Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: LIMIT LAWS FOR DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY
Autor: ANSELMO DE SOUZA PONTES JUNIOR
Colaborador(es): SILVIUS KLEIN - Orientador
Catalogação: 08/AGO/2024 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67507&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67507&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.67507
Resumo:
The study of statistical properties of dynamical systems has been an active research area in recent decades. Its main goal is to investigate when certain deterministic chaotic systems exhibit stochastic behavior when examined through the lens of a relevant invariant measure. Some of the key tools employed in deriving such results are the spectral properties of the transfer operator. However, certain skew product systems, including random and mixed random-quasiperiodic linear cocycles, do not fit this approach. Very recent works have obtained limit laws for these systems by studying the Markov Operator. The purpose of this dissertation is to explain how these operators can be used to derive limit laws, such as Large Deviations Estimates and Central Limit Theorem, for certain skew-product dynamical systems.
Descrição: Arquivo:   
COMPLETE PDF