µW ), L1(µRd/W )}.

If µ0,W is irreducible, then the map µ 7→ L1(µW ) is holomorphic. Since
L1(µ) = L1(µW ) in a neighborhood of µ0, we conclude that µ 7→ L1(µ) is also
holomorphic in a neighborhood of µ0.

If µ0,W is not irreducible, there exists another non trivial invariant
subspace W ′ ⊂ W . The measure µ0,V defines measures µ0,W ′ and µ0,W/W ′ .
Then we do the same procedure. Since the invariant subspaces are of decreasing
dimension, this process must stop after a finite number of steps. Therefore, we
conclude the proof of the theorem. ■

Remark 5.4 Note that under the quasi-irreducibility hypothesis the analytic-
ity holds in a neighborhood of µ0, even if its support is not total. In order to
exclude the irreducibility hypothesis, we assume in item (2) that µ0 has full
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support. When the measure µ0 is not quasi irreducible, is the full support hy-
pothesis strictly necessary?

The answer is yes, and it is based on Kifer’s example. Recall that in
example 3.3, if p2 > 0, the top Lyapunov exponent of this cocycle is zero. In
the limit case, with p2 = 0, the cocycle is generated only by g1, which is a
not quasi irreducible cocycle, since it preserves both axis and one of them is
an equator, i.e the top Lyapunov exponent in this direction is not maximum.
Moreover, the top Lyapunov exponent of the limit cocycle is equal to log 2,
which makes this cocycle a discontinuity point. Therefore, if the cocycle is not
quasi irreducible and also does not have full support, it can be discontinuity
point of the Lyapunov exponent.

5.2.3
Corollaries and remarks

Let Σ be an abstract compact space, X = ΣN and σ : X → X be
the forward shift on X. We fix a measurable and bounded function A : Σ →
GLd(R) and denote also by A the locally constant (fiber) map A : X → GLd(R)
given by A((xn)n∈N) = A(x0).

Given µ ∈ Prob(Σ), let µN be the product (Bernoulli) measure on X.
A random (Bernoulli) locally constant linear cocycle FA : X × Rd → X × Rd

relative to the product measure µN is a skew product transformation such that

FA(ω, v) = (σ(ω), A(x)v).

Its iterates are given by

F n
A(ω, v) = (σn(ω), An(ω)v),

where An(ω) := A(ωn−1) . . . A(ω1)A(ω0).
A seminal result from Furstenberg and Kesten states that under the

integrability condition log+∥A±∥ ∈ L1(µ), the limit

L1(A, µ) = lim
n

1
n

log∥An(ω)∥

exists µN a.e. and it is called the top Lyapunov exponent of this cocycle.
Corollary 5.2 In this context, let Σ ⊂ GLd(R) be a compact subset and
X = ΣN. Fix any locally constant fiber map A : X → Rd. Let µ0 ∈ Prob(Σ)
and assume that L1(A, µ0) > L2(A, µ0).

(1) If µ0 is quasi-irreducible, then µ 7→ L1(A, µ) is real analytic with respect
to the total variation norm in a neighborhood of µ0.
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(2) If supp(µ0) = Σ, then µ 7→ L1(A, µ) is real analytic with respect to the
total variation norm in a neighborhood of µ0.

Proof. Consider the push forward measure on Prob(GLd(R)) given by A∗µ. By
the boundedness of A, the support of A∗µ remains compact, and therefore
its Lyapunov exponent is well defined. A change of variables shows that
the Lyapunov exponent L1(A∗µ) associated to the measure A∗µ is equal to
L1(A, µ). Moreover, the application A∗ : M(Σ) → M(GLd(R)) is a linear
continuous (and, therefore, analytic) mapping that preserves probabilities.
Since the composition on analytic maps is analytic, it follows by Theorem
5.2 that the map L1(A, µ) = L1(A∗µ) is analytic with respect to µ, which
guarantees that the result in theorem 5.2 also holds for arbitrary locally
constant linear cocyles. ■

A second corollary is an analogue of the finite case, in which the support is
of the measure is a fixed compact set on GLd(R) and we look at the dependence
on the probability weights. Let µ0 ∈ Prob(Σ) be a reference measure of full
support. We restrict to the measures in Σ which are absolutely continuous with
respect to µ0.

By the Radon-Nikodym Theorem, this space is identified with the space
L1(µ0) of integrable complex functions with respect to µ0 through the map
I : L1(µ0) → M(Σ) given by

I(f)(E) =
∫
E
f(x)dµ0(x)

for every measurable set E. The map I is an isomorphism between L1(µ0) and
the measures on M(Σ) which are absolutely continuous with respect to µ0.
Observe that, given f, g ∈ L1(µ0), it follows that

∥I(f) − I(g)∥TV ≤ ∥f − g∥1 ≤ ∥f − g∥p,

where ∥.∥TV denotes the total variation norm, ∥.∥1 denotes the L1 norm and
∥.∥p denotes the Lp norm, with p ∈ [1,+∞]. This fact guarantees that, given
r > 0, it follows that Bp(f, r) ⊂ B1(f, r) ⊂ BTV (I(f), r), where each of the
previous sets denotes an open ball on its respective norm.

This observation, together with the Theorem 5.2, proves the following.

Corollary 5.3 Let µ0 ∈ Prob(Σ) have full support and assume that L1(µ0) >
L2(µ0). For p ∈ [1,+∞], define

Lp1(µ0) :=
{
f : Ω → R : f ∈ Lp(µ0) and

∫
f(x)dµ0(x) = 1

}
.
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Then the Lyapunov exponent L1 : Lp1(µ0) → R is locally a real analytic function
of µ0 with respect to the Lp norm.

We now consider the set in which L1 is analytical. We say that a measure
µ ∈ M(GLd(R)) is irreducible if there is no proper subspace V ⊂ GLd(R)
such that gV = V for µ-a.e.g. Notice that every irreducible measure is quasi-
irreducible.

Observe that irreducibility is a dense property with respect to the total
variation norm. Indeed, let µ0 be a probability in GLd(R), and let ν be another
probability in GLd(R), with compact support. If ν is irreducible and given
ε > 0, then µε = (1 − ε)µ+ εν is an irreducible probability in GLd(R). To see
this, let V be a proper subspace of GLd(R). Since ν is irreducible, there exists
a borelian set B ⊂ GLd(R) such that ν(B) > 0 and gV ̸= V for every g ∈ B.
Notice that µε(B) = (1 − ε)µ(B) + εν(B) ≥ εν(B) > 0, so it follows that µε
is irreducible.

Notice also that |µε − µ| = |εν − εµ| ≤ 2ε, so we can choose ε

sufficiently small such that µε is arbitrarily close to µ. Moreover, supp µϵ =
supp µ ∪ supp ν, so if µ has compact support, µϵ also has compact support,
and if both supp µ ⊂ Σ and supp ν ⊂ Σ, then supp µϵ ⊂ Σ.

We also observe that in [33], Kifer proved that being irreducible is an
open property on Prob(GLd(R)) with respect to the weak* topology. Since
the total variation norm generates a finer topology than the weak* topology, it
follows that being irreducible is also an open property with respect to the total
variation norm. Therefore, by the first result of 5.2, we can conclude that L1 is
analytical on the set of compactly supported irreducible measures on GLd(R),
which is a dense open set on the space Prob(GLd(R)) with respect to the total
variation norm.

To conclude this section, we show that the restriction of the probabilities
to a compact set Σ in 5.2 cannot be removed without any other extra
hypothesis to replace it.

Indeed, let µ ∈ Prob(GL(d)) be a compactly supported measure with
L1(µ) > L2(µ). Let a, ε > 0 and consider the measure µa,ε := (1 − ε)µ+ εδaI ,
where I is the identity matrix. This measure is 2ε close to µ in the total
variation distance, however, depending on the choice of a, their supports may
be very distant from each other.

By a previous comment, the measure µa,ε is compactly supported.
Moreover, the identity:

L1(ν) + ...+ Ld(ν) =
∫

log | det g| dν(g),
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which is true for any compactly supported measure on GL(d), gives us that:

L1(µa,ε) ≥ L1(µa,ε) + ...+ Ld(µa,ε)
d

= 1
d

∫
log | det g| dµa,ε(g)

Hence, it is possible to choose a sufficiently large such that the previous
term is much bigger than the Lyapunov exponent L1(µ). Since there is no
restriction on the support of the measures, for every ε > 0, one can find
infinitely measures of the form µa,ε which are close to µ in the total variation
norm, but that have Lyapunov exponents very far from it. Thus, L1 cannot
even be continuous.

Although it is clear that compactness plays an important role in this
result, in recent conversations with Duarte and Graxinha, they explained that
the techniques from section 4 are being extended by them to the non-compact
setting assuming, however, a certain growth condition, namely the finiteness
of an exponential moment. Independently, Barrientos and Malicet [5] were also
able to adapt some of the techniques presented in section 4 to the non-compact
setting and obtain the strong mixing of the Markov operator. Therefore, we
believe that the same kind of hypothesis should be sufficient to prove theorem
5.2 in this more general setting.



6
Dichotomic Behavior in the Singular Setting: Analyticity vs
Discontinuity

A version of the Bochi-Mañé dichotomy theorem in the context of linear
cocycles states that given any measure preserving dynamical system (X, f, µ)
where f is an aperiodic (meaning its set of periodic points has measure
zero) homeomorphism, for any fiber map A : X → SL2(R), either the cocycle
associated with A is hyperbolic over the support of µ or else A is approximated
in the C0 topology by fiber maps with zero Lyapunov exponent.

By Ruelle’s theorem, hyperbolic cocycles are points of analyticity of the
Lyapunov exponent; moreover, since the Lyapunov exponent is always upper
semicontinuous, it must be continuous at any SL2(R)-valued cocycle with zero
Lyapunov exponent. Therefore, a fiber map A : X → SL2(R) is a continuity
point for the first Lyapunov exponent in C0(X, SL2(R)) if and only if the
corresponding linear cocycle is either hyperbolic over the support of µ (in
which case the Lyapunov exponent is in fact analytic) or L1(A) = 0.

In other words, if L1(A) > 0, the first Lyapunov exponent is either
analytic or discontinuous at A in the C0 topology of SL2(R) cocycles. However,
this behavior changes dramatically when the fiber map is highly regular and
it varies in a space endowed with an appropriate, strong topology.

Indeed, consider a locally constant linear cocycle over a Bernoulli shift.
More precisely, let A := {1, . . . , k} be a finite alphabet and let p = (p1, . . . , pk)
be a probability vector with pi > 0 for all i. Denote by X := AZ the space of
bi-infinite sequences ω = {ωn}n∈Z on this alphabet, which we endow with the
product measure µ = pZ. Let σ : X → X be the corresponding forward shift
σω = {ωn+1}n∈Z. Then (X,µ, σ) is a measure preserving, ergodic dynamical
system called a Bernoulli shift (in finite symbols).

Let Mat2(R) denote the semigroup of 2 × 2 matrices. A k-tuple A =
(A1, . . . , Ak) ∈ Mat2(R)k determines the locally constant fiber map A : X →
Mat2(R), A(ω) = Aω0 , which in turns determines a linear cocycle over the
Bernoulli shift, referred to as a (random) Bernoulli cocycle. We identify
this cocycle with the fiber map A and with the tuple A and denote by
L1(A) = L1(A, p) its first Lyapunov exponent.



Chapter 6. Dichotomic Behavior in the Singular Setting: Analyticity vs
Discontinuity 89

When we restrict to invertible random linear cocycles, that is, when
A = (A1, . . . , Ak) ∈ GL2(R)k, the Lyapunov exponent is always continuous;
moreover, it has a good modulus of continuity as we saw in the previous
chapters. This has been the subject of intense research throughout the years,
starting with the celebrated work of Furstenberg and Kifer [29].

However, as it turns out, the behavior of the first Lyapunov exponent
at random cocycles with both singular and invertible components is strikingly
different, showing a dichotomy in the spirit of Mañé-Bochi’s (see theorem 6.3).

This chapter is based on the joint work [18] with Duarte, Graxinha and
Klein. In section 6.1 we generalize Avila, Bochi, Yoccoz [2] theory of projective
uniform hyperbolicity in terms of multi-cones, from SL2(R)-valued cocycles to
Mat+

2 (R)-valued cocycles. Recall that Mat+
2 (R) is the semigroup of matrices

g ∈ Mat2(R) with det(g) ≥ 0. In section 6.2 we use this result to prove
a Mañé-Bochi type of dichotomy for singular cocycles and also derive other
interesting corollaries from it. In particular, we conclude that Lebesgue almost
every cocycle A ∈ Mat+

2 (R)k with both singular and invertible components
satisfies a sharp regularity dichotomy: it is either a point of analyticity or a
point of discontinuity of the Lyapunov exponent.

6.1
Projective uniform hyperbolicity

6.1.1
Extension of the multi-cone theory to non-invertible cocycles

Consider a random linear cocycle F : X × R2 → X × R2 determined by
the data (A, p) where A := (Ai)i∈A ∈ Mat+

2 (R)k.

Definition 6.1 We say that a linear cocycle F is projectively uniformly
hyperbolic if there exists an F -invariant decomposition into one-dimensional
subspaces R2 = E0(ω) ⊕ E1(ω) where the sub-bundles X ∋ ω 7→ Ei(ω)
are continuous functions and there exists n ∈ N such that ∥An|E0(ω)∥ <

∥An|E1(ω)∥ for all ω ∈ X.

Since X is compact and A : X → Mat+
2 (R) is continuous, the last

condition is equivalent to

sup
ω∈X

∥An|E0(ω)∥
∥An|E1(ω)∥ ≤ λ−1 < 1,
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for some λ > 1. This is further equivalent to the existence of c > 0 and λ > 1
such that for all ω ∈ X and all n ∈ N,

∥An|E1(ω)∥ ≥ cλn ∥An|E0(ω)∥.

Note that projective uniform hyperbolicity is also sometimes referred to
as dominated splitting.

Given an invertible matrix A ∈ Mat2(R), its induced projection action
Â : P(R2) → P(R2) is given by Âv̂ := Âv. If A has rank 1 (that is, if it is
nonzero and noninvertible), we define its projection action as the constant
map Âv̂ := r̂, where r = Range(A).

Moreover, let m(A) denote its co-norm (its smallest singular value). If A is
invertible, m(A) = ∥A−1∥−1, otherwise m(A) = 0. An immediate consequence
of it is that, if a cocycle A admits a singular component, then L2(A) = −∞.

Definition 6.2 An invariant multi-cone for A = (Ai)i∈A is a nonempty set
M such that:

1. M is an open subset of P(R2),

2. its closure M̄ ̸= P(R2),

3. AiM ⋐M , i.e., AiM ⊂ M for every i ∈ A .

The next theorem extends to Mat+
2 (R)-valued cocycles the results of

Avila, Bochi, Yoccoz [2, Theorem 2.3] and Yoccoz [44, Proposition 2] estab-
lished for SL2(R)-cocycles over sub-shifts of finite type.

Theorem 6.1 Given a random linear cocycle A ∈ Mat+
2 (R)k, the following

are equivalent:

(1) A is projectively uniformly hyperbolic.

(2) There exist c > 0 and λ > 1 such that for all n ∈ N and ω ∈ X,
∥An(ω)∥ ≥ c λn m(An(ω)).

(3) A admits an invariant multi-cone.

Proof. (1) ⇒ (2): Suppose that A is projectively uniformly hyperbolic (it
admits a dominated splitting). Then for some c > 0 and λ > 1 we have
that for all ω ∈ X and n ∈ N,

∥An(ω)∥
m(An(ω)) ≥ ∥An|E1(ω)∥

∥An|E0(ω)∥ ≥ c λn.
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(2) ⇒ (1): This is a straightforward adaptation of [42, Proposition 2.1] to
the case where A takes values in Mat+

2 (R). The idea of this proof is to define the
Oseledets invariant directions E0(ω) and E1(ω) as uniform limits of continuous
functions, by exploiting the contracting behavior of the cocycle action on fibers
due to the cocycle’s hyperbolicity. This implies that the Oseledets splitting
is continuous. In our setting, when singular matrices appear, their actions
contract the whole projective space to points. This helps the convergence and
poses no problem regarding the continuity of the approximations, which are
defined as singular directions of the the matrices An(ω) and An(σ−nω).

For the remaining implications we need a desingularization construction
that associates a family of invertible cocycles A∗(µ) ∈ SL2(R) to every singular
cocycle A ∈ Mat+

2 (R)k. For each Ai ∈ Mat+
2 (R) with i ∈ A, consider its

singular value decomposition: Ai = RiΣiR
∗
i . If Ai is not invertible, consider a

small perturbation of Σi that transforms its zero singular value into a small

constant µ−2. In other words, if Ai = Ri

∥Ai∥ 0
0 0

R∗
i , let

Ãµ,i := ∥Ai∥Ri

1 0
0 µ−2

R∗
i = ∥Ai∥

µ
Ri

µ 0
0 µ−1

R∗
i .

If Ai is invertible put Ãµ,i := Ai. Then set A∗
µ,i := 1√

det(Ãµ,i)
Ãµ,i. The cocycle

A∗
µ = (A∗

µ,i)i∈A ∈ SL2(R)k has the same projective action as (Ãµ,i)i∈A, which
for large µ approximates that of A.

Lemma 6.1 Let A ∈ Mat+
2 (R)k.

(1) If (Mi)i∈A is an invariant multi-cone of A∗
µ, for some µ > 0, then it is also

an invariant multi-cone for A.

(2) If (Mi)i∈A is an invariant multi-cone of A then it is also an invariant
multi-cone of A∗

µ for all sufficiently large µ.

Proof. (1) Since M is an invariant multi-cone for A∗
µ, Ãµ,iM ⋐ M for every

i ∈ A. Moreover, the pair of matrices Ai and Ãµ,i share the same singular
directions, but their contraction strengths are different (infinite in the case of
non-invertible matrices vs. finite for invertible ones). Thus since the contraction
is stronger for non-invertible matrices, we conclude that AiM ⊆ Aµ,iM ⋐ M

for every i ∈ A.
(2) This holds because multi-cones are stable under perturbations and

A = limµ→∞ Ãµ, while A∗
µ and Ãµ share their invariant multi-cones, because

they induce the same action on P(R2). ■



Chapter 6. Dichotomic Behavior in the Singular Setting: Analyticity vs
Discontinuity 92

We now return to the proof of the theorem.
(1) ⇒ (3): Since projective uniform hyperbolicity is an open property,

if A is projectively uniformly hyperbolic then the approximating cocycles Ãµ
and A∗

µ are also projectively uniformly hyperbolic for large µ. By [2, Theorem
2.3], the cocycle A∗

µ admits an invariant multi-cone M . Therefore, by (1) of
Lemma 6.1, M is also an invariant multi-cone for A.

