Título: | HIERARCHICAL PREDICTIVE CONTROL OF ROBOTIC VEHICLES | ||||||||||||
Autor: |
ANNA RAFAELA SILVA FERREIRA |
||||||||||||
Colaborador(es): |
MARCO ANTONIO MEGGIOLARO - Orientador VIVIAN SUZANO MEDEIROS - Coorientador |
||||||||||||
Catalogação: | 04/FEV/2025 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69247&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=69247&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.69247 | ||||||||||||
Resumo: | |||||||||||||
Autonomous mobile robots are a major focus of research due to their
applicability and interdisciplinarity. Depending on the type of locomotion, the
system’s controller needs to handle not only trajectory tracking but also the
way the system interacts with the ground. Mobile robots with differential drive
wheels, in addition to having high nonlinearity, possess an inherent characteristic
due to their geometry: their wheels can only rotate around fixed axes, without
steering. As a result, longitudinal and lateral slip is inevitable, especially when
the system is in motion under significant dynamic effects. Nonlinear Model
Predictive Control (NMPC) is widely used in these cases, as it can handle
systems with multiple constraints. This work presents mathematical models of
a skid-steer mobile robot, derived from differential drive, including longitudinal
slip, to which NMPC is applied for trajectory tracking, achieving trajectories
similar to the reference. Given that the processing cost of such controllers can
be very high for real-time use, a hierarchical control is developed, optimizing
the longitudinal forces between the wheels and the ground to find reference slips
for a given trajectory to be followed. Since in a real environment not all states
can be measured, the control also needs to estimate the unmeasured states.
Moving Horizon State Estimation (MHSE), derived from the fundamentals of
NMPC, was used to perform the estimation, as it has the resources to keep the
system within the constraints. With MHSE, the system’s slip can be calculated
from the estimated states for the trajectories obtained with Model Predictive
Control (MPC). Finally, a neural network was trained with the predicted and
estimated states using MHSE to replace it so that the entire control could
be used in real-time. As a result, computational time was reduced due to the
replacement of MHSE.
|
|||||||||||||
|