Título: | GENERIC SIN GULARITIES OF PSEUDOSPHERICAL SURFACES | ||||||||||||
Autor: |
FABRICIO BARBOSA DOS SANTOS |
||||||||||||
Colaborador(es): |
MARCOS CRAIZER - Orientador |
||||||||||||
Catalogação: | 27/MAR/2025 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69770&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69770&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.69770 | ||||||||||||
Resumo: | |||||||||||||
The present dissertation was developed with the main objective of studying and classifying the generic singularities existing on surfaces with Gaussian curvature K = −1 in R(3). More specifically, we begin our study by defining the asymptotic parameterizations and the Tchebyshev network, obtaining the so-called sine-Gordon equation. Next, we present characteristics about the generating function and make a correlation between it and the singularities of the associated surface. Finally, we state and demonstrate a theorem that allows the location and classification of singularities of a generic pseudospherical surface.
|
|||||||||||||
|