(3) ⇒ (2): Suppose A admits an invariant multi-cone M = (Mi)i∈A. By
(2) of Lemma 6.1, for some large µ, M is also an invariant multi-cone for A∗

µ.
Therefore, by [2, Theorem 2.3], the cocycle A∗

µ is uniformly hyperbolic and by
[2, Proposition 2.1] there exists c > 0 and λ > 1 such that ∥(A∗

µ)n(ω)∥ ≥ c λn

for all ω ∈ X, which in turn implies that

∥An(ω)∥
m(An(ω)) ≥

∥Ãnµ(ω)∥
m(Ãnµ(ω))

= ∥(A∗
µ)n(ω)∥2 ≥ c λ2n ∀ ω ∈ X.

Note that either An(ω) = Aωn−1 · · · Aω0 does not include singular
matrices so An(ω) = Ãnµ(ω), or else it does and then m(An(ω)) = 0, which
implies that the left-hand side of the above inequality is ∞. ■

Definition 6.3 We say that A ∈ Mat+
2 (R)k has rank 1 if

lim
n→∞

rank(An(ω)) = 1 for a.e. ω ∈ X.

We do not consider cocycles of rank 0 because in this case the first
Lyapunov exponent is equal to −∞. Cocycles of rank 2, that is, in GL2(R)k,
are also not considered here because, as mentioned in the introduction, they
have already been extensively studied.

Remark 6.1 A cocycle A ∈ Mat+
2 (R)k has rank 1 if and only if

(1) rank(Ai) = 1 for some i ∈ A and

(2) A has no null word, i.e. An(ω) := Aωn−1 · · · Aω1 Aω0 ̸= 0 for every ω ∈ X.

From now on we only consider cocycles A of rank 1. We split the alphabet
A into two parts:

Ainv := {i ∈ A : detAi ̸= 0} and Asing := {i ∈ A : rankAi = 1}.

For i ∈ Asing, write ri := Range(Ai) and ki := Ker(Ai) and set

K(A) := {ki : i ∈ Asing},

R(A) := {ri : i ∈ Asing}.
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Moreover, we define the following sets:

W+ :=
⋃

i∈Asing

⋃
n≥0

{An(ω) ri} and W− :=
⋃

i∈Asing

⋃
n≥0

{A−n(ω)κi}.

These sets represent the forward (backward) iterates of the ranges
(kernels) and their accumulation points. They play a central role in the theory
that we develop to study singular cocycles.

Definition 6.4 If M is an invariant multi-cone for the invertible cocycle
(Ai)i∈Ainv, we define the sets Ku

inv and Ks
inv as in [2, Subsection 2.3] by

Ku
inv =

∞⋂
n=0

⋃
i1,··· ,in∈Ainv

Ain · · ·Ai1(M)

and
Ks

inv =
∞⋂
n=0

⋃
i1,··· ,in∈Ainv

(Ain · · ·Ai1)−1(P1 \M).

Proposition 6.1 If M is an invariant multi-cone for the invertible cocycle
(Ai)i∈Ainv then:

(1) Ku
inv is the set of unstable Oseledets directions Eu(ω) of the cocycle

(Ai)i∈Ainv over the set of points ω ∈ AZ
inv,

(2) Ks
inv is the set of stable Oseledets directions Es(ω) of the cocycle (Ai)i∈Ainv

over the set of points ω ∈ AZ
inv.

Proof. Fix ŵ ∈ M . Then by dominated splitting, v̂ ∈ Ku
inv is the limit

v̂ = lim
n→∞

Aω−1 · · · Aω−n ŵ = lim
n→∞

An(σ−nω) ŵ = Eu(ω),

for some sequence ω ∈ AZ
inv. Similarly, v̂ ∈ Ks

inv is the limit

v̂ = lim
n→∞

(Aωn−1 · · · Aω0)−1 ŵ = lim
n→∞

A−n(σnω) ŵ = Es(ω),

for some sequence ω ∈ AZ
inv. ■

Proposition 6.2 Let M be an invariant multi-cone of the invertible cocycle
(Ai)i∈Ainv and take v ∈ M \Ku

inv. Then there exists an invariant multi-cone M̃
of (Ai)i∈Ainv such that M̃ ⋐M and v /∈ M̃ .
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Proof. Define the set
Mn :=

⋃
|ω|=n
ω∈An

inv

An(ω)M

where the union is taken over all admissible invertible words of length n. We
claim that Mn is an invariant multi-cone of of (Ai)i∈Ainv , for every n ∈ N and
that there exists a sufficiently large N ∈ N such that v /∈ MN . Let us prove,
by induction, that Mn+1 ⋐Mn ⋐ · · · ⋐M . Since M is an invariant multi-cone
associated to (Ai)i∈Ainv , then A(ω)M ⋐ M for every invertible word ω such
that |ω| = 1. Thus ⋃ |ω|=1

ω∈A1
inv

A(ω)M ⋐M as the union is finite. Then

Mn+1 =
⋃

|ω|=n+1
ω∈An+1

inv

An+1(ω)M =
⋃

|z|=1
z∈A1

inv

A(z)
⋃

|ω|=n
ω∈An

inv

An(ω)M

=
⋃

|z|=1
z∈A1

inv

A(z)Mn ⋐Mn.

In particular, as M ̸= P(R2) we have that Mn ̸= P(R2) ∀n ∈ N. Notice that as
M is open and the cocycle (Ai)i∈Ainv is invertible, then Mn is open for every
n ∈ N. Therefore Mn is an invariant multi-cone ∀n ∈ N. To prove that for any
v ∈ M \Ku

inv there exists N ∈ N such that v /∈ MN we simply notice that Ku
inv

is closed and that

lim
n
Mn := lim

n

⋃
|ω|=n
ω∈An

inv

An(ω)M =
∞⋂
n=0

⋃
|ω|=n
ω∈An

inv

An(ω)M =: Ku
inv,

because Mn is a monotonous sequence. ■

6.1.2
A criteria for projective uniform hyperbolicity in the singular setting

Proposition 6.3 Consider a cocycle A ∈ Mat+
2 (R)k of rank 1 such that

Ainv := (Ai)i∈Ainv is projectively uniformly hyperbolic, A is not diagonalizable
and W+ ∩ W− = ∅. Then

K(A) ∩Ku
inv = ∅ and R(A) ∩Ks

inv = ∅.

Proof. We only prove that K(A) ∩ Ku
inv = ∅, the other proof being analogous.

Suppose by contradiction that there exists k̂ ∈ K(A)∩Ku
inv. We split the proof

into two cases:
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Ainv is not diagonalizable, and
Ainv is diagonalizable but A is not.

Let us start with the assumption that Ainv is not diagonalizable. We will
say that v̂ ∈ P(R2) is Ainv-invariant if Ai v̂ = v̂ for all i ∈ Ainv.

Lemma 6.2 There exists an Ainv-invariant element in Ku
inv if and only if

#Ku
inv = 1. Analogously, there exists an Ainv-invariant element in Ks

inv if and
only if #Ks

inv = 1.

Proof. Suppose #Ku
inv = 1. By Proposition 6.1, there exists v̂ ∈ Ku

inv such
that for almost every ω ∈ X, Eu(ω) = v̂. Moreover, by the invariance of the
Oseledets subspaces, for almost every ω ∈ X, Eu(f(ω)) = A(ω)Eu(ω). Hence,
v̂ = Â(ω)v̂ for almost every ω ∈ X. In particular, Ai v̂ = v̂ for all i ∈ Ainv.

Conversely, if Ai v̂ = v̂ ∈ Ku
inv for all i ∈ Ainv, since v̂ ∈ Ku

inv ⊂ M ,

v̂ = lim
n→∞

Aω−1 · · · Aω−n v̂ = lim
n→∞

An(σ−nω) v̂ = Eu(ω),

and Eu(ω) = v̂ for all ω ∈ AZ
inv. Thus by Proposition 6.1 Ku

inv = {v̂}.
The conclusion for Ks

inv follows under a similar argument. ■

By Lemma 6.2, #Ku
inv > 1 or #Ks

inv > 1, for otherwise Ainv would be
diagonalizable. We treat each of these cases separately.

First assume that #Ku
inv > 1.

If there exists r̂ ∈ R(A) such that r̂ /∈ Ks
inv, then for every ε > 0, we can

choose ω ∈ AZ
inv and n ∈ N such that d(An(ω) r̂, k̂) < ε. This contradicts the

fact that W+ ∩ W− = ∅.
On the other hand, if r̂ ∈ R(A) ∩ Ks

inv, since Ku
inv has at least two

elements one of which is k̂ ∈ Ku
inv, by Lemma 6.2 there exists i ∈ Ainv such

that A−1
i k̂ ̸= k̂. Hence there exists a word ω ∈ AZ

inv and n0 ∈ N such that
A−n0(ω) k̂ /∈ Ku

inv. Choosing the coordinates of ω appropriately we can force
the convergence of A−n(ω) k̂ to r̂ ∈ Ks

inv, which also contradicts the fact that
W+ ∩ W− = ∅.

Now assume #Ks
inv > 1.

Suppose that there exists r̂ ∈ R(A) such that r̂ /∈ Ks
inv. Then it is possible

to iterate r̂ forward by a suitable invertible word in a way that it converges to
k̂ ∈ Ku

inv. This contradicts W+ ∩ W− = ∅.
If, on the other hand, there exists r̂ ∈ R(A) ∩ Ks

inv, then by Lemma 6.2
there is i ∈ Ainv such that Air̂ ̸= r̂. Hence there exists a word ω ∈ AZ

inv

and n0 ∈ N such that An0(ω) r̂ /∈ Ks
inv. Finally, choosing the coordinates of ω

appropriately we can force the convergence of An(ω) r̂ to k̂ ∈ Ku
inv, which also

contradicts the fact that W+ ∩ W− = ∅.
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We now proceed to the case that Ainv is diagonalizable but A is not. Since
Ainv is projectively uniformly hyperbolic and Ainv is diagonalizable, there are
exactly two invariant directions, Ks

inv and Ku
inv.

Lemma 6.3 Suppose Ainv is diagonalizable but A is not. Then either

(i) there exists r̂ ∈ R(A) such that r̂ /∈ Ks
inv ∪Ku

inv, or else

(ii) there exists k̂ ∈ K(A) such that k̂ /∈ Ks
inv ∪Ku

inv.

Proof. Since Ainv is diagonalizable, Ku
inv = {êu} and Ks

inv = {ês} are singletons
where êu and ês are respectively the unstable and stable directions of Oseledets.
If (i) and (ii) were both false, then for every i ∈ Asing, the matrix Ai would
preserve both directions êu and ês, which would imply that A is diagonalizable.
■

Next we analyze the two cases given by Lemma 6.3.
If there exists r̂ ∈ R(A) such that r̂ /∈ Ks

inv then iterating r̂ by any
invertible word, it converges to Ku

inv = {k̂}. This contradicts W+ ∩ W− = ∅.
Otherwise, every r̂ ∈ R(A) satisfies Ks

inv = {r̂} and there exists k̂′ ∈ K(A) such
that k̂′ /∈ Ks

inv ∪Ku
inv. Hence iterating k̂′ backwards by any invertible word, it

converges to r̂ = Ks
inv, which contradicts W+ ∩ W− = ∅. This concludes the

proof. ■

Remark 6.2 Note that in the previous proposition, the assumption that W+ ∩
W− = ∅ can be replaced by W+ ∩ K(A) = ∅ and R(A) ∩ W− = ∅.

Theorem 6.2 Given a random cocycle A ∈ Mat+
2 (R)k of rank 1 such that

Ainv := (Ai)i∈Ainv is projectively uniformly hyperbolic and A is not diagonaliz-
able, the following are equivalent:

(1) A is projectively uniformly hyperbolic,

(2) W+ ∩ W− = ∅,

(3) W+ ∩ K(A) = ∅ and R(A) ∩ W− = ∅.

Proof. (1) ⇒ (2): Assume by contradiction that A is projectively uniformly
hyperbolic but W+ ∩W− ̸= ∅. Then it is possible to produce null words under
arbitrarily small perturbations of the cocycle’s matrices. This implies the loss
of the projective uniform hyperbolicity for the perturbed cocycle. However,
this leads to a contradiction, as the projective uniform hyperbolicity is an
open property.

The fact that (2) ⇒ (3) is trivial, since K(A) ⊂ W− and R(A) ⊂ W+.
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(3) ⇒ (1): We know that Ainv is projectively uniformly hyperbolic so by
Theorem 6.1, there is an invariant multi-cone M associated to Ainv. Note that
by Proposition 6.3 and Remark 6.2 there are no ranges of singular matrices in
Ks

inv and there are no kernels of singular matrices in Ku
inv. Also, by Proposition

6.2, we can shrink the multi-cone M so that it does not contain kernels of
singular matrices Ai, i ∈ Asing. Now, because Ainv is projectively uniformly
hyperbolic, there exists N ∈ N such that for every ω ∈ AZ

inv and every
range r̂ ∈ R(A), which as we have previously seen is not in Ks

inv, we have
AN(ω) r̂ ∈ M . Thus, because there are only finitely many ranges in R(A)
and finitely many words of length N , using (3), we can find sufficiently small
numbers

0 < ϵ1 < · · · < ϵN−1

independent of the words ω and of the ranges r̂ such that the following
inclusions of balls in the projective space hold:

AωN
BϵN−1(AN−1(ω) r̂) ⋐M

and for every 1 ≤ j ≤ N − 1

Aωj
Bϵj (Aj(ω) r̂) ⋐ Bϵj+1(Aj+1(ω) r̂)).

The union of M with all these balls, for every word ω ∈ AN
inv and every

range r̂ ∈ R(A) is an invariant multi-cone associated to A. ■

Remark 6.3 If Ainv is projectively uniformly hyperbolic and the cocycle A is
diagonalizable with

Ku
inv = R(A) = {r̂} and Ks

inv = K(A) = {k̂},

then the equivalences in Theorem 6.2 still hold. The non diagonalizable hypoth-
esis aims to exclude the case when

Ku
inv = K(A) = {k̂} and Ks

inv = R(A) = {r̂}. (6.1)

In the view of theorem 6.2 and remark 6.3, we provide an example of
a cocycle A with rank 1, such that Ainv is uniformly hyperbolic, but A is
diagonalizable and satisfies (6.1). Moreover, we show that W+ ∩ W− = ∅ but
A is not uniformly hyperbolic.

Example 6.1 Let A = (A0, B0) be the cocycle taking values

A0 =
2 0
0 2−1

 and B0 =
0 0
0 1


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with probability measure µ = 1
2 δA0 + 1

2 δB0. Notice that L1(A) = − log 2
2 .

Note that A0 preserves both the x and the y axes. Moreover, r̂(B0) = (0, 1)
and k̂(B0) = (1, 0). Therefore, both of them are preserved under the invertible
part of the cocycle A. Thus W+ = r̂(B0) = (0, 1) and W− = k̂(B0) = (1, 0),
so that W+ ∩ W− = ∅.

Next we show that A is not projectively uniformly hyperbolic. Consider
the sets

Σn = {(A,B) : A is hyperbolic, rank(B) = 1, An r̂(B) = k̂(B) },

and the one-parameter family of cocycles At :=
A0, Bt :=

−t2 t

−t 1

, t ∈ R,

such that A = A0. The cocycle A = (A0, B0) is an accumulation point of
the cocycles Atn, where tn = 2−n, and so it is also an accumulation point
of the hypersurfaces Σn as Atn ∈ Σn. Then L1(Atn) = −∞, for all n. In
particular, since projective uniform hyperbolicity is an open property, it follows
that A = A0 cannot be projectively uniformly hyperbolic.

Note that in the previous example, the Lyapunov exponent of A is
equal to − log 2

2 and we were able to approximate it by cocycles with null
words, in particular, with Lyapunov exponent equal to −∞. Therefore, A is a
discontinuity point of the Lyapunov exponent. This already gives a flavor of
what is yet to come in the next section.

6.2
Dichotomy: analyticity vs discontinuity

In this section we prove a result in the spirit of Mañé-Bochi’s theorem but
for non-invertible random, locally constant cocycles. As a corollary, we obtain
a dichotomy in the regularity of the Lyapunov exponent, between analyticity
and discontinuity.

We start with an example that appears in the introduction of [3] as well
as in [20, Section 3]. It was the starting point of this work and it was also
responsible for much of the intuition behind the results in chapters 6 and 7.

Example 6.2 Consider the family of cocycles At := (A,Bt), where

A =
1 0
0 0

 and Bt =
cos t − sin t

sin t cos t


are chosen with probabilities p = (1

2 ,
1
2). By [3, Introduction] or [20, Proposition

3.1]:
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1. L1(At) =
∞∑
j=0

1
2j+1 log

∣∣∣cos(jt)
∣∣∣.

2. If t ∈ πQ there exists n ∈ N such that ABn
t A = 0 and so L1(At) = −∞.

3. The set {t ∈ R : L1(At) > −∞} has full Lebesgue measure.

4. If t ∈ π (R \ Q) then W+ ∩ W− = P(R2).

Hence, by (2) and (3) we conclude that the function t 7→ L1(At) is discontinu-
ous for almost every t ∈ R.

This example shows that for singular cocycles, it is not expected any type
of continuity for the Lyapunov exponents. In what follows, we will prove that
all cocycles which are not projectively uniformly hyperbolic present the same
type of behavior.

6.2.1
A Mañé-Bochi type dichotomy

Lemma 6.4 Let A be a random linear cocycle of rank 1 such that Ainv is
projectively uniformly hyperbolic and W+ ∩ W− ̸= ∅. Then either

K(A) ∩Ku
inv ̸= ∅ or R(A) ∩Ks

inv ̸= ∅.

Proof. The assumption that W+ ∩ W− ̸= ∅ implies that an accumulation
point of the forward iterates by invertible words of the ranges is equal to an
accumulation point of the backward iterates by invertible words of the kernels.

