Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: PERSPECTIVES ON MECHANICAL BEHAVIOR AND INHIBITOR EFFICIENCY IN CYCLOPENTANE HYDRATES
Autor: MARINA RIBEIRO BANDEIRA
Colaborador(es): MONICA FEIJO NACCACHE - Orientador
GUSTAVO ALONSO BARRIENTOS SANDOVAL - Coorientador
Catalogação: 13/AGO/2024 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67548&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67548&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.67548
Resumo:
Within the realm of the oil and gas industry, the disruption of production and transportation lines due to the accumulation of organic and inorganic compounds poses a widespread and significant challenge, resulting in considerable financial losses and environmental concerns. Gas hydrates, particularly emphasized among various challenges related to inorganic deposition, present a complex issue characterized by the formation of crystalline water-based solids, akin to ice, occurring under conditions of high pressure and low temperatures that arise when light hydrocarbon molecules and water combine to form a specific ordered structure. Hydrate formation begins at the water-hydrocarbon interface, highlighting the critical role interfacial rheology plays in this process. Despite the importance of this interface in hydrate formation, a research gap persists, particularly in the employment of shear rheology approaches. This study aids in bridging this gap by investigating the mechanical and flow properties of the interface, utilizing a resource in a rotational rheometer, a double-wall ring cell, for precise temperature control. Cyclopentane serves as the hydrate former, allowing experimentation under atmospheric pressure and varied temperatures. Protocols explore temperature and hydrocarbon concentrations, with an emphasis on the involvement of ice crystals in the early stages of hydrate formation. Following complete saturation of the hydrocarbon/water interface by hydrates, interfacial elastic and viscous moduli are obtained through strain sweeps to assess hydrate film fragility and mechanical response. Additionally, the impact of aging time and shear type (static or dynamic) on hydrate stiffness is examined. Tests with thermodynamic inhibitors, such as sodium chloride and monoethylene glycol, demonstrate a significant extension of the induction time. Furthermore, systematic changes in shear rate are investigated to comprehensively understand their influence on the characteristics and properties of the hydrated film under various shear history conditions. Overall, this research sheds light on the nuances of waterhydrocarbon interface dynamics in hydrate formation and mitigation.
Descrição: Arquivo:   
COMPLETE PDF