Since A has rank 1, so there are no null words, there cannot be a finite
time matching, more precisely, An1(ω1)ri ̸= A−n2(ω2)kj for every ω1 ∈ An1

inv,
ω2 ∈ An2

inv, i, j ∈ Asing and n1, n2 ∈ N.
Moreover, since Ainv is projectively uniformly hyperbolic, the sets Ku

inv

and Ks
inv of respectively unstable and stable Oseledets directions are well

defined. If there is a range in Ks
inv or a kernel in Ku

inv, then we conclude
the result. If there is no range in Ks

inv and no kernel in Ku
inv, then the forward

iterates of the ranges converge by the invertible dynamics to Ku
inv and the

backwards iterates of the kernels converge to Ks
inv. Since Ainv is projectively

uniformly hyperbolic, Ks
inv∩Ku

inv = ∅. Hence, in order to satisfy W+∩W− ̸= ∅,
it must be that some iterate An(ω)ri ∈ Ks

inv or A−n(ω)kj ∈ Ku
inv. Since Ks

inv

is backward invariant and Ku
inv is forward invariant, we conclude the result. ■

Theorem 6.3 Let A ∈ Mat+
2 (R)k be a random linear cocycle of rank 1. Then

either A is projectively uniformly hyperbolic or else there exists a sequence
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of random linear cocycles {An}n → A such that An has a null word and, in
particular, L1(An) = −∞ for every n ∈ N.

Proof. Suppose that A is not projectively uniformly hyperbolic. We are going
to show that there exist a sequence {An}n → A such that An has a null word
for every n ∈ N. We divide the proof into three cases, according to theorem 6.2.

Case 1: Suppose that Ainv is projectively uniformly hyperbolic and A is
not diagonalizable. Then by theorem 6.2, there exists a heteroclinic connection:
W+ ∩ W− ̸= ∅. By lemma 6.4, either K(A) ∩ Ku

inv ̸= ∅ or R(A) ∩ Ks
inv ̸= ∅.

Without loss of generality, assume that K(A) ∩ Ku
inv ̸= ∅, the other case is

analogous. Since Ainv is projectively uniformly hyperbolic, the iterates An(ω)ri
converge uniformly to Ku

inv. Therefore, one can consider arbitrarily small
perturbations of the kernel that belongs to Ku

inv to generate null words in
finite time. That is, consider the sequence of cocycles An whose entries are
equal to those of A except for the singular matrix whose kernel is in Ku

inv, for
which we perform a progressively smaller perturbation. Then An converges to
A and each An has a null word.

Case 2: Suppose that Ainv is projectively uniformly hyperbolic and A is
diagonalizable. Since A is diagonalizable, either Ku

inv = R(A) and Ks
inv = K(A)

or Ku
inv = K(A) and Ks

inv = R(A).
Assume that Ku

inv = R(A) and Ks
inv = K(A), then, by Remark 6.3,

Theorem 6.2 still holds. Therefore K(A) ∩ W+ = ∅ and R(A) ∩ W− = ∅,
which by this theorem implies that A is projectively uniformly hyperbolic,
contradicting our assumption. Therefore, this cannot happen.

Hence it suffices to consider the case in which Ku
inv = K(A) and

Ks
inv = R(A). Note that with a small perturbation of the range, which moves

it out of Ks
inv, its iterates will converge to Ku

inv, where lies a kernel. Hence, we
return to the first case, where a small perturbation of the kernel can create a
null word.

Case 3: Suppose that Ainv is not projectively uniformly hyperbolic. If
Ainv ∈ GL+

2 (R)k is not in SL2(R)k, we consider the normalized cocycle A∗
inv,

which belongs to SL2(R)k, and it is obtained by simply dividing each invertible
matrix Ai by 1√

det(Ai)
. Moreover, A∗

inv has the same projective action as Ainv.

Then, by proposition 6 of [44], A∗
inv can be approximated by elliptic

cocycles (cocycles that admit elliptic matrices). Moreover, almost every elliptic
matrix admits an irrational rotation number, thus we can assume that the
approximation is by elliptic cocycles that admit elliptic matrices with irrational
rotation number. Therefore, the original cocycle Ainv is also approximated
by elliptic cocycles with elliptic matrix components with irrational rotation
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number by rescaling the matrices. Then both W+ and W− are equal to P(R2)
(see Example 6.2). We can then perform an arbitrarily small perturbation on
the kernel (or range), thus creating null words. ■

Corollary 6.1 Let A ∈ Mat+
2 (R)k be a random linear cocycle of rank 1.

If L1(A) > −∞, then either L1(A) is analytic around A or else it is a
discontinuity point of B 7→ L1(B).

Proof. By theorem 6.3, either A is projectively uniformly hyperbolic or there
exists a sequence An → A such that L1(An) = −∞ for every n. In the first
case, by a theorem of Ruelle [40], L1 is analytic in a neighborhood of A. In the
second case, since we assume L1(A) > −∞ and there is a sequence An → t0

such that L1(An) = −∞, the Lyapunov exponent is discontinuous at A. ■

We say that a set is residual if it is a countable intersection of open and
dense sets. The next corollary is an adaptation of [42, Corollary 9.6] and it
shows that the set of continuity points of the Lyapunov exponent is a residual
subset of Mat+

2 (R)k.

Let PUH denote the set of cocycles A ∈ Mat+
2 (R)k such that A is

projectively uniformly hyperbolic.
Corollary 6.2 The set {A ∈ Mat+

2 (R)k : L1(A) = −∞} is a residual subset
of Mat+

2 (R)k\PUH.

Proof. Given a ∈ R let L(a) :=
{
A ∈ Mat+

2 (R)k : L1(A) < a
}
. Since the top

Lyapunov exponent is upper semi-continuous, L(a) is open in Mat+
2 (R)k.

Consider a sequence an → −∞. The set in the statement coincides with
∩nL(an). By Theorem 6.3 this intersection is dense in Mat+

2 (R)k\PUH, hence
so is each of the open sets L(an). Thus L(a) = ∩nL(an) is a residual subset of
Mat+

2 (R)k \ PUH. ■

Moreover, by the previous corollary, we conclude that the set of continuity
points of the Lyapunov exponent is a residual subset of Mat+

2 (R)k. That is
because the set of continuity points is exactly

{A ∈ Mat+
2 (R)k : L1(A) = −∞} ∪ PUH.

Since PUH is open, it is clear that ∩n (L(an) ∪ PUH) is a countable intersec-
tion of open and dense sets.

Remark 6.4 Since the map A 7→ L1(A) is also upper semi-continuous for
bounded and continuous cocycles with respect to the C0 norm, it is also true
that the set of cocycles A ∈ C0(X,Mat+

2 (R)) which are either projectively
uniformly hyperbolic, or else satisfy L1(A) = −∞, is a residual subset of
C0(X,Mat+

2 (R)).
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6.2.2
Regularity dichotomy for the Lyapunov exponent

Definition 6.5 A function u : Ω → [−∞,∞) is called subharmonic in the
domain Ω ⊂ C if u is upper semi-continuous and for every z ∈ Ω,

u(z) ≤
∫ 1

0
u(z + re2πiθ)dθ ,

for some r0(z) > 0 and for all r ≤ r0(z).

Basic examples of subharmonic functions are log |z − z0| or more gener-
ally, log |f(z)| for some analytic function f(z) or

∫
log |z − ζ| dµ(ζ) for some

positive measure with compact support in C.
The maximum of a finite collection of subharmonic functions is sub-

harmonic, while the supremum of a collection (not necessarily finite) of sub-
harmonic functions is subharmonic provided it is upper semi-continuous. In
particular, this implies that if A : Ω → Mat+

2 (R) is a matrix valued analytic
function on some open set Ω ⊂ C, then

u(t) := log∥A(t)∥ = sup
∥v∥,∥w∥≤1

log
∣∣∣⟨A(t) v, w⟩

∣∣∣
is subharmonic in Ω.

Moreover, the infimum of a decreasing sequence of subharmonic functions
is subharmonic. This shows that if A : Ω → Mat+

2 (R)k is analytic, then the map
t 7→ L1(A(t)) is subharmonic on Ω.

Lemma 6.5 Let Λ ⊂ R be a compact interval, let Ω ⊂ C be an open, complex
strip that contains Λ and let u : Ω → [−∞,∞) be a subharmonic function
such that for some constant C0 < ∞ we have u(z) ≤ C0 for all z ∈ Ω and
u(t0) ≥ −C0 for some t0 ∈ Ω. Then for all N ∈ N,

Leb {t ∈ Λ: u(t) < −N} ≤ C e−Nγ

,

where γ > 0 and C is a finite constant depending on C0, Λ and Ω.
In particular, Leb {t ∈ Λ: u(t) = −∞} = 0.

Proof. The statement is essentially the one-dimensional version of [23, Lemma
3.1]. In [23] the set Ω is an annulus and Λ is the torus, which are transformed
into our setting via the complex logarithmic function. The proof of this result
is a consequence of a quantitative version of the Riesz representation theorem
for subharmonic functions and of Cartan’s estimate for logarithmic potentials,
see [30, Lemma 2.2 and Lemma 2.4]. ■
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Corollary 6.3 For Lebesgue almost every cocycle A ∈ Mat+
2 (R)k with rank

1 we have L1(A) > −∞. In particular, Lebesgue almost every cocycle A ∈
Mat+

2 (R)k with rank 1 satisfies the regularity dichotomy: its Lyapunov exponent
is either analytic or discontinuous.
Proof. For each A ∈ Mat+

2 (R)k, consider the 1-parameter family A(t) such
that for every i ∈ Ainv, Ai(t) = AiRt, where Rt is a rotation and for i ∈ Asing,
Ai(t) = Ai. Consider t ∈ [0, 2π] and note that this family gives a foliation of
Mat+

2 (R)k by closed curves.
Let Ω be a thin and open complex strip around [0, 2π]. Since the map

t 7→ At is real analytic, it extends to a holomorphic map Ω ∋ t 7→ At ∈
Matd(C)k. Then t 7→ L1(A(t)) is subharmonic on Ω.

Moreover, since [0, 2π] is a compact set and the Lyapunov exponent is
an upper semicontinuous function, there exists a global upper bound C ∈ R
such that L1(A(t)) ≤ C for every t ∈ Ω.

Now, we adapt Yoccoz’s argument from [44, Lemma 2] to prove the
existence of a parameter t0 such that A(t0) is projectively uniformly hyperbolic,
hence L1(A(t0)) > −∞. Note that the real projective space is the equator of
the complex projective space (the Riemann sphere) CP1 and splits it in two
hemi-spheres H− and H+, each of which can be identified as a hyperbolic
plane. Given 1 ≤ i ≤ k and v̂ ∈ P(R2), when we complexify the curve
R ∋ t 7→ Âi(t) v̂ ∈ P(R2), the map C ∋ t 7→ Âi(t) v̂ ∈ CP1, defined on a small
strip S around I, takes the interval I to the equator of CP1 and it maps the two
semi-strips S± := {t ∈ S : Im(t) ≶ 0} away from the equator. This behavior is
uniform in v̂ ∈ P(R2). Hence, if t ∈ S+, resp. t ∈ S−, then the projective map
Âi(t) : CP1 → CP1 contracts H+, resp. H−, by a factor of order exp (−c |Im(t)|).
Note that the uniform behavior ensures that Âi(t)(∂H+) = Âi(t)(P(R2)) ⋐ H+.
The rest of the proof follows [44, Lemma 2].

We conclude that there are points t0 ∈ Ω where A(t0) is projectively
uniformly hyperbolic, and in particular L1(A(t0)) > −∞. Since, on the other
hand, L1(A(t)) is bounded from above on Ω, lemma 6.5 is applicable to this
subharmonic function and we conclude that L1(A(t)) > −∞ for Lebesgue
almost every parameter t ∈ [0, 2π].

We proved that given any cocycle A of rank one, there is a curve (i.e.
a smooth, one-parameter family of cocycles) passing through A such that the
first Lyapunov exponent is finite for almost every cocycle along this curve. By
Fubini, we obtain that Lebesgue almost every cocycle A ∈ Mat+

2 (R)k with at
least one invertible and one singular component satisfies L1(A) > −∞ and, in
particular, also satisfies the regularity dichotomy. ■
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6.2.3
Constant rank 1 cocycles

Consider the set of cocycles whose matrix entries have constant rank 1,
that is,

R1 :=
{
A ∈ Mat+

2 (R)k : rank(Ai) = 1 ∀ 1 ≤ i ≤ k
}
,

which is an analytic sub-manifold of Mat+
2 (R)k with co-dimension k.

Theorem 6.4 Given A ∈ R1, either d(K(A),R(A)) > 0 and A is projectively
uniformly hyperbolic or d(K(A),R(A)) = 0 and A admits a null word hence
L1(A) = −∞.

Proof. If d(K(A),R(A)) > 0, there are two disjoint open subsets of P(R2):
one forward invariant containing the ranges and another backward invariant
containing the kernels. The first is an invariant multi-cone. Therefore, A is
projectively uniformly hyperbolic. If d(K(A),R(A)) = 0, there exists a null
word and L1(A) = −∞. ■

Corollary 6.4 The Lyapunov exponent L1 : R1 → [−∞,+∞) is always con-
tinuous. Moreover, it is analytic on R1 \ {A : L1(A) = −∞}. Furthermore, for
Lebesgue almost every A ∈ R1, L1(A) > −∞, therefore, the analyticity set has
full Lebesgue measure.

Proof. By Theorem 6.4, either A is projectively uniformly hyperbolic or
L1(A) = −∞. By Ruelle [40, Theorem 3.1], if A is projectively uniformly
hyperbolic then the Lyapunov exponent is an analytic function. Moreover, the
first Lyapunov exponent is continuous at points with L1(A) = −∞ (since it is
an upper semi-continuous function). The set

{A ∈ R1 : L1(A) = −∞} = {A ∈ R1 : K(A) ∩ R(A) ̸= ∅}

=
k⋃

i,j=1
{A ∈ R1 : k(Ai) = r(Aj)} ∈ R1

is an algebraic sub-variety of R1 with positive co-dimension in R1. Hence it
has zero Lebesgue measure in R1. ■



7
Statistical Properties

The main goal of this chapter is to prove statistical properties (large
deviations estimates and a central limit theorem) for the Lyapunov exponent
of random linear cocycles in the singular setting. To this end, we study the
corresponding Markov operator and stationary measure which, surprisingly,
behave quite differently from their analogues in the classical invertible setting.

This different behavior happens due to the fact that whenever a singular
matrix As appears at the end of any random product of matrices, every
projective point v̂ is mapped by the corresponding projective map to the range
r̂s of Âs. In particular, this gives rise to a phenomena called a renewal process.

More precisely, if we regard the action of a random matrix product as
a random walk on the projective space, we have that starting at a range, the
random walk follows the action of the invertible matrices up until a singular
matrix appears; then the walk returns to the range of a singular matrix and
the process restarts.

This type of phenomena is a peculiarity of the singular setting and it
produces many interesting consequences. This observation lies at the heart of
all of the explicit formulas presented in this chapter.

This chapter is based on the joint work [19] with Duarte, Graxinha
and Klein. In section 7.1 we establish an explicit formula for the stationary
measure and investigate the particularities of the Markov operator in the
singular setting. Specifically, we prove that it is strongly mixing on its largest
domain, that of bounded, measurable observables (rather than on a properly
chosen space of Hölder-type observables as in the invertible setting). Moreover,
using the explicit formula of the (unique) stationary measure, we establish an
analogue of Furstenberg’s formula, the classical one not being available here.
In section 7.2, using a parameter elimination argument, we establish large
deviations type estimates and a central limit theorem for Lebesgue almost
every such cocycle.
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7.1
Furstenberg’s formula in the singular setting

Given the alphabet A = {1, . . . , k} and a partition A = Asing ⊔Ainv into
two nonempty sets, consider the space M of all k-tuples A = (A1, . . . , Ak) ∈
Mat+

2 (R)k such that rankAi = 1 if i ∈ Asing and detAj > 0 if j ∈ Ainv.
Moreover, let M∗ ⊂ M denote the set of such cocycles, which additionally
satisfy r̂i ̸= k̂j for all i, j ∈ Asing. Recall that we identify such a k-tuple
A with the locally constant map A : X → Mat+

2 (R), A(ω) = Aω0 , where
ω = {ωn}n∈Z ∈ X = AZ.

Given a probability vector p = (p1, . . . , pk) with pi > 0 for all i, the
k-tuple A = (A1, . . . , Ak) determines the random linear cocycle F : X × R2 →
X × R2, F (ω, v) = (σω,A(ω)v) = (σω,Aω0 v) where X is endowed with the
product probability µ = pZ. As before, we also identify the cocycle F with the
tuple A = (A1, . . . , Ak).

Let L∞(P(R2)) be the Banach space of bounded and measurable functions
φ : P(R2) → R endowed with the usual sup norm, denoted by ∥·∥∞. Recall that
the projective action of a nonzero matrix A ∈ Mat2(R) is given by Âv̂ = Âv if
A is invertible and by Âv̂ = r̂, where r = Range(A) otherwise.

For the rank 1 random cocycle A = (Ai)i∈A ∈ Mat2(R)k we will use the
notations ri and ki to represent, respectively, the range and the kernel of Ai,
as well as, when convenient, a unit vector belonging to these one-dimensional
subspaces.

7.1.1
Markov operators and stationary measures in the singular setting

The random linear cocycle (A, p) determines the Markov operator
Q : L∞(P(R2)) → L∞(P(R2)) defined by

(Qφ)(v̂) :=
∑
i∈A

φ(Âi v̂) pi

=
∑
i∈Ainv

φ(Âi v̂) pi +
∑

i∈Asing

φ(r̂i) pi.

Moreover, we write Q = Qinv + Qsing, where the operators Qinv and Qsing are
given respectively by the two terms above. Note that Qsing is a projection to
a constant function.

The operator Q is clearly linear, positive and it takes the constant
function 1 to itself. Using the Riesz-Markov-Kakutani representation theorem,
one can deduce the existence of a corresponding transition probability kernel;
in other words, Q is a Markov operator.
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Recall that a measure η ∈ Prob(P(R2)) is Q-stationary if for all observ-
ables φ ∈ L∞(P(R2)), ∫

Qφdη =
∫
φdη.

In this case we also call η stationary relative to the cocycle (A,P ).

Lemma 7.1 For every n ∈ N,

Qn =
n−1∑
i=0

Qsing ◦ Qi
inv + Qn

inv.

Proof. We proceed by induction. For n = 1 the formula holds trivially, since
Q = Qsing + Qinv. Suppose that it also holds for n = k. Then for every
φ ∈ L∞(P(R2)) and every v̂ ∈ P(R2),

Qk+1(φ)(v̂) = Q ◦
[
k−1∑
i=0

Qsing ◦ Qi
inv + Qk

inv

]
(φ)(v̂)

= Q ◦
(
k−1∑
i=0

Qsing ◦ Qi
inv(φ)(v̂)

)
+ Q ◦ Qk

inv(φ)(v̂).

Note that the first term is a constant function, hence it is preserved by the
Markov operator Q. Then

Qk+1(φ)(v̂) =
k−1∑
i=0

Qsing ◦ Qi
inv(φ)(v̂) + Q ◦ Qk

inv(φ)(v̂)

=
k∑
i=0

Qsing ◦ Qi
inv(φ)(v̂) + Qk+1

inv (φ)(v̂)

which proves the identity for k + 1. ■

Let us introduce some notations. Given n ≥ 1, consider the word
ω = (ω1, . . . , ωn) ∈ An

inv of length n. For such a finite word we denote
An(ω) = Aωn · · ·Aω1 , with the convention that A0(ω) is the identity matrix.
We denote the quantity p(ω) := pω1 · · · pωn . Moreover, in order to (visually)
distinguish the weight of a singular symbol i ∈ Asing from that of an invertible
one, we will re-denote it by qi (instead of pi, which will be reserved for the
weights of invertible symbols). Moreover, we define the sum of the weights of
the singular matrices by q := ∑

i∈Asing qi < 1.
With these notations, we have the following explicit formula for a (or,

a-posteriori, the) Q-stationary measure.



Chapter 7. Statistical Properties 108

Proposition 7.1 Let η ∈ Prob(P(R2)) be given by

η =
∑

s∈Asing

qs
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω)δAn(ω)rs .

Then η is stationary with respect to the operator Q.

Proof. Note that η is a probability measure. Indeed,
∑

s∈Asing

qs
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω) =
∑

s∈Asing

qs
∞∑
n=0

(1 − q)n = q
1
q

= 1. (7.1)

Let φ ∈ L∞(P(R2)). A straightforward computation shows that

∫
φ dη =

∑
s∈Asing

qs
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω)φ(An(ω)rs).

Now show that the integral of Qφ with respect to η has the same result.

∫
Qφ dη =

∑
s∈Asing

qs
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω)
∑
j∈A

pjφ(AjAn(ω)rs)

=
∑

s∈Asing

qs
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω)
 ∑
j∈Ainv

pjφ(AjAn(ω)rs) +
∑

k∈Asing

qkφ(rk)


=
∑

s∈Asing

qs


∞∑
n=0

∑
|ω|=n+1
ω∈An+1

inv

p(ω)φ(An+1(ω)rs) +
∞∑
n=0

∑
|ω|=n

p(ω)
∑

k∈Asing

qkφ(rk)


=

∑
s∈Asing

qs
∞∑
n=1

∑
|ω|=n
ω∈An

inv

p(ω)φ(An(ω)rs) + q
∞∑
n=0

(1 − q)n
∑

k∈Asing

qkφ(rk)

=
∑

s∈Asing

qs
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω)φ(An(ω)rs)

which equals
∫
φdη and completes the proof. ■

Theorem 7.1 If the cocycle (A, p) has at least one singular and one invertible
component, then Q is strongly mixing on L∞(P(R2)) endowed with the uniform
norm. That is, there exist constants C < ∞ and a > 0 such that

∥Qnφ−
∫
φdη∥∞ ≤ C e−an ∥φ∥∞

for all n ∈ N and φ ∈ L∞(P(R2)), where η is any Q-stationary measure.
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Proof. Let φ ∈ L∞(P(R2)). By lemma 7.1, for every n ∈ N, it follows that

Qnφ−
∫
φdη =

n−1∑
i=0

Qsing ◦ Qi
inv(φ)(v) + Qn

inv(φ)(v) −
∫
φdη

=
n−1∑
i=0

Qsing ◦ Qi
inv(φ)(v) + Qn

inv(φ)(v) −
∑

i∈Asing

qi
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω)φ(An(ω)ri)

=
∑

|ω|=n
ω∈An

inv

p(ω)φ(An(ω)v) −
∑

i∈Asing

qi
∞∑
j=n

∑
|ω|=j
ω∈A

j
inv

p(ω)φ(Aj(ω)ri).

Then

∥Qnφ−
∫
φdη∥∞ ≤

∑
|ω|=n
ω∈An

inv

p(ω)∥φ∥∞ +
∑

i∈Asing

qi
∞∑
j=n

∑
|ω|=j
ω∈A

j
inv

p(ω)∥φ∥∞

≤ ∥φ∥∞

(1 − q)n + q
∞∑
j=n

(1 − q)j


= ∥φ∥∞

[
(1 − q)n + q

(
1
q

− 1 − (1 − q)n−1

q

)]
≤ 2∥φ∥∞(1 − q)n,

which proves the statement with C = 2 and σ = 1 − q. ■

Remark 7.1 When a Markov operator is strongly mixing on the whole space
of measurable, bounded functions relative to the L∞ norm (as it was shown
to be the case with Q), it is also called uniformly ergodic. Note that uniform
ergodicity is the strongest form of strong mixing.

Corollary 7.1 If the cocycle (A, p) has at least one singular and one invertible
matrix component, then it admits a unique stationary measure.

Proof. If η1 and η2 are Q-stationary, then Theorem 7.1 applies to each of them,
so for any φ ∈ L∞(P(R2)), Qnφ converges uniformly to

∫
φdη1 and to

∫
φdη2.

Thus
∫
φdη1 =

∫
φdη2 for all observables φ, showing that η1 = η2. ■

7.1.2
Description of the Lyapunov exponent via induced cocycles

Lemma 7.2 Given rank one matrices B1, B2, . . . , Bn and a unit vector r0, it
follows that

∥Bn · · ·B1 r0∥ =
n∏
l=1

∥Bl rl−1∥ ,

where rl−1 is a unit vector in the range of Bl−1.
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Proof. We write B1r0 = λ1r1, thus |λ1| = ∥B1r0∥. It follows that B2B1r0 =
λ1B2r1 so

∥B2B1r0∥ = |λ1| ∥B2r1∥ = ∥B2r1∥∥B1r0∥ .

From here,

∥Bn+1Bn

(
Bn−1 · · ·B1 r0

)
∥ = ∥Bn+1rn∥∥Bn

(
Bn−1 · · ·B1 r0

)
∥

and the conclusion follows by induction. ■

Next we establish a preliminary formula for the first Lyapunov exponent
for singular cocycles. It will be then used to derive a Furstenberg-type formula.

Lemma 7.3 Let (A, p) be a random cocycle with both singular and invertible
components. Then

L1(F ) =
∑

i∈Asing

∑
j∈Asing

∞∑
n=0

∑
|ω|=n
ω∈An

inv

qiqjp(ω) log∥AjAn(ω)ri∥.

Proof. Consider the cylinders Ci := [0; i] with i ∈ Asing and their union
C := ⋃

i∈Asing Ci, the set of all (bi-infinite) words with a singular symbol at
the zeroth position. Remember that q = µ(C) = ∑

i∈Asing qi.

Moreover, let Ci,j :=
∞⋃
n=0

⋃
|ω|=n
ω∈An

inv

[0; iωj], with the convention that for

n = 0, ω is the null word. These sets give rise to the following partitions
modulo a zero measure set (mod 0)

Ci =
⋃

j∈Asing

Ci,j =
⋃

j∈Asing

∞⋃
n=0

⋃
|ω|=n
ω∈An

inv

[0; iωj] and

C =
⋃

j∈Asing

⋃
i∈Asing

Ci,j =
⋃

i∈Asing

⋃
j∈Asing

∞⋃
n=0

⋃
|ω|=n
ω∈An

inv

[0; iωj] .

Let g : C → C be the first return map to the cylinder C, given by
g(ω) = στ(ω)(ω), where τ(ω) = min{k ≥ 1: σk(ω) ∈ C}. The map g preserves
the induced measure µ̄C = µ(C)−1 µ|C = 1

q
µ|C .

We define the induced cocycle FC : C × R2 → C × R2, given by
FC(ω, v) := (g(ω), C(ω) v), where C(ω) := Aτ(ω)(ω).

By [42, Proposition 4.18 and Exercise 4.8] (these statements also hold for
Mat+

2 (R)-valued fiber maps) its Lyapunov exponent is related to that of the
original cocycle (A, p) via the expression L1(FC) = 1

q
L1(A); thus it is enough

to compute L1(FC).
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The induced cocycle FC leaves invariant the 1-dimensional sub-bundle
X ∋ ω 7→ R(ω) := Range(Aω0). Then using Oseledets’ theorem, its first
Lyapunov exponent is the rate of exponential growth of the fiber iterates
of FC along this sub-bundle. Thus for µ-a.e. ω ∈ C and for a unit vector
r0 ∈ R(ω) = Range(Aω0),

L1(FC) = lim
n→∞

1
n

log∥Cn(ω) r0∥ = lim
n→∞

1
n

log
n∏
l=1

∥C(glω) r0∥ . (7.2)

Given ω ∈ C, let 0 = k1 < k2 < · · · denote all future entries to the
singular part of the alphabet, that is, k ∈ N is such that ωk ∈ Asing if and only
if k = kl for some l ∈ N. Then clearly gl(ω) = σkl(ω) (whose zeroth entry is
ωkl

) and τ(glω) = kl+1 − kl for all l ∈ N. Moreover,

Bl := C(glω) = Aτ(glω)(glω) = Akl+1−kl(σklω) = Aωkl+1
· · ·Aωkl+1 ,

which is a rank one matrix whose range rl := Range(Bl) = rωkl+1
.

By Lemma 7.2,

∥Cn(ω) r0∥ = ∥
n∏
l=1

C(glω) r0∥ = ∥
n∏
l=1

Bl r0∥ =
n∏
l=1

∥Bl rl−1∥

=
n∏
l=1

∥C(glω) rωkl
∥ . (7.3)

Consider the observable φ : C → R,

φ(ω) := log∥C(ω) rω0∥ = log∥Aτ(ω)(ω) rω0∥.

By (7.2), (7.3) and Birkhoff’s ergodic theorem,

L1(FC) = lim
n→∞

1
n

n∑
l=1

log∥C(glω) rωkl
∥ = lim

n→∞

1
n

n∑
l=1

φ(glω)

=
∫
C
φ(ω) dµ̄|C(ω) = 1

q

∫
C

log∥C(ω) rω0∥ dµ(ω) .

Note that on each given cylinder [0; iωj] with |ω| = n, ω ∈ An
inv,

i, j ∈ Asing and n ≥ 0, the first return map τ is constant and equal to n, while
the observable φ is equal to log∥AjAn(ω) ri∥, thus it is constant. Moreover, the
Bernoulli measure of this cylinder is µ[0; iωj] = qiqj p(ω). Since these cylinders
partition (mod 0) the set C, we conclude that

∫
C
φ(ω) dµ(ω) =

∑
i,j∈Asing

∞∑
n=0

∑
|ω|=n
ω∈An

inv

qiqj p(ω) log∥AjAn(ω) ri∥ ,

which completes the proof of the lemma. ■
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Consider the following observable Ψ: P(R2) → [−∞,∞),

Ψ(v) =
∑
i∈A

pi log ∥Aiv∥
∥v∥

. (7.4)

Theorem 7.2 (Furstenberg’s Formula) If the cocycle (A, p) has both sin-
gular and invertible components, then

L1(A) =
∫

Ψ dη.

Proof. Using the explicit formula of the stationary measure η derived in
Proposition 7.1,

∫
Ψ dη =

∑
i∈Ainv

pi
∑

j∈Asing

qj
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω) log ∥AiAn(ω)rj∥
∥An(ω)rj∥

+

+
∑

i∈Asing

qi
∑

j∈Asing

qj
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω) log ∥AiAn(ω)rj∥
∥An(ω)rj∥

.

Note that the first term is equal to

∑
i∈Ainv

pi
∑

j∈Asing

qj
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω) log∥AiAn(ω)rj∥−

∑
i∈Ainv

pi
∑

j∈Asing

qj
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω) log∥An(ω)rj∥.

Since ∑
i∈Ainv

pi = 1 − q and since i ∈ Ainv, we note that the previous

difference is a telescopic sum. Moreover, when n = 0, A0(ω) is the identity
matrix and since ∥ri∥ = 1 for every i, we conclude that the first term of the
integral is equal to

q
∑

j∈Asing

qj
∞∑
n=0

∑
|ω|=n
ω∈An

inv

p(ω) log∥An(ω)rj∥.

Now expand the logarithm of the second term into a difference. Since∑
i∈Asing

qi = q, the previous computation corresponds exactly to the term arising

from the denominator. Hence, we conclude that

∫
Ψ dη =

∑
i∈Asing

∑
j∈Asing

∞∑
n=0

∑
|ω|=n
ω∈An

inv

qiqjp(ω) log∥AjAn(ω)ri∥

thus completing the proof. ■
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Remark 7.2 We note that the classical Furstenberg’s formula (theorem 3.4)
for random cocycles in GLd(R) is not applicable to this singular setting.
Moreover, the probabilistic approach used by Furstenberg and Kifer to establish
such results (see e.g. [29, Theorem 1.4]) is not immediately applicable either,
since the observable Ψ is not continuous, not even bounded. That is why we had
to employ an ad-hoc argument which uses the explicit formula of the stationary
measure.

7.2
Statistical properties

The goal of this section is to establish a large deviations type (LDT)
estimate and a central limit theorem (CLT) for Lebesgue almost every cocycle
A ∈ M. This will be obtained as a consequence of a stronger result, which
essentially says that if t 7→ At ∈ M∗ is a one-parameter family of such cocycles
satisfying a positive winding condition, then an LDT estimate and a CLT hold
for Lebesgue almost every parameter t. Recall that, by theorems 2.2 and 2.3,
such limit laws hold as soon as the associated Markov operator satisfies a
strong mixing condition on an appropriate space of observables. The Markov
operator is, as we have seen, strongly mixing on L∞(P(R2)). The problem is
that the relevant observable Ψ defined by (7.4) is not bounded, so the abstract
LDT theorem 2.2 is not immediately applicable. Instead, we will truncate
the observable at a level depending on the scale (number of iterates of the
dynamics) and apply the abstract LDT to the truncated observable. The case
of the CLT is slightly different, as the abstract theorem 2.3 requires a certain
type of mixing on average. We will use a parameter elimination argument
to show that for Lebesgue a.e. parameter t, these challenges in applying the
abstract results can be overcome.

In order to make use of theorems 2.2 and 2.3 we will actually need to
associate to a given cocycle A ∈ M∗ a Markov operator on a slightly larger
space, Q̄ : L∞(A × P(R2)) → L∞(A × P(R2)) defined by

Q̄φ(j, v̂) =
k∑
i=1

piφ(i, Âj v̂) .

Consider the projection π : L∞(A × P(R2)) → L∞(A) given by

πφ(v̂) =
k∑
i=1

piφ(i, v̂) =
∫
A
φ(i, v̂) dp(i) .

Then the Markov operators Q̄ and Q are related by lemma 2.2. Moreover,
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since η is Q-stationary and Q is uniformly ergodic, we conclude by proposition
2.4, that the measure p× η is Q̄-stationary and Q̄ is also uniformly ergodic.

Let Λ ⊂ R be a compact interval (normalized to have length 1) and let
A : Λ → M∗ be a smooth map. We think of this map as a one-parameter family
of random cocycles so we use the subscript notation t 7→ At. For its components
we write At(i) instead of (At)i, while the fiber iterates are denoted by

Ant (ω) = At(ωn) · · ·At(ω1) .

For every parameter t ∈ Λ, denote by Qt and Q̄t the Markov operators
corresponding to the cocycle At (defined as above). Moreover, let ηt ∈
Prob(P(R2)) be the unique Qt-stationary measure. Note that all the results
proven in section 7.1 for a given cocycle A ∈ M, namely the explicit formula
of the stationary measure, Furstenberg’s formula and the strong mixing of the
Markov operator, apply to At for all t ∈ Λ. Furthermore, since the probability
vector p = (p1, . . . , pk) and the singular/invertible symbols do not change,
all the mixing parameters are uniform in t. Finally, recall that the stationary
measure is given by:

ηt =
∑

s∈Asing

qs
∞∑
n=0

∑
ω∈An

inv

p(ω)δÂn
t (ω) r̂s

.

7.2.1
The winding property

We assume that the family of cocycles Λ ∋ t 7→ At is positively winding
and that its singular components are constant. More precisely, we impose the
following conditions on the smooth map t 7→ At ∈ M∗:

(A1) For all i ∈ Asing, At(i) ≡ Ai.

(A2) There is c0 > 0 such that for all t ∈ Λ, j ∈ Ainv and v̂ ∈ P(R2) we have

At(j) v ∧ d
dt
At(j)v

∥At(j) v∥2 ≥ c0 .

Remark 7.3 By [7, Proposition 3.1], the quantity in item (A2) above, which
we refer to as the rotation speed of the map t 7→ At, can be characterized by

d

dt
Ât(j)v̂ = d

dt

At(j)v
∥At(j)v∥

=
At(j) v ∧ d

dt
At(j)v

∥At(j) v∥2 .
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Remark 7.4 A more general version of the winding condition requires that the
inequality in assumption (A2) above holds for some iterate An0

t of the cocycle.
For simplicity we assume that n0 = 1.

Moreover, if the assumption (A2) holds, then there exists c1 > 0 that only
depends on the map A, such that ∀n ∈ N, ∀ω ∈ An

inv, ∀v̂ ∈ P(R2),

d

dt

Ant (ω)v
∥Ant (ω)v∥

≥ c1. (7.5)

In other words, if At is a family of positively winding cocycles, then so is
Ant for every n ∈ N, with rotation speed uniformly (in n) bounded from below.
For a proof of this statement see [7, Section 3.1], specifically Propositions 3.3
and 3.4.

Example 7.1 Given any tuple A = (A1, . . . , Ak) ∈ M∗, the one-parameter
family

[
−1

2 ,
1
2

]
7→ At ∈ Mat+

2 (R)k, At(i) = Ai if i ∈ Asing and

At(j) = Aj R2πt =
cos 2πt − sin 2πt

sin 2πt cos 2πt

 if j ∈ Ainv

satisfies the assumptions (A1) and (A2) above and passes through A.

In order to simplify the exposition in the estimates to follow, we will
write a ≲ b if there is some absolute constant C < ∞ such that a ≤ C b.
Moreover, for an arc Î ⊂ P(R2), m(Î) denotes its length, while Leb(E) stands
for the Lebesgue measure of a subset E of the real line.

Lemma 7.4 Given any ε > 0, the set

Îε : =
{
v̂ ∈ P(R2) : ∥Ai

v

∥v∥
∥ < ε for some i ∈ Asing

}

is a finite union of arcs with m(Îε) ≲ ε.

Proof. Let i ∈ Asing and consider the normalized directions ri and ki of the
range and kernel of Ai, respectively, such that ∥ki∥ = ∥ri∥ = 1. Given any
vector v ∈ R2, we can write v = α1ri + α2ki.

Hence,
∥Ai

v

∥v∥
∥ = |α1|

∥v∥
.

Therefore, ∥Ai v
∥v∥∥ < ε in a small interval around each kernel ki. Moreover Îε

is a finite union of arcs of length approximately 2ε each. Hence m(Îε) ≲ ε. ■
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Lemma 7.5 Given any arc Î ⊂ P(R2), n ∈ N, ω ∈ An
inv and v̂ ∈ P(R2), it

holds that
Leb

{
t ∈ Λ: Ânt (ω)v̂ ∈ Î

}
≤ m(Î)

c1
.

Proof. Since the projective line P(R2) is one dimensional, we may regard the
map Λ ∋ t 7→ Ânt (ω)v̂ as a real valued map, whose derivative (because of the
winding condition) is bounded from below by c1. The result then follows by
the mean value theorem. ■

The main point of introducing the winding property was to prove the
previous lemma. Moreover, the assumption that the invertible matrices have
positive determinant was made to guarantee the uniform lower bound c1 on
the rotation speed of Ant . If it is possible to prove lemma 7.5 using another
method, then we believe that the main results of this chapter could be extended
to Mat2(R) cocycles.

7.2.2
Preparing the proofs

Consider the maps φt : A×P(R2) → [−∞,∞) and ψt : P(R2) → [−∞,∞)
given by

φt(i, v̂) := log∥At(i)
v

∥v∥
∥ and ψt(v̂) =

∑
i∈A

piφt(i, v̂) =
∫
A
φt(i, v̂)dp(i).

Let c = c(A) be a constant that satisfies

(i) e−c ≤ ∥At(j)∥ ≤ ec ∀t ∈ Λ and ∀j ∈ Ainv.

(ii) ∥Ai∥ ≤ ec ∀i ∈ Asing.

(iii) ∥Airl∥ ≥ e−c ∀i, l ∈ Asing.

Such a constant exists by the compactness of Λ and the fact that A ∈ M∗,
thus r̂i ̸= k̂j and Ajri ̸= 0 for all i, j ∈ Asing. It follows that for all j ∈ Ainv

and v̂ ∈ P(R2) we have
∣∣∣φt(j, v̂)

∣∣∣ ≤ c. Moreover, the upper bound φt(j, v̂) ≤ c

holds for every j ∈ A and v̂ ∈ P(R2).

Lemma 7.6 There is C < ∞ which depends on the constants c, c1, such that
the following hold.

(i) For all n ∈ N, ω ∈ An
inv, i ∈ Asing, v̂ ∈ P(R2) and N ≥ 0,

Leb{t ∈ Λ: φt(i, Ânt (ω)v̂) < −N} ≤ C e−N .
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Moreover, ∫
Λ
φ2
t (i, Ânt (ω)v̂) dt ≤ C.

(ii) For all n ∈ N, ω ∈ An, i, s ∈ Asing and N ≥ 0,

Leb{t ∈ Λ: φt(i, Ânt (ω)r̂s) < −N} ≤ C e−N .

Moreover, ∫
Λ
φ2
t (i, Ânt (ω)r̂s) dt ≤ C.

(iii) Furthermore, for all i ∈ A, ω ∈ X and n ∈ N,
∫

Λ

∫
P(R2)

φ2
t (i, Ânt (ω)v̂) dηt(v̂) dt ≤ C.

In particular, ∫
Λ

∫
P(R2)

ψ2
t (Ânt (ω)v̂) dηt(v̂) dt ≤ C.

Proof. (i) If i ∈ Asing then φt(i, ŵ) < −N holds if and only if ∥Ai w
∥w∥∥ < e−N .

By Lemma 7.4 the set of such points ŵ is a finite union of arcs with total
measure of order ε := e−N , and by Lemma 7.5 the measure of the set of
parameters t for which Ânt (ω)v̂ belongs to these arcs is ≲ ε. This proves the
first statement in item (i).

For the second statement, note that
∫

Λ
φ2
t (i, Ânt (ω)v̂) dt =

∫ ∞

0
Leb{t ∈ Λ: φ2

t (i, Ânt (ω)v̂) ≥ x} dx

=
∫ 2c2

0
Leb{t ∈ Λ: φ2

t (i, Ânt (ω)v̂) ≥ x} dx

+
∫ ∞

2c2
Leb{t ∈ Λ: φ2

t (i, Ânt (ω)v̂) ≥ x} dx

≤ 2c2 +
∫ ∞

2c2
Leb{t ∈ Λ: φt(i, Ânt (ω)v̂) ≤ −

√
x} dx

≲ c2 +
∫ ∞

2c2
e−

√
x dx ≲ 1.

The bound in the penultimate line above holds because Λ has length one
and, moreover, the upper bound φt(i, v̂) ≤ c is valid for all v̂ ∈ P(R2), so that
φt(i, Ânt (ω)v̂) ≤ c <

√
x when x ≥ 2c2.

(ii) Note that if ω ∈ An
inv, then the statement follows from item (i). Now

we consider any word ω, invertible or not, which begins with a singular vector,
namely rs. Let ω = (ω0, . . . , ωn−1) /∈ An

inv. We split the argument into two
cases: either ωn−1 ∈ Asing or else ωn−1 ∈ Ainv but there is 0 ≤ j ≤ n − 2 such
that ωj ∈ Asing.
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If ωn−1 ∈ Asing, then

Ânt (ω)r̂s = Ât(ωn−1)Ân−1
t (ω)r̂s = Âωn−1 Â

n−1
t (ω)r̂s = r̂ωn−1 .

Then by the choice of the constant c, for all parameters t ∈ Λ,

φt(i, Ânt (ω)r̂s) = log∥Âir̂ωn−1∥ ≥ −c,

hence the set {t ∈ Λ: φt(i, Ânt (ω)r̂s) < −N} becomes empty for N ≥ c and
the statement follows.

If ωn−1 ∈ Ainv and ωj ∈ Asing for some index 0 ≤ j ≤ n− 2, let n′ be the
largest such index and let ω′ := (ωn′+1, . . . , ωn−1) ∈ An−n′−1

inv . Then

Ânt (ω)r̂s = Ân−n′−1
t (ω′)Âωn′ Â

n′

t (ω)r̂s = Ân−n′−1
t (ω′)r̂ωn′ .

Thus φt(i, Ânt (ω)r̂s) = φt(i, Ân−n′−1
t (ω′)r̂ωn′ ), with ω′ ∈ An−n′−1

inv , hence item
(i) is applicable and the conclusion follows.

(iii) If i ∈ Ainv, then the statement holds immediately since φ2
t (i, ŵ) ≤ c2

for all (t, ŵ) ∈ Λ × P(R2). Let us then fix i ∈ Asing. Using the explicit formula
of ηt, note that

∫
Λ

∫
P(R2)

φ2
t (i, Ânt (ω)v̂) dηt(v̂) dt

=
∑

s∈Asing

qs
∞∑
j=0

∑
ω∈A

j
inv

p(ω)
∫

Λ
φ2
t (i, Ânt (ω) Âjt(ω)r̂s) dt

=
∑

s∈Asing

qs
∞∑
j=0

∑
ω∈A

j
inv

p(ω)
∫

Λ
φ2
t (i, Â

n+j
t (ωω)r̂s) dt

≤
∑

s∈Asing

qs
∞∑
j=0

∑
ω∈An

inv

p(ω)C = C,

where the inequality in the last line follows from item (ii) above and the last
equality comes from equation (7.1). ■

Let η̃ ∈ Prob(Λ×P(R2)) be the probability measure whose disintegration
relative to the Lebesgue measure on Λ is {ηt}, that is, the measure character-
ized by

∫
ϕ(t, v̂) dη̃(t, v̂) =

∫
Λ

∫
P(R2)

ϕ(t, v̂) dηt(v̂) dt ∀ϕ ∈ L∞(Λ × P(R2)) .
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Lemma 7.7 Given i ∈ A, n ∈ N, N > c and ω ∈ X, let

Pi,n,N(ω) :=
{
(t, v̂) : φt(i, Ânt (ω)v̂) < −N

}
.

Then η̃(Pi,n,N(ω)) ≤ Ce−N .

Proof. If i ∈ Ainv then φt(i, v̂) ≥ −c > −N for all v̂ ∈ P(R2), so Pi,n,N(ω) is
empty. Hence, consider i ∈ Asing and note that

η̃(Pi,n,N(ω)) =
∫

Λ

∫
P(R2)

1Pi,n,N (ω)(t, v̂) dηt(v̂)dt

=
∑

s∈Asing

qs
∞∑
j=0

∑
ω∈A

j
inv

p(ω)
∫

Λ
1Pi,n,N (ω)(t, Âjt(ω)r̂s) dt.

Moreover,

(t, Âjt(ω)r̂s) ∈ Pi,n,N(ω) ⇐⇒ φt(i, Ânt (ω)Âjt(ω)r̂s) < −N

⇐⇒ φt(i, Ân+j
t (ωω)r̂s) < −N.

By Lemma 7.6 item (ii), for all j ∈ N,
∫

Λ
1Pi,n,N (ω)(t, Âjt(ω)r̂s) dt = Leb{t : φt(i, Ân+j

t (ωω)r̂s < −N} ≲ e−N

and the conclusion follows from equation (7.1). ■

Given any N > c, consider the truncation

φt,N := max {φt,−N} .

Note that φt,N ∈ L∞(A × P(R2)) (a property that does not hold for φt) and
∥φt,N∥∞ ≤ N . Moreover, φt(i, v̂) = φt,N(i, v̂) if and only if i ∈ Ainv or i ∈ Asing

and φt(i, v̂) > −N .

Lemma 7.8 For all i ∈ A, n ∈ N, N > c and ω ∈ X we have
∫

Λ

∫
P(R2)

∣∣∣φt(i, Ânt (ω)v̂) − φt,N(i, Ânt (ω)v̂)
∣∣∣ dηt(v̂) dt ≲ e−N/3 .

Proof. The statement follows immediately when i ∈ Ainv, since in this case
φt(i, v̂) = φt,N(i, v̂) for all v̂ ∈ P(R2).

We fix i ∈ Asing and recall that φt(i, Ânt (ω)v̂) ̸= φt,N(i, Ânt (ω)v̂) if and
only if φt(i, Ânt (ω)v̂) < −N , that is, if and only if (t, v̂) ∈ Pi,n,N(ω) =: PN ,
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which, by Lemma 7.7, is a set of η̃-measure ≲ e−N . Then
∫

Λ

∫
P(R2)

∣∣∣φt(i, Ânt (ω)v̂) − φt,N(i, Ânt (ω)v̂)
∣∣∣ dηt(v̂) dt

=
∫

Λ×P(R2)

∣∣∣φt(i, Ânt (ω)v̂) − φt,N(i, Ânt (ω)v̂)
∣∣∣1PN

(t, v̂) dη̃(t, v̂)

≤ ∥g(t, v̂)∥L2(η̃) η̃(PN)1/2

where g(t, v̂) := φt(i, Ânt (ω)v̂) − φt,N(i, Ânt (ω)v̂) and we used Cauchy-Schwarz
in the last inequality above.

Moreover, by Lemma 7.6 item (iii),

∥g(t, v̂)∥L2(η̃) ≤ ∥φt(i, Ânt (ω)v̂)∥L2(η̃) + ∥φt,N(i, Ânt (ω)v̂)∥L2(η̃) ≤
√
C +N.

Thus, we conclude that
∫

Λ

∫
P(R2)

∣∣∣φt(i, Ânt (ω)v̂) − φt,N(i, Ânt (ω)v̂)
∣∣∣dηt(v̂)dt ≲ (

√
C +N)e−N/2 ≲ e−N/3

which completes the proof. ■

7.2.3
Large deviations

In order to prove large deviations estimates for cocycles in M∗, we will
use theorem 2.2. For the remaining part of the argument, it is very important
to note the precise dependence of the large deviations estimate on the norm
(in our case the L∞-norm) of the observable.

We are ready to state and prove a stronger, parametric version of the large
deviations type (LDT) estimate for cocycles in M∗, which will also imply the
result stated in the introduction.

Theorem 7.3 Let A : Λ → M∗ be a smooth family of cocycles satisfying
Assumptions A1 and A2 in subsection 7.2.1. Then for every ϵ > 0 and η̃-a.e
(t, v̂), there exist c0(ϵ) > 0 and n0(ϵ, t, v̂) ∈ N such that for every n ≥ n0(ϵ, t, v̂),

µ
{
ω ∈ X :

∣∣∣ 1
n

log∥Ant (ω)v∥ − L1(At)
∣∣∣ > ϵ

}
< e−c0(ϵ)n1/3

.

Moreover, for Lebesgue a.e. t ∈ Λ, given any ϵ > 0 there are c0(ϵ) > 0 and
n0(ϵ, t) ∈ N such that for all n ≥ n0(ϵ, t).

µ
{
ω ∈ X :

∣∣∣ 1
n

log∥Ant (ω)∥ − L1(At)
∣∣∣ > ϵ

}
< e−c0(ϵ)n1/3

,
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that is, a (sub-exponential) large deviations type estimate holds for Lebesgue
almost every cocycle along the curve t 7→ At.

Proof. Given a parameter t ∈ Λ, consider the Markov chain Zn : X ×P(R2) →
A × P(R2),

Zn(ω, v̂) := (ωn, Ânt (ω)v̂) .

Note that the associated Markov kernel is given by

A × P(R2) ∋ (ω0, v̂) 7→ p× δÂt(ω0)v̂,

so that its corresponding Markov operator is precisely the operator Q̄t defined
by Q̄tφ(j, v̂) = ∑k

i=1 piφ(i, Ât(j)v̂), whose stationary measure is p× ηt. Recall
that by theorem 7.1, Qt is uniformly ergodic on (L∞(P(R2)), ∥·∥∞) and by
proposition 2.4, Q̄t is uniformly ergodic on (L∞(A × P(R2)), ∥·∥∞).

For the observable φt(i, v̂) := log∥At(i) v
∥v∥∥ it holds that

φt ◦ Zn−1(ω, v̂) = φt(ωn−1, Â
n−1
t (ω)v̂) = log∥At(ωn−1)

Ân−1
t (ω)v̂

∥Ân−1
t (ω)v̂∥

∥

= log∥Ânt (ω)v̂∥ − log∥Ân−1
t (ω)v̂∥ .

Thus, by the definition of stochastic Birkhoff sums (recall section 2.1.3),

1
n
Snφt(ω, v̂) = 1

n
log∥Ant (ω)v∥

where v is a unit vector representative of the point v̂.
Moreover, by Furstenberg’s formula (7.2),

L1(At) =
∫
ψt(v̂) dηt(v̂) =

∫
φt(i, v̂) d(p× ηt)(i, v̂).

Furthermore, note that Lemma 7.6 item (iii) implies that for Lebesgue a.e.
t ∈ Λ, L1(At) > −∞.

Our statement (in fact, a stronger version thereof) would then immedi-
ately follow from theorem 2.2 if the observable φt was bounded. That is not
the case, precisely because of the singular matrices. The idea is then to use
the truncations φt,N (for which theorem 2.2 is applicable) as a substitute for
φt, where the order N of the truncation is adapted to the scale n at which we
prove the LDT estimate.

More precisely, given any large enough scale n ∈ N, let Nn ∈ N be a
truncation order to be chosen later (anticipating, the choice that optimizes the
estimates will turn out to be Nn ∼ n1/3). We will transfer the LDT estimate at
scale n from φt,Nn to φt by eliminating an η̃-negligible set of parameters (t, v̂).
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For all n ∈ N, define the following real-valued functions on X×Λ×P(R2):

∆n(ω, t, v̂) := 1
n
Snφt(ω, v̂) −

∫
φt dp× ηt

En(ω, t, v̂) := 1
n
Snφt,Nn(ω, v̂) −

∫
φt,Nn dp× ηt

and
gn(ω, t, v̂) := 1

n
Snφt(ω, v̂) − 1

n
Snφt,Nn(ω, v̂).

Then∣∣∣∆n(ω, t, v̂) − En(ω, t, v̂)
∣∣∣ ≤

∣∣∣gn(ω, t, v̂)
∣∣∣+ ∫ ∣∣∣φt − φt,Nn

∣∣∣ dp× ηt. (7.6)

Note that

∆n(ω, t, v̂) = 1
n

log∥Ant (ω)v∥ − L1(At) .

Moreover, given ϵ > 0, the general LDT estimate (2.4) shows that for
every (t, v̂) ∈ Λ × P(R2),

µ
{
ω ∈ X :

∣∣∣En(ω, t, v̂)
∣∣∣ > ϵ

2

}
≤ 8 e−c0(ϵ)N−2

n n (7.7)

where c0(ϵ) is essentially of order ϵ2.

By Lemma 7.8, it holds that
∫ (∫ ∣∣∣φt − φt,Nn

∣∣∣ dp× ηt

)
dt

=
∑
i∈A

pi

∫
Λ

∫
P(R2)

∣∣∣φt(i, v̂) − φt,Nn(i, v̂)
∣∣∣ dηt(v̂) dt ≲ e−Nn/3 .

Moreover, we will also show that∫∫ ∣∣∣gn(ω, t, v̂)
∣∣∣ dµ(ω) dη̃(t, v̂) ≲

√
n e−Nn/3 . (7.8)

Indeed, note that

gn(ω, t, v̂) = 1
n

n−1∑
j=0

(
φt(ωj, Âjt(ω)v̂) − φt,Nn(ωj, Âjt(ω)v̂)

)
.

Given ω ∈ X, if gn(ω, t, v̂) ̸= 0 then there is 0 ≤ j ≤ n − 1 such
that φt(ωj, Âjt(ω)v̂) ̸= φt,Nn(ωj, Âjt(ω)v̂), that is, φt(ωj, Âjt(ω)v̂) < −Nn, or
(t, v̂) ∈ Pωj ,j,Nn(ω).

Thus for (t, v̂) /∈ Bn(ω) := ⋃n−1
j=0 Pωj ,j,Nn(ω), where η̃(Bn(ω) ≲ ne−Nn , we

have that gn(ω, t, v̂) = 0.
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Using Fubini and Cauchy-Schwarz it follows that
∫∫ ∣∣∣gn(ω, t, v̂)

∣∣∣ dµ(ω) dη̃(t, v̂) =
∫∫ ∣∣∣gn(ω, t, v̂)

∣∣∣ dη̃(t, v̂) dµ(ω)

=
∫∫ ∣∣∣gn(ω, t, v̂)

∣∣∣1Bn(ω)(t, v̂) dη̃(t, v̂) dµ(ω)

≤
∫

∥gn(ω, ·)∥L2(η̃) η̃(Bn(ω))1/2 dµ(ω)

≲
√
n e−Nn/2

∫
∥gn(ω, ·)∥L2(η̃) dµ(ω) .

By Lemma 7.6 item (iii), for all ω ∈ X,
∫
φ2
t (ωj, Â

j
t(ω)v̂) dηt(v̂) dt ≤ C,

hence
∥ 1
n
Snφt(ω, v̂)∥L2(η̃) ≤

√
C,

while
∣∣∣φt,Nn(i, ŵ)

∣∣∣ ≤ Nn. Therefore, we conclude that

∥ 1
n
Snφt,Nn(ω, v̂)∥L2(η̃) ≤ Nn.

Thus for all ω ∈ X, ∥gn(ω, ·)∥L2(η̃) ≤
√
C +Nn, which then implies (7.8).

Integrating the inequality 7.6 with respect to µ and η̃ we obtain
∫∫ ∣∣∣∆n(ω, t, v̂) − En(ω, t, v̂)

∣∣∣ dµ(ω) dη̃(t, v̂) ≲
√
n e−Nn/3 .

Applying Chebyshev’s inequality to the function

(t, v̂) 7→
∫ ∣∣∣∆n(ω, t, v̂) − En(ω, t, v̂)

∣∣∣ dµ(ω),

there is a set Bn ⊂ Λ × P(R2) such that η̃(Bn) ≲
√
n e−Nn/6 and if (t, v̂) /∈ Bn

then ∫ ∣∣∣∆n(ω, t, v̂) − En(ω, t, v̂)
∣∣∣ dµ(ω) < e−Nn/6 .

Since ∑n≥1 η̃(Bn) < ∞, by Borel-Cantelli, η̃-almost every (t, v̂) belongs
to a finite number of sets Bn. That is, for η̃-a.e. (t, v̂) there is n0(t, v̂) ∈ N such
that for all n ≥ n0(t, v̂) we have (t, v̂) /∈ Bn, so

∫ ∣∣∣∆n(ω, t, v̂) − En(ω, t, v̂)
∣∣∣ dµ(ω) < e−Nn/6 .

Applying again Chebyshev we have that

µ
{
ω ∈ X :

∣∣∣∆n(ω, t, v̂) − En(ω, t, v̂)
∣∣∣ > e−Nn/12

}
≤ e−Nn/12.
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We have shown that there is a set Ωn ⊂ X with µ(Ωn) < e−Nn/12 such
that if ω /∈ Ωn then

∣∣∣∆n(ω, t, v̂) − En(ω, t, v̂)
∣∣∣ < e−Nn/12 ≤ ϵ

2

provided n is large enough depending on (t, v̂) as above and on ϵ.

Thus if
∣∣∣∆n(ω, t, v̂)

∣∣∣ > ϵ then either ω ∈ Ωn or
∣∣∣En(ω, t, v̂)

∣∣∣ > ϵ
2 , the later

holding for ω in a set of measure ≤ 8 e−c0(ϵ)N−2
n n by (7.7).

We conclude that for η̃-a.e.(t, v̂) and for all ϵ > 0 there is n0 = n0(ϵ, t, v̂) ∈
N such that for all n ≥ n0 we have

µ
{
ω :

∣∣∣∆n(ω, t, v̂)
∣∣∣ > ϵ

}
< e−Nn/12 + 8 e−c0(ϵ)N−2

n n < e−c0(ϵ)n1/3

provided we choose Nn ∼ n1/3. This establishes the first statement of the
theorem.

In particular, by the definition of the measure η̃, for Lebesgue almost
every parameter t ∈ Λ and for ηt-a.e. point v̂ this first statement of the theorem
holds, namely

µ
{
ω ∈ X :

∣∣∣ 1
n

log∥Ant (ω)v∥ − L1(At)
∣∣∣ > ϵ

}
< e−c0(ϵ)n1/3

. (7.9)

Recall that support of the measure ηt is the set

{
Ânt (ω)r̂s : s ∈ Asing, ω ∈ An

inv, n ∈ N
}
.

There is at least one singular symbol, s ∈ Asing and at least one invertible
one i ∈ Ainv. By the positive winding condition,

d

dt
Ât(i) r̂s ≥ c0 > 0,

so t 7→ Ât(i) r̂s cannot be constant on a set of positive Lebesgue measure.
Therefore Ât(i) r̂s ̸= r̂s for Lebesgue almost every t.

It follows that for Lebesgue almost every t ∈ Λ, the support of the
measure ηt has at least two points, ê1

t and ê2
t . Thus (7.9) holds for two linearly

independent vectors e1
t and e2

t , hence it must hold with the matrix norm
∥Ant (ω)∥, which establishes the second statement of the theorem. ■

We now derive the version of the LDT estimate stated in the introduction
of this manuscript, namely that such an estimate holds for Lebesgue almost
every singular cocycle.
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Proof. [of Theorem 1.5] Note that the set M\M∗, which consist on cocycles
for which a kernel k̂i coincides with a range r̂j for some i, j ∈ Asing, has zero
Lebesgue measure in M. Moreover, by 6.3, L1(A) > −∞ for Lebesgue almost
every A ∈ M. We may neglect these zero measure sets of cocycles.

Given any A ∈ M, define A(t) := (A1(t), . . . , Ak(t)) for every t ∈ [−π, π],
where

Ai(t) :=

AiRt if i ∈ I

Ai if i /∈ I
and Rt :=

cos t − sin t
sin t cos t

 .
This is an analytic family taking values in M∗ that satisfies the assumptions
(A1) and (A2) of Section 7.2.1. By Theorem 7.3, A(t) satisfies large deviations
of sub-exponential type for Lebesgue almost every t ∈ R. Hence, since the map
M × [−π, π] → MI , (A, t) 7→ A(t), is a submersion, Lebesgue almost every
A ∈ M satisfies similar large deviations estimates. ■

7.2.4
Central limit theorem

We now establish a central limit theorem for singular cocycles. The proof
uses the abstract central limit theorem 2.3 due to Gordin and Livšic.

We consider as in the previous subsection a smooth family of cocycles
Λ ∋ t 7→ At ∈ M∗ satisfying the positive winding property. We also consider
the special observables ψt and φt from before.

We introduced two related (families of) Markov operators acting on
measurable bounded observables. They can actually be defined for arbitrary
observables, namely if ψ : P(R2) → [−∞,∞) we put

Qtψ(v̂) =
∑
i∈A

piψ(Ât(i)v̂)

and if φ : A × P(R2) → [−∞,∞) we put

Q̄tφ(j, v̂) =
∑
i∈A

piφ(i, Ât(j)v̂).

Consider the projection:

π : L2(A × P(R2)) → L2(A)

πφ(v̂) :=
∑
i∈A

piφ(i, v̂).

Using this notation, πφt = ψt. Moreover, Q̄n+1
t φ(i, v̂) = Qn

t (πφ)(Ât(i)v̂).
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Lemma 7.9 For Lebesgue almost every parameter t ∈ Λ we have that

∞∑
n=0

∥Q̄n+1
t φt −

∫
φt dpdηt∥L2(p×ηt) < ∞.

Proof. By the previous observations,

∞∑
n=0

∥Q̄n+1
t φt −

∫
φt dpdηt∥L2 =

∞∑
n=0

∥Qn
t ψt(Ât(i)v̂) −

∫
ψt dηt∥L2

=
∞∑
n=0

∑
i∈A

pi

∫ ∣∣∣∣Qn
t ψt(Ât(i)v̂) −

∫
ψt dηt

∣∣∣∣2 dηt(v̂)
 1

2

.

We start by showing that for every i ∈ A there exists σ ∈ (0, 1) such that for
every n ∈ N

∫
Λ

∫
P(R2)

∣∣∣∣Qn
t ψt(Ât(i)v̂) −

∫
ψt dηt

∣∣∣∣2 dηt(v̂) dt ≲ σn.

Fix i ∈ A and note that by lemma 7.6 item (iii) and Jensen’s inequality,

∫
Λ

∫
P(R2)

∣∣∣∣Qn
t ψt(Ât(i)v̂) −

∫
ψt dηt

∣∣∣∣2 dηt(v̂) dt

=
∫

Λ

∫
P(R2)

∣∣∣∣ ∑
ω∈An

inv

p(ω)ψt(Ânt (ω)Ât(i)v̂)

−
∑

s∈Asing

ps
∞∑
j=n

∑
ω∈A

j
inv

p(ω)ψt(Âjt(ω)rs)
∣∣∣∣2dηt(v̂)dt

≤ 2
∫

Λ

∫
P(R2)

∑
ω∈An

inv

p(ω)
∣∣∣ψt(Ânt (ω)Ât(i)v̂)

∣∣∣2 dη̃(t, v̂)

+ 2
∫

Λ

∫
P(R2)

∑
s∈Asing

ps
∞∑
j=n

∑
ω∈A

j
inv

p(ω)
∣∣∣ψt(Âjt(ω)rs)

∣∣∣2 dη̃(t, v̂)

≲
∑

ω∈An
inv

p(ω) +
∑

s∈Asing

ps
∞∑
j=n

∑
ω∈A

j
inv

p(ω) ≲ (1 − q)n

so the claim holds with σ = 1 − q.
By Chebyshev’s inequality,

Leb
{
t ∈ Λ:

∫
P(R2)

∣∣∣∣Qn
t ψt(Ât(i)v̂) −

∫
ψt dηt

∣∣∣∣2 dηt(v̂) > σ
n
2

}
≲ σ

n
2 .

Therefore, for every i ∈ A and for each n ∈ N, there exists a set
Bn(i) ⊂ Λ, with Leb(Bn(i)) ≲ σ

n
2 such that for every t /∈ Bn(i),

∥Q̄n+1
t φt −

∫
A×P(R2)

φt dpdηt∥L2(p×ηt) ≲ σ
n
2 . (7.10)
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Moreover, since there is a finite number of symbols, there exists a set
Bn that satisfies the same properties for all symbols i ∈ A simultaneously.
Furthermore, since ∑∞

n=0 Leb(Bn) < ∞, by the Borel-Cantelli lemma, for
almost every t ∈ Λ, there exists n0(t) ∈ N such that for every n ≥ n0(t),
t /∈ Bn. Thus for almost every t, the inequality (7.10) holds, hence

∞∑
n=0

∥Q̄n+1
t φt −

∫
φt dpdηt∥L2(p×ηt) < ∞.

which proves the lemma. ■

We are ready to formulate and to prove a parametric version of the CLT
for singular cocycles.

Theorem 7.4 Let A : Λ → M∗ be a smooth family of cocycles satisfying (A1)
and (A2). Then, for almost every t ∈ Λ there exists σ = σ(t) > 0 such that
the following convergence in distribution

log∥Ant v∥ − nL1(At)
σ

√
n

d→ N (0, 1)

holds for ηt-a.e v̂ ∈ P(R2). Moreover,

log∥Ant ∥ − nL1(At)
σ

√
n

d→ N (0, 1).

Proof. In order to apply theorem 2.3 and establish the central limit theorem,
we first note that for every parameter t, the Markov system (A × P(R2), Q̄t)
is ergodic, since it has a unique stationary measure p × ηt. That is because
Q̄n
t φ →

∫
φ dpdηt uniformly for every φ ∈ L∞(A × P(R2)).

Consider the special observable φt defined before and recall from the
previous lemma that for Lebesgue almost every parameter t ∈ Λ we have

∞∑
n=0

∥Q̄n
t φt −

∫
φt dpdηt∥L2(p×ηt) < ∞.

This in particular allows us to define

gt :=
∞∑
n=0

Q̄n
t

(
φt −

∫
φt dpdηt

)
∈ L2(p× ηt).

Then for every parameter t,

φt −
∫
φt dpdηt = gt − Q̄tgt.
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Let σ2(t) = σ2
t (φt) := ∥gt∥2

2 − ∥Q̄tgt∥2
2.

In order to apply Theorem 2.3 it remains to prove that σ2(t) > 0 for
almost every t ∈ Λ. We accomplish this in several steps. The result will be
proved in Lemma 7.12 and the next two lemmas prepare the proof.

Lemma 7.10 Let PUH be the set of parameters t ∈ Λ such that the corre-
sponding cocycle At is projectively uniformly hyperbolic. For Lebesgue almost
every t ∈ PUH, the corresponding stationary measure p× ηt has infinite sup-
port.

Proof. Firstly note that if the parameter t ∈ PUH is such that At is diagona-
lizable, then the ranges of the singular matrices and the unstable directions of
the invertible matrices are aligned. Therefore, the support of the corresponding
stationary measure has only one point. However, this case only happens with
zero measure, since this alignment will be undone by the winding property
as the parameter t varies. Note that singular matrices remain constant in the
process.

Hence we only need to consider the case in which the cocycle At is not
diagonalizable. Note that if At is projectively uniformly hyperbolic, then so is
its invertible part Ainv(t) := (At(i))i∈Ainv . Hence we can define Ku

inv, the set
of unstable Oseledets directions Eu(ω) of the cocycle (Ai)i∈Ainv over the set of
points ω ∈ AZ

inv. We divide the proof in two cases: #Ku
inv = 1 and #Ku

inv > 1.
First, we suppose that #Ku

inv = 1. Since we assume that At is not
diagonalizable, there is no range in Ku

inv. Therefore, the iterates of the ranges
are going to spread into infinitely many different points in the projective
space by the projective uniform hyperbolic dynamics (in fact, the iterates will
converge to Ku

inv). Since the corresponding stationary measure p×ηt is discrete
and gives positive weight to every pair of the form (j, Ânt (ω)r̂s), we conclude
that the support of ηt is infinite.

Now, suppose that #Ku
inv > 1. In fact, in this case the set Ku

inv is infinite,
since it is a Cantor set. Note that if there is any range outside of Ku

inv, the proof
is the same as in the previous case, hence we assume that every range ri is
contained in Ku

inv. Furthermore, since Ainv is projectively uniformly hyperbolic,
the distance betweenKu

inv andKs
inv (the set of stable Oseledets directions Es(ω)

of the cocycle (Ai)i∈Ainv over the set of points ω ∈ AZ
inv) is positive. Hence, by

an appropriate choice of word ω, one can iterate any range ri by Ant (ω) to
converge to any desired element of Ku

inv. (Remember that by Lemma 6.2, there
is no invariant element in Ku

inv once #Ku
inv > 1.) Since the corresponding

stationary measure p× ηt is discrete and gives positive weight to every pair of
the form (j, Ânt (ω)r̂s), we conclude that the support of ηt is infinite. ■
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Lemma 7.11 For Lebesgue almost every parameter t ∈ Λ, the observable φt
cannot be p× ηt constant.

Proof. By Theorem 6.3, for every t ∈ Λ, either At is projectively uniformly
hyperbolic or it can be approximated by cocycles that admit null words. The
proof is then divided into two cases.

First let us consider the set B of parameters t ∈ Λ such that At is not
projectively uniformly hyperbolic. Note that there exists c > 0 such that for
every t ∈ B and all j ∈ A and i ∈ Asing, it holds that |φt(j, r̂i)| ≤ c. Moreover,
by Theorem 6.3 there exists t′ arbitrarily close to t such that At′ has a null
word. Hence, by continuity, there exists some range rs and a finite word ω such
that ∥Ant (ω)rs∥ is arbitrarily small, thus |φt| ≫ c. Therefore, we conclude that
for every t ∈ B, φt is not constant.

By Lemma 7.10 we have that for Lebesgue almost every t ∈ PUH,
there are infinitely many points in the support of the corresponding stationary
measure p× ηt. Moreover, φt is p× ηt-constant if and only if it takes the same
value at every point in the support of p× ηt. The only way for this to happen
is if At had a conformal word (with a pair of non real eigenvalues). In fact,
the presence of a conformal word implies that this word is projectively elliptic,
hence not projectively uniformly hyperbolic. Therefore, we conclude that for
almost every t ∈ PUH, the observable φt is not p× ηt constant, which finishes
the proof. ■

The next lemma establishes the positivity of the variance type quantity
σ2(t) for almost every t ∈ Λ by an adaptation of the proof of [13, Proposition
2.2]. We note that this proposition is a version of the abstract CLT of Gordin
and Livšic, which is more applicable to dynamical systems.

Lemma 7.12 The variance-type quantity defined above satisfies σ2(t) > 0 for
every t ∈ Λ.

Proof. Consider the family of Markov operators Q̄t : L∞(A×P(R2)) → L∞(A×
P(R2)), given by (Q̄tφ)(j, v̂) = ∑

i∈A φ(i, Ât(j) v̂) pi and the corresponding
family of Markov kernels K̄t : (A×P(R2)) → Prob(A×P(R2)). Recall that the
measure p× ηt is K̄t-stationary, in the sense that (K̄t)∗p× ηt = p× ηt.

Fix any t ∈ Λ. Assume by contradiction that σ2
t (φ) = 0. Let x, y ∈
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A × P(R2) with x = (i, v̂1) and y = (j, v̂2). Then

0 ≤
∫

(Q̄t gt(x) − gt(y))2 dK̄t,x(y)dp× ηt(x)

=
∫ {

(Q̄t gt(x))2 + (gt(y))2 − 2gt(y)Q̄tgt(x)
}
dK̄t,x(y)dp× ηt(x)

=
∫ {

(gt(y))2 − (Q̄t gt(x))2
}
dK̄t,x(y)dp× ηt(x)

= ∥gt∥2
2 − ∥Q̄t gt∥2

2 = σ2(t) = 0.

We then conclude that gt(y) = Q̄tgt(x) for p × ηt-a.e x and K̄t,x-a.e y.
By induction, for every n ≥ 1 Q̄n

t gt(x) = gt(y) for p× ηt-a.e x and K̄n
t,x-a.e y.

Hence for all n ≥ 1 and p× ηt-a.e x, gt is K̄n
t,x-a.e constant.

We claim that in fact gt is p× ηt-a.e constant. Assume by contradiction
that gt is not constant for p × ηt-a.e. Then there exist two points x1 and x2

in the support of the stationary measure p × ηt such that p × ηt({x1}) > 0,
p × ηt({x2}) > 0 and gt|{x1} < gt|{x2}. Define ϕ1 = 1{x1} and ϕ2 = 1{x2}. Note
that 0 ≤ ϕi = 1{xi} and

∫
ϕi dp × ηt > 0 for i = 1, 2. Moreover, for every

x ∈ A × P(R2) and every n ≥ 1, uniformly in x we have

K̄n
t,x({xi}) = (Q̄n

t 1{xi})(x) = (Q̄n
t ϕi)(x) →

∫
ϕi dp× ηt > 0.

Then for n sufficiently large and for every x ∈ A×P(R2), {x1} and {x2}
have positive K̄n

t,x measure. However, gt|{x1} < gt|{x2}, contradicting the fact
that gt is K̄n

t,x-a.e constant for p×ηt-a.e x. Thus, gt is p×ηt-a.e constant. Since
Q̄t preserves constants, it follows that φt = gt − Q̄tgt = 0 p × ηt-a.e. which,
by Lemma 7.11, cannot hold. Since we obtained a contradiction, we conclude
that σ2(t) > 0, as stated. ■

Theorem 2.3 is then applicable to the Markov system (A × P(R2), K̄t)
and the observable φt, for Lebesgue almost every t ∈ Λ. We then conclude
that for ηt-a.e. point v̂ ∈ P(R2),

log∥Ant v∥ − nL1(At)
σ

√
n

d→ N (0, 1).

In order to prove the second statement we choose a unit vector v for
which the CLT holds and note that

log∥Ant ∥ − nL1(At)
σ

√
n

= log∥Ant v∥ − nL1(At)
σ

√
n

+ log∥Ant ∥ − log∥Ant v∥
σ

√
n

.

We claim that the sequence log∥Ant ∥ − log∥Ant v∥ is almost surely
bounded, hence the last term above converges to 0 almost surely, which would
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then conclude the argument via Slutsky’s theorem.
The claim clearly follows from the a.s. boundedness from below by a

positive constant of the sequence ∥An
t v∥

∥An
t ∥ . Let u(A) denote the most expanding

singular direction of the matrix A. By the Pythagorean theorem,

∥Ant (ω) v∥
∥Ant (ω)∥ ≥

∣∣∣v · u(Ant (ω))
∣∣∣ →

∣∣∣v · u∞(At)(ω)
∣∣∣.

Remember that the limit direction u∞(At)(ω) exists almost surely by
arguments in the proof of Oseledets’ theorem (see [21, Proposition 4.4]) and
u∞(At)(ω)⊥ = Es(ω), the stable subspace in the Oseledets theorem (see the
beginning of the proof of [21, Theorem 4.4]).

We must have that
∣∣∣v · u∞(At)(ω)

∣∣∣ > 0 almost surely (which then
establishes the claim). Otherwise, on a set of positive measure we would have
that v ∈ u∞(At)(ω)⊥ = Es(ω), which is not possible. Indeed, Es(ω) consists
of the pre-images of the kernel kωn via matrix products Ant (ω), for some n ∈ N
such that ωn ∈ Asing and ω0, . . . , ωn−1 ∈ Ainv. On the other hand, v̂ is in the
support of ηt, which consists of images of ranges r̂s via matrix products Ant (y).
Thus v ∈ Es(ω) would imply the existence of null words, and in particular the
fact that L1(At) = −∞. But those parameters t form a zero measure set. ■

We note that the non-parametric version of the CLT stated in the
introduction, namely theorem 1.6, can be derived form the parametric version
exactly the same way the non-parametric LDT theorem 1.5 was derived from
the parametric LDT theorem 7.3. Thus theorem 1.6 holds as well.

Remark 7.5 The statistical properties derived above are sensitive to pertur-
bations of the cocycle, that is, the parameters that appear in these estimates
are not locally uniform.

Remark 7.6 Projectively uniformly hyperbolic cocycles automatically satisfy
uniform LDT estimates and a CLT, since these properties can be immediately
reduced to the corresponding limit laws for i.i.d. additive processes in classical
probabilities. In particular, by Theorem 6.4, if all components of A ∈ Mat2(R)k

are singular and L1(A) > −∞ then A satisfies uniform LDT estimates and a
CLT.



8
Extensions and Further Problems

All of the results in this manuscript were presented in the Bernoulli
setting for the sake of readability of the text. They are, however, available in
a more general setting, that of locally constant linear cocycles over a mixing
Markov shift, which we refer to as the Markov setting.

In this chapter we intend to offer a glimpse of these other available
results as well as of other possible extensions, ongoing projects and some open
questions.

The chapter is divided into seven sections. In the first we formally
introduce the Markov setting, or the Markov cocycles. Each subsequent section,
from 8.2 to 8.6, corresponds to a previous chapter of the manuscript, from
chapter 3 to chapter 7. We describe how the results in these chapters can be
adapted to the more general setting of Markov cocycles. Finally, in section 8.7
we explore further extensions and describe some open questions that we think
are worth being explored.

Sections 8.2 and 8.3 are based on two joint works with Cai, Klein
and Melo. In 8.2 we describe a Markovian analogue of Furstenberg-Kifer’s
multiplicative ergodic theorem with an explicit filtration. This can be used to
prove the continuity of the Lyapunov exponents for Markovian compositions
of cocycles (precise definitions will be given in that section). In 8.3 we establish
a joint Hölder continuity in both the cocycle and the Markov kernel for the
Lyapunov exponent with respect to a suitable topology. Section 8.4 is based
on a joint work with Amorim and Melo and we establish the analyticity of the
Lyapunov exponent with respect to Markov kernels. Sections 8.5, 8.6 and 8.7
are based on two joint works with Duarte, Graxinha and Klein. We discuss not
only the extension to the Markovian setting but also include some thoughts on
how to derive similar results in Mat2(R)k (that is, for cocycles whose matrix
components may have negative determinants), which was the original goal of
this project. We conclude with other relevant related problems.
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8.1
Markov cocycles

Consider a Markov system (Σ, K, µ) where Σ is a compact metric space,
K is a Markov kernel and µ is a K-stationary measure. Let PK,µ denote
the Markov measure on X+ = ΣN with initial distribution µ and transition
kernel K. We use the same notation for its extension to the space X = ΣZ

of double sided sequences. Let σ be the forward shift on X+ and on X.
Then (X+,PK,µ, σ) is a measure preserving, ergodic (non invertible) dynamical
system, (X,PK,µ, σ) is its natural invertible extension, both of which we call
Markov shifts.

A measurable function A : Σ × Σ → GLd(R) induces the skew-product
dynamical system F = FA,K : X × Rd → X × Rd,

F (ω, v) = (σω,A(ω1, ω0)v)

for ω = {ωn}n∈Z ∈ X and v ∈ Rd. That is, FA,K is a linear cocycle over
the base dynamics (X,PK,µK

, σ), where the fiber dynamics is induced by
the map A (which depends on two consecutive symbols). We refer to such
a dynamical system as a Markov linear cocycle. Its iterates are given by
F n(ω, v) = (σnω,An(ω)v), where for ω = {ωn}n∈Z ∈ X,

An(ω) = A(ωn, ωn−1) · · ·A(ω2, ω1)A(ω1, ω0) .

By Kingman’s ergodic theorem, if it satisfies an integrability condition, for
example A,A−1 are bounded, then the geometric averages of the fiber iterates
of the cocycle FA,K converge PK,µ-a.s.

1
n

log∥An(ω)∥ → L1(A,K)

and the limit L1(A,K) is called the maximal Lyapunov exponent of the
system. Replacing the norm (or largest singular value) of the iterates An(ω)
by the other singular values, we obtain all the other Lyapunov exponents
L2(A,K), . . . , Lm(A,K) of the cocycle FA,K .

Remark 8.1 Although we only consider Markov cocycles that depend on two
symbols, the same results will hold for cocycles that depend on any fixed,
finite number of symbols. The idea is to do an analogous argument to the one
developed in chapter 2 and establish relations between the stationary measures
and Markov operators on different levels.
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8.2
More on Furstenberg-Kifer’s multiplicative ergodic theorem

Recall that Furstenberg-Kifer’s filtration is “non random” in the sense
that it does not depend on the point ω. Oseledets filtration is completely
random, since it depends on possibly all the coordinates of ω. In what follows,
we show a Markovian analogue of Furstenberg-Kifer’s filtration that is only
slightly random, since it depends only on the zeroth coordinate of ω.

Let (Σ, K, µ) be an ergodic Markov system, that is, µ ∈ Prob(Σ) is
an extremal point of the set of K-stationary measures. Note that µ is not
necessarily unique, but we fix µ and everything will depend on it.

Let A : Σ × Σ → GLd(R) be a Borel measurable fiber map with A,A−1

bounded. Together with K, it determines the Markov cocycle F = FA,K over
the ergodic Markov shift (ΣN,PK,µ, σ). Note that the corresponding Lyapunov
exponents also depend on µ, so we denote them by Lj(A,K, µ), 1 ≤ j ≤ m.
Consider the observable ψ = ψA : Σ × Σ × P → R given by

ψA(ω1, ω0, v̂) := log
∥∥∥∥A(ω1, ω0)

v

∥v∥

∥∥∥∥ (8.1)

where v is any vector representing the projective point v̂.
Let ProbµQA

(Σ × P(Rd)) denote the set of all probability measures η ∈
ProbQA

(Σ × P(Rd)) that project down to µ.
Define the continuous linear functional α : ProbµQA

(Σ × P(Rd)) → R

α(η) :=
∫

Σ×Σ×P
ψ(ω1, ω0, v̂)dKω0(ω1)dη(ω0, v̂)

and let
β(µ) := max{α(η) : η ∈ ProbµQA

(Σ × P(Rd))} .

Denote by Σµ(α) the set of all values of the linear functional α over the
extremal points of ProbµQA

(Σ ×P(Rd)). By the Krein-Milman theorem this set
is nonempty. Moreover, β(µ) = max Σµ(α).

Theorem 8.1 Let (Σ, K, µ) be an ergodic Markov system and let A : Σ×Σ →
GLm(R) be a measurable fiber map with A,A−1 bounded. There exists a
filtration L = (L0,L1, . . . ,Lr), that is, for 0 ≤ j ≤ r, Lj : Σ → Gr(Rm) is
a measurable section and for all ω0 ∈ Σ

{0} = Lr+1(ω0) ⊊ Lr(ω0) ⊊ . . . ⊊ L1(ω0) ⊊ L0(ω0) = Rm

such that for all indices 0 ≤ j ≤ r,

(i) the section Lj is A-invariant,
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(ii) for µ-a.e. ω0 ∈ Σ, ∀v ∈ Lj(ω0) \ Lj+1(ω0) and Pω0-a.e. ω ∈ ΣN,

lim
n→∞

1
n

log ∥An(ω)v∥ = βj(µ) ,

(iii) if η is an extremal point of ProbµQA
(Σ × P) with α(η) = βj then

η {(ω0, v̂) : ω0 ∈ Σ, v ∈ Lj(ω0)} = 1 and η{(ω0, v̂) : ω0 ∈ Σ, v ∈
Lj+1(ω0)} = 0.

Moreover, the filtration can be explicitly defined as

Lj(ω0) :=
{
v ∈ Rm : lim sup

n→∞

1
n

log ∥An(ω)v∥ ≤ βj(µ) Pω0-a.e. ω
}

(8.2)

for all ω0 ∈ Σ and 0 ≤ j ≤ r.

In [15] we were able to provide a direct proof of the Markovian filtration
and describe explicitly each of its components. The existence of such filtration
was already known by work of Bougerol, as a consequence of Kifer’s theory of
random i.i.d composition of cocycles [34, Theorem 1.2 in Chapter 3], which we
will briefly describe bellow. Moreover, we will prove in 8.2 that the Markovian
filtration also implies a filtration for random composition of cocycles, therefore
we conclude that the theorems are in fact equivalent.

Let M be a compact metric space, let d ≥ 1 and denote by G the set of
linear cocycles ω : M × Rd → M × Rd, ω(x, v) = (τω(x), Aω(x)v), where the
base dynamics of ω is a continuous function τω : M → M and the fiber map of
ω is a measurable, bounded, with bounded inverse function Aω : M → GLd(R).

Let Ω ⊂ G be a compact set. Given a measure ν ∈ Prob(G) with suppν ⊂
Ω, consider the multiplicative process in G (i.e. the random composition of
linear cocycles)

Πn
ω := ωn−1 ◦ . . . ω1 ◦ ω0, n ∈ N

where ω = {ωn}n≥0 is an i.i.d. sequence of random variables in G with common
distribution ν. Note that for all (x, v) ∈ M × Rd and n ∈ N,

Πn
ω(x, v) = (τnω (x), Anω(x)v) ,

where

τnω = τωn−1 ◦ ... ◦ω1 ◦ω0 = τωn−1 ◦ . . . τω1 ◦ τω0 and

Anω(x) = Aωn−1(τn−1
ω x) · · ·Aω1(τω0x)Aω0(x) .

Evidently (G, ◦) is a monoid that acts naturally on the set M by
ω0 · x := τω0(x). This action induces a convolution operation (or an action of



Chapter 8. Extensions and Further Problems 136

Prob(G) on Prob(M)). More precisely, given ν ∈ Prob(G) and m ∈ Prob(M),
their convolution ν ∗m ∈ Prob(M) is the push-forward of the product measure
ν × m via the map (ω0, x) 7→ ω0 · x.

A measure m ∈ Prob(M) is ν-stationary if and only if ν ∗ m = m, which
means that for all ϕ ∈ C(M)

∫
ϕ(τω0x) dν(ω0) dm(x) =

∫
ϕ(x) dm(x) .

Moreover, if m is an extremal point in the set of ν-stationary measures on
M , we say that the pair (ν,m) is ergodic. This can be shown to be equivalent
to the ergodicity of the skew-product dynamical system (ΩN ×M, νN × m, f),
where f(ω, x) := (σω, τω0(x)).

Next we show that Theorem 8.1 implies the existence of a non-random
filtration for i.i.d. compositions of linear cocycles, which provides a different
argument for [34, Theorem 1.2 in Chapter 3].

Theorem 8.2 Let G be a set of linear cocycles on M × Rd as above, let
ν ∈ Probc(G), let m ∈ Prob(M) and assume that (ν,m) is ergodic. There are
an integer 0 ≤ r ≤ d, real numbers β0 > β1 > . . . > βr that depend on ν and
m, and a measurable filtration L = (L0,L1, . . . ,Lr), that is, Lj : M → Gr(Rd)
are measurable maps with

{0} = Lr+1(x) ⊊ Lr(x) ⊊ . . . ⊊ L1(x) ⊊ L0(x) = Rd

such that for all 0 ≤ j ≤ r and for m-a.e. x ∈ M , the following hold.

(i) Aω0(x) Lj(x) = Lj(τω0(x)) for ν-a.e. ω0 ∈ G.

(ii) For all v ∈ Lj(x) \ Lj+1(x) and νN-a.e. ω ∈ ΣN,

lim
n→∞

1
n

log ∥Anω(x)v∥ = βj .

(iii) For νN-a.e. ω ∈ ΣN,

lim
n→∞

1
n

log ∥Anω(x)∥ = β0 .

Proof. We associate to the multiplicative i.i.d. process Πn
ω a Markov linear

cocycle as follows.
Let Σ := Ω ×M and consider the Markov chain in Σ

(ω0, x) → (ω1, τω0x) → . . . → (ωn, τnωx) → . . .
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with transition kernel K : Σ → Prob(Σ), K(ω0,x) := ν × δτω0x
.

Since m is ν-stationary, it follows that µ := ν × m is K-stationary.
Moreover, since (ν,m) is ergodic, namely m is an extremal point in the set
of ν-stationary measures on M , then µ is extremal also which shows that
(K,µ) is an ergodic Markov system on Σ.

Note that the “admissible" sequences in (Ω × M)N are the elements of
the set

X :=
{
{(ωn, τωn−1 ◦ . . . τω1 ◦ τω0x)}n∈N : ωn ∈ Ω ∀n ∈ N, x ∈ M

}
in the sense that PK,µ(X) = 1 and consequently P(ω0,x)(X) = 1 for ν-a.e.
ω0 ∈ G and m-a.e. x ∈ M .

Define the fiber map (depending on one variable) A : Σ → GLd(R),
A(ω0, x) := Aω0(x). Then for all points (ω, x) = {(ωn, τnωx)}n≥0 ∈ X, the
iterates of the fiber map are

An(ω, x) = Aωn−1(τn−1
ω x) · · ·Aω1(τω0x)Aω0(x) = Anω(x) .

Theorem 8.1 applied to the corresponding Markov linear cocycle FA,K
implies the existence of r ∈ N, β0 > β1 > . . . > βr and, for every index
0 ≤ j ≤ r, of a measurable section Lj : Ω × M → Gr(Rd) with the stated
properties, given (see (8.2)) by

Lj(ω0, x) =
{
v ∈ Rm : lim sup

n→∞

1
n

log∥An(ω, x)v∥ ≤ βj P(ω0,x) a.e.(ω, x)
}

=
{
v ∈ Rm : lim sup

n→∞

1
n

log∥Anω(x)v∥ ≤ βj Pω0 a.e. ω
}
.

Since ω0, ω1, . . . ωn−1, . . . are chosen independently and according to the
same distribution ν, it follows that Lj(ω0, x) does not depend on ω0 ν-almost
surely, that is, Lj(ω0, x) = Lj(x) for ν-almost every ω0. Items (i) and (ii) are
consequences of the corresponding statements in Theorem 8.1, while item (iii)
follows from the Markovian analogue of Theorem 3.3. ■

In an ongoing project, we are investigating the Markovian analogue of
the theory of i.i.d random composition of cocycles: the Markovian composition
of cocycles. Therefore, we consider an ergodic Markov system (Ω, K, µ) and the
points ω0, ω1, . . . are chosen accordingly to it. One of the goals is to establish
the continuity of the Lyapunov exponents under some irreducibility hypothesis
to Markovian composition of cocycles.
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8.3
Hölder continuity in the generic setting

The goal of this section is to present a Markovian analogue of theorem
4.1. We study the continuity of the maximal Lyapunov exponent of Markov
cocycles FA,K as a function of the fiber map A and the transition kernel K.

Let Σ be a compact metric space. We assume that the Markov kernel K
is uniformly ergodic, meaning that Kn

x converges to its stationary measure µ
uniformly (in x ∈ Σ) relative to the total variation distance. In this case the
convergence is necessarily exponential and the K-stationary measure µ = µK

is unique. Let QK : L∞(Σ) → L∞(Σ),

QKϕ(x) :=
∫

Σ
ϕ(y) dKx(y)

be the corresponding Markov operator. It turns out that the uniform ergodicity
of the transition kernel K is equivalent to the existence of constants C < ∞
and c > 0 such that∥∥∥∥Qn

Kφ−
∫
φdµ

∥∥∥∥
∞

≤ C e−cn∥φ∥∞ ∀φ ∈ L∞(Σ), ∀n ∈ N ,

in which case we refer to K as being (C, c)-uniformly ergodic.1

In the Markov setting, irreducibility refers to the non-existence of a
proper, A-invariant section, that is, of a measurable function L : Σ → Gr(Rd)
(here Gr(Rd) denotes the Grassmannian of Rd) such that 0 < dim(V ) < d and

A(ωn+1, ωn)L(ωn) = L(ωn+1), for PK,µK
-a.e. ω = {ωn}n .

Quasi-irreducibility is a weaker version of this property, where such a proper A-
invariant section L may exist, but in this case, the maximal Lyapunov exponent
of the fiber restriction of the cocycle FA,K to L must equal L1(A,K).

Given M < ∞, a fiber map A : Σ × Σ → GLd(R) is M -Lipschitz
continuous if for all (ω1, ω0), (z1, z0) ∈ Σ × Σ,

∣∣∣A(ω1, ω0) − A(z1, z0)
∣∣∣ ≤ M (d(ω1, z1) + d(ω0, z0)) ,

while a transition kernel K : Σ → Prob(Σ) is M -Lipschitz continuous with
respect to the Wasserstein distance W1 if for all x, y ∈ Σ,

W1(Kx, Ky) ≤ Md(x, y).

1For these and other characterizations of uniform ergodicity see [36, Theorem 16.0.2].
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Fix some constants M,C < ∞ and c > 0 and consider the set
C = C(M,C, c) of Markov linear cocycles with M -Lipschitz data and (C, c)-
uniformly ergodic transition kernel, that is,

C :=
{
(A,K) : A is M -Lipschitz, K is M -Lipschitz,

K is (C, c)-uniformly ergodic
}
.

We endow this set with the distance

d ((A,K), (B, T )) := d∞(A,B) + dW1(K,T ),

where dW1 is the distance between kernels induced by the Wasserstein distance,
namely

dW1(K,T ) := sup
x∈Σ

W1(Kx, Tx).

Theorem 8.3 Let (A,K) ∈ C be a Markov cocycle. Assume that (A,K) is
quasi-irreducible and that L1(A,K) > L2(A,K). Then locally near (A,K), the
map C ∋ (B, T ) 7→ L1(B, T ) is Hölder continuous.

A proof of this result is given in [15].

8.4
Analyticity of the Lyapunov exponent with respect to Markov kernels

In the previous section we presented a result about the joint regularity
of (A,K) 7→ L1(A,K). During that work, it became clear that the main
obstruction to obtain a good modulus of continuity was to control A. In this
section we introduce the Markovian analogue of theorem 5.2. That theorem
shows that the Lyapunov exponent admits a high regularity with respect to
the measure in the total variation norm. We now present a result that shows
that it also admits a high regularity with respect to the Markov kernel in a
suitable norm. Similarly to chapter 5, where we considered complex valued
measures, we consider complex Markov kernels K : Σ → M(Σ).

Denote by K(Σ) the set of continuous and complex Markov kernels over
Σ such that for every ω ∈ Σ, Kω(Σ) has bounded variation. Consider the
following norm in K(Σ):

∥K∥ := sup
ω∈Σ

∥Kω∥T.V .

Given two kernels K and L, we may consider a partial order relation between
their supports. We say that supp(L) ≤ supp(K) if supp(Lω) ⊂ supp(Kω) for
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every ω ∈ Σ. For any fixed kernel K, we may define the set of continuous
kernels whose supports are contained in the support of K as the following:

S(K) := {L ∈ K(Σ) : supp(L) ≤ supp(K)}.

Moreover, we call a transition kernel K quasi-irreducible if the corre-
sponding Markov cocycle FA,K is quasi-irreducible.

Theorem 8.4 Let K0 be a uniformly ergodic kernel on Σ such that L1(K0) >
L2(K0).

(1) If K0 is quasi-irreducible, then K 7→ L1(K) is real analytic in a
neighbourhood of K0.

(2) The map K 7→ L1(K) is real analytic in a neighbourhood of K0 in S(K0).

The main ideas in the proof of the Markov setting are analogous to the
ones that appear in the i.i.d case, but we need to use tools from [15] and [21]
to deal with it. A full proof can be found on [1].

8.5
Regularity dichotomy in the singular setting

In this section we consider linear cocycles over a Markov shift and we
explain how to extend the results in chapter 6 to this setting.

Let P ∈ Matk(R) be a (left) stochastic matrix, P = (pij)1≤i,j≤k with
pij ≥ 0 and ∑k

i=1 pij = 1 for all 1 ≤ j ≤ k. Given a P -stationary probability
vector q = P q, the pair (P, q) determines a probability measure µ on X for
which the process ξn : X → A, ξn(ω) := ωn is a stationary Markov chain in
A with probability transition matrix P and initial distribution law q. Then
(X, σ, µ) is a measure preserving dynamical system.

The stochastic matrix P determines a directed weighted graph on the
vertex set A with an edge j 7→ i, from j to i, whenever pij > 0. Sequences in
X describing paths in this graph are called P -admissible. The set XP of all
P -admissible sequences is the support of the Markov measure µ. Given a finite
admissible word (i0, i1, . . . , in) ∈ An+1 and k ∈ Z, the set

[k; i0, i1, . . . , in] := {ω ∈ XP : ωk+l = il for all 0 ≤ l ≤ n}

is called a cylinder of length n+ 1 in XP . Its (Markov) measure is then

µ ([k; i0, i1, . . . , in]) = qi0 pii,i0 · · · pin,in−1 .
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We will assume that the matrix P is primitive, i.e. there exists n ≥ 1 such
that pnij > 0 for all entries of the power matrix P n. Then limn→∞ pnij = qi > 0
for all 1 ≤ i, j ≤ k and the corresponding Markov shift (X,µ, σ) is ergodic and
mixing. As before, a k-tuple A = (A1, . . . , Ak) ∈ Mat2(R)k determines a locally
constant linear cocycle over this base dynamics, which we refer to as a random
Markov cocycle. Its first Lyapunov exponent is denoted by L1(A) = L1(A,P, q).

Consider a random Markov linear cocycle F : XP × R2 → XP × R2

determined by the data (P, q, A) where A := (Ai)i∈A ∈ Mat+
2 (R)k.

By a slight abuse of notation, in the Markov setting we also write
Âi : A × P(R2) → A × P(R2) to denote, for each i ∈ A, the non-invertible
map Âi(j, v̂) := (i, Âi v̂).

In what follows we introduce a series of analogous definitions to the main
concepts from chapter 6. All results proven in the Bernoulli setting in chapter
6 extend to the Markov setting, using the definitions below and ideas similar
to the ones presented above, properly adapted to this more general setting.
Definition 8.1 An invariant multi-cone for A is a set M ⊂ A × P(R2) that
satisfies the following properties

(1) M is an open subset of A × P(R2),

(2) the closure of each fiber of M is a proper subset of {i} × P(R2),

(3) ÂiM ⋐M for every i ∈ A .
Definition 8.2 For i ∈ Asing, consider ri := Range(Ai) and ki := Ker(Ai)
and set

K(A) := {(j, ki) : i ∈ Asing, j ∈ A} ,

R(A) := {(i, ri) : i ∈ Asing}.

The complement A × P(R2) \ K(A) is the common domain of all maps
Âi with i ∈ Asing, while R(A) is the union of the ranges of these same maps.

Definition 8.3 Given i ∈ Asing, a branch departing from i is any P -admissible
word ω = (ω0, ω1, · · · , ωn) ∈ An+1 with n ≥ 0 such that ω0 = i and ωl ∈ Ainv

for all l = 1, . . . , n. Similarly, a branch arriving at i is a P -admissible word
ω = (ω0, ω1, · · · , ωn) ∈ An+1 with n ≥ 0 such that ωn = i and ωl ∈ Ainv for all
l = 0, . . . , n− 1.

Denote by B+
n (i) the set of all branches ω = (ω0, ω1, · · · , ωn) ∈ An+1 de-

parting from i and by B−
n (i) the set of all branches ω = (ω0, ω1, · · · , ωn) ∈ An+1

arriving at i. For ω ∈ B+
n (i) we write An−1(ω) := Aωn−1 . . . Aω2 Aω1 while for

ω ∈ B−
n (i) we write A−(n−1)(ω) := A−1

ω1 A
−1
ω2 . . . A−1

ωn−1 = (Aωn−1 . . . Aω2 Aω1)−1.
These matrices are invertible by definition of a branch.
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Definition 8.4 The subset W+ ⊂ A×P(R2) is defined to be the closure of the
union of the ranges of compositions of the partial maps Âωl

along all branches
departing from i while the subset W− ⊂ A × P(R2) is the closure of the union
of the pre-images of 0 under compositions of the partial maps Âωl

along all
branches arriving at i.

In the Markov case, Ku
inv and Ks

inv are subsets of A × P(R2). Firstly,
the multi-cone is to be interpreted according to definition 8.1 and P(R2) \ M
replaced by A × P(R2) \ M . Secondly, the matrix products Ain · · ·Ai1 are to
be substituted by composition of the maps Âin ◦ · · · ◦ Âi1 along admissible
invertible words.

8.6
Statistical properties in the singular setting

The cocycle (P, q, A) determines the operator Q : L∞(A × P(R2)) →
L∞(A × P(R2)) defined by

(Qφ)(j, v̂) :=
∑
i∈A

φ(i, Âi v̂) pij

=
∑
i∈Ainv

φ(i, Âi v̂) pij +
∑

i∈Asing

φ(i, r̂i) pij.

Let π : A × P(R2) → A denote the canonical projection in the first
coordinate. If η ∈ Prob(A × P(R2)) is Q-stationary, then its push-forward
measure via π is the P -stationary measure q on A, that is, π∗η = q.

Since η projects down via π to q, we can consider its disintegration
{ηi}i∈A ⊂ Prob(P(R2)), which is characterized by
∫
A×P(R2)

φ(i, v̂) dη(i, v̂) =
∑
i∈A

qi

∫
P(R2)

φ(i, v̂) dηi(v̂) ∀φ ∈ L∞(A × P(R2)) .

Then

η =
∑
i∈A

qi δi × ηi and ηi(E) = 1
qi
η({i} × E) ∀i ∈ A, E ⊂ P(R2) Borel.

Given n ≥ 1, s ∈ Asing and l ∈ A, let Bn(s, l) denote the set of admissible
words ω = (ω0, . . . , ωn) of length n+ 1 such that ω0 = s, ωn = l and ωi ∈ Ainv

for all i = 1, . . . , n − 1. For such a word we write An(ω) := Aωn . . . Aω2 Aω1

and also p(ω) := pωn ωn−1 · · · pω1 ω0 .
With these notations, we have the following explicit formula for a (or,

a-posteriori, the unique) Q-stationary measure.
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Proposition 8.1 Let η =
∑
j∈A

qjδj × ηj where for all j ∈ A,

ηj := 1
qj

∑
s∈Asing

qs
∞∑
n=1

∑
ω∈Bn(s,j)

p(ω)δÂn(ω)r̂s
. (8.3)

Then η is a (P, q, A)-stationary probability measure on A × P(R2).

Moreover, with this stationary measure, we are able to establish analo-
gous theorems to all of the results in chapter 7. In particular, we describe the
Furstenberg’s Formula for the Markov setting.

Consider the following observable Ψ: A × P(R2) → [−∞,∞),

Ψ(j, v̂) =
∑
i∈A

pij log ∥Ai v∥
∥v∥

.

Theorem 8.5 (Furstenberg’s Formula) If the cocycle (P, q, A) has rank
one then

L1(A) =
∫

Ψ dη.

All the proofs follow in a generally similar manner to the ones presented
in chapter 7. However, some of them are much more technical, which is why we
preferred to write the text in the Bernoulli context. In particular, the proofs of
the LDT estimates and of the CLT in the singular setting for Markov cocycles
also follow a similar scheme to the one shown above, but using the stationary
measure described by the more complex expression (8.3).

8.7
More about the singular setting

In this section we address other extensions and questions related to the
study of linear cocycles in the singular setting.

We start by explaining some technical difficulties that made us chose to
work with matrices in Mat+

2 (R) instead of Mat2(R) in chapters 6 and 7. This
assumption was made for different reasons in each chapter. Regarding chapter
7, we only introduced this hypothesis in order to use the winding property so
that we could estimate how much time the orbit of a range stays close to a
kernel. Therefore, it is merely a technical assumption which we believe that
it could be removed by using a different approach. The one we plan to use is
based more heavily on the properties of subharmonic functions (arising from
considering analytic curves of cocycles) rather than on the positive winding
property, which limits us to Mat+

2 (R)-valued cocycles.
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On the other hand, a great part of the work in chapter 6 was to extend
Avila, Bochi, Yoccoz (ABY) theory from SL2(R) to Mat+

2 (R). In order to
extend this theory to Mat2(R)-valued cocycles, the strategy would be to
first extend the results of Avila, Bochi, Yoccoz to cocycles with matrices in
SL′

2(R) := {A ∈ GL2(R) : det A = ±1} and then use our approach to further
extend from SL′

2(R)-valued to Mat2(R)-valued cocycles.
We believe that some of the results from this text, especially the local

ones, such as the multi-cone criteria, should not be difficult to be extended
to SL′

2(R)-valued cocycles. However, there are other results that rely on a
global understanding of the boundaries of the set of uniformly hyperbolic (UH)
cocycles and of the set of elliptic (E) cocycles. These type of problems are still
far from being completely understood.

One example of such a result proven in [44] for SL2(R)-valued cocycles,
says that the complement of the uniformly hyperbolic cocycles is exactly the
closure of the elliptic cocycles: UHc = Ē . It is an open question whether this
result still holds in SL′

2(R) or not. Therefore we propose the following questions.

Question 1. Is every random linear cocycle with rank 1 in Mat2(R)
either projectively uniformly hyperbolic or approximated by cocycles with null
words (in particular with Lyapunov exponent −∞)?

A weaker version of this question is the following.

Question 1’. Is Lebesgue almost every random linear cocycle with rank
1 in Mat2(R) either projectively uniformly hyperbolic or approximated by
cocycles with null words (in particular with Lyapunov exponent −∞)?

Some related, potentially useful questions are the following.

Question 2. Is it true that in the space of SL′
2(R)-valued cocycles we

have UHc = Ē?

Question 2’. Is it true that in the space of SL′
2(R)-valued cocycles, the

identity UHc = Ē holds at least modulo a Lebesgue zero measure set of such
cocycles?

Moreover, in [44] Yoccoz asks whether ∂UH = ∂E or not. This is proved
to be true in the case of the full shift in two symbols, see [2, Theorem 3.3].
However, the answer to this question is negative for the full shift with N ≥ 3
symbols, see [32] and [17]. The type of counter example provided in both papers
shows that there are elements from ∂E which are not in ∂UH. An interesting
question that could lead to some progress regarding questions 2 and 2’ is the
following.
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Question 3. Consider the set of random SL′
2(R)-valued cocycles. Is

there any cocycle that belongs to ∂UH but not to ∂E?

A further extension would be regarding the support of the measure. In
this work, we only consider linear cocycles over a finitely supported measure in
order to use ABY theory of multi-cones. Since that result is available only for a
finite number of matrices, we followed this direction. However, we believe that
if one could extend the ABY theory to infinitely supported measures, then it
would also be possible to obtain a similar theory to the one in this manuscript
for singular cocycles with infinitely supported measure.

Question 4. Does theorem 6.3 still hold for infinitely supported
measures?

Another direction that we would like to investigate in the future is the
study of singular cocycles in higher dimensions. Some steps in this direction are
already available, since in [10], Bochi and Gourmelon developed an analogous
theory of multi-cones in higher dimensions. Moreover, recently, Avila, Eskin
and Viana proved the continuity of the Lyapunov exponents for random linear
cocycles of dimension d for invertible matrices, i.e., with full rank. We would
like to understand the regularity of the Lyapunov exponents for random linear
cocycles of dimension d and rank k < d.

In dimension 2, for random, locally constant linear cocycles with a
finitely supported measure we now have an almost complete understanding
of the regularity of the Lyapunov exponent. When the rank k = 2, it is
at least continuous due to [11], with several results in the generic setting
for intermediate modulus of continuity. When the k = 1, the present work
shows that it satisfies an almost everywhere dichotomy between analyticity
and discontinuity (at least in Mat+

2 (R)).
All the other cases for d ≥ 3 and k < d are still not known and we believe

that they should present another type of behavior. Although these cocycles do
not have full rank, our best guess now would be that there are cases where
the Lyapunov exponent still has some good intermediate regularity, differently
from the dichotomic behavior observed in dimension 2. Therefore, we complete
this work with one last question.

Question 5. Study the continuity properties of the Lyapunov exponents
of random cocycles in dimension d and rank k.
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