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Abstract

Pontes Junior, Anselmo de Souza; Klein, Silvius (Advisor). Limit
laws for dynamical systems with some hyperbolicity. Rio
de Janeiro, 2024. 72p. Dissertação de mestrado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

The study of statistical properties of dynamical systems has been an active
research area in recent decades. Its main goal is to investigate when certain
deterministic chaotic systems exhibit stochastic behavior when examined
through the lens of a relevant invariant measure. Some of the key tools
employed in deriving such results are the spectral properties of the transfer
operator. However, certain skew product systems, including random and
mixed random-quasiperiodic linear cocycles, do not fit this approach. Very
recent works have obtained limit laws for these systems by studying the
Markov Operator. The purpose of this dissertation is to explain how these
operators can be used to derive limit laws, such as Large Deviations
Estimates and Central Limit Theorem, for certain skew-product dynamical
systems.

Keywords
Markov Systems; Transfer Operator; Expanding Maps; Skew-Products;

Arc-sine law.



Resumo

Pontes Junior, Anselmo de Souza; Klein, Silvius. Leis limite para
sistemas dinâmicos com alguma hiperbolicidade. Rio de
Janeiro, 2024. 72p. Dissertação de Mestrado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

O estudo das propriedades estatísticas dos sistemas dinâmicos tem
sido uma área de pesquisa ativa nas últimas décadas. Seu principal objetivo
é investigar quando determinados sistemas caóticos determinísticos exibem
comportamento estocástico quando examinados pelas lentes de uma medida
invariante relevante. Algumas das principais ferramentas empregadas na
obtenção desses resultados são as propriedades espectrais do operador de
transferência. No entanto, determinados sistemas do tipo produto torcido,
incluindo cociclos lineares aleatórios e cociclos mistos aleatórios-quase
periódicos, não se encaixam nessa abordagem. Trabalhos muito recentes
obtiveram leis limite para esses sistemas estudando o operador de Markov.
O objetivo desta dissertação é explicar como esses operadores podem ser
usados para derivar leis limite, como Estimativas de Grandes Desvios e o
Teorema do Limite Central, para certos sistemas dinâmicos do tipo produto
torcido.

Palavras-chave
Sistemas de Markov; Operador de Transferência; Mapas Expansores;

Grandes Desvios; Teorema Central do Limite.;
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1
Introduction

The field of dynamical systems aims to understand the evolution of the
majority of points (in an appropriate sense) x ∈ M over time through a law
f : M → M . It has its origins in Poincaré’s studies on Celestial Mechanics
and Boltzmann’s work on the kinetic theory of gases. Since its inception, the
utility of studying such systems from the viewpoint of the extremal measures
that are invariant under the system’s dynamics, namely the ergodic measures,
has become apparent. In the 1930s, the works of Birkhoff and von Neumann
provided a theoretical justification for Boltzmann’s hypothesis, reformulated
as “The time average of an observable converges to its spatial average”.
Birkhoff’s theorem is an analogue of the law of large numbers available
for independent and identically distributed random variables, showing that
deterministic systems can exhibit statistical properties, and von Neumann’s
theorem clarifies that the study of invariant measures can be approached
through a functional analytical approach.

In the 1960s, revisiting Poincaré’s works, Smale and Anosov established
the foundations of uniformly hyperbolic systems, a class of systems that
exhibit expansion/contraction, leading to chaotic behavior. Since the 1970s,
many works have been dedicated to proving more refined statistical properties
such as the Central Limit Theorem (CLT) and Large Deviations Type (LDT)
estimates for hyperbolic systems, with the study of the so-called Ruelle transfer
operator playing a fundamental role. In the late 1990s, Young ([19], [20])
proposed a definition of systems that did not need to be uniformly hyperbolic
but only required controlled visit times to a region, which itself is uniformly
hyperbolic. This context also proved to be a field where the main ideas used
previously could be applied. More recently studied dynamical systems do not
fit into the contexts described above. In this case, the central object is also an
operator, namely the Markov transition operator. In both cases, the statistical
properties of dynamical systems share a functional analytical approach where
it is necessary to understand how the powers of the Markov/Ruelle operator
evolve in a certain space of observables.

This dissertation contains three classes of examples where we derive LDT
and CLT theorems: uniformly expanding systems, that provide a general idea of
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what happens in the hyperbolic case; piecewise expanding systems, where the
influence of singularities on the system’s behavior becomes apparent—these
examples are studied via the transfer operator; and finally, a more recent
example of skew-products that is not predominantly hyperbolic, and where
the Markov operator plays a central role.

1.1
Basic Concepts

Let (M, f) be a deterministic dynamical system (DDS), that is, M is a
set and f : M → M is a transformation. Given a state x ∈ M , the law f

determines the trajectory

x → f(x) → f 2(x) → · · · → fn(x) → . . .

Definition 1.1 A measure preserving dynamical system (MPDS) is a tuple
(M,F , f, µ) where:

– (M,F) is a measurable space;

– f : M → M is a measurable map;

– µ is an f−invariant probability measure, that is:

µ(A) = µ(f−1(A)), ∀A ∈ F .

From now on we assume M to be a compact metric space, F to be its Borel σ-
algebra and the map f to be a continuous function. Note that the invariance
of µ with respect to f is equivalent to

µ = f∗µ =
ˆ
M

δf(x)dµ(x).

Remark 1.1 The set Probf (M) of f−invariant measures is a convex set.
Moreover, endowed with the weak*- topology it is compact.

Definition 1.2 An MPDS (f, µ) is ergodic if for any set A ∈ F which is f−
invariant (that is, f−1(A) = A), we have µ(A) = 1 or µ(A) = 0.

Remark 1.2 The ergodic measures are the extremal points of Probf (M).
From now on, unless otherwise stated, all invariant measures are assumed to
be ergodic.

Given an observable φ ∈ L1(M,µ) and n ∈ N, define the n-th Birkhoff sum of
φ by

Snφ(x) = φ(x) + φ(f(x)) + · · · + φ(fn−1(x)) .
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The Birkhoff ergodic theorem implies that

Snφ(x)
n

→
ˆ
M

φdµ, forµ -a.e.x ∈ M.

The result above is an analogue of the law of large numbers for i.i.d.
random variables. In this dissertation, we are interested in establishing two
other types of statistical properties, namely large deviations type (LDT)
estimates, and central limit theorems (CLT) for certain dynamical systems.

The Birkhoff ergodic theorem implies that

µ

{
x ∈ M :

∣∣∣∣∣Snφ(x)
n

−
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
→ 0, as n → ∞.

Let L∞(M) denote the Banach space of measurable and bounded
functions φ : M → R, endowed with the supremum norm and let B be a Banach
subspace of L∞(M). The LDT estimate we define below is a quantitative
version of the convergence above.

Definition 1.3 We say that an MPDS (M, f, µ) satisfies large deviations type
(LDT) estimates in the space of observables B if for all φ ∈ B and ε > 0, there
exist c(ε) > 0, n(ε) ∈ N and C > 0 such that

µ

{
x ∈ M :

∣∣∣∣∣Snφ(x)
n

−
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ Ce−c(ε)n for all n ≥ n(ε).

We emphasize that in the definition above the quantities c(ε) and n(ε) should
depend explicitly on ε and on the other input data (namely the observable φ
and the dynamics).

LDT estimates as above correspond to certain types of concentration
inequalities in classical probabilities. The simplest such result is Hoeffding’s
inequality, which states the following. Given X1, . . . , Xn independent random
variables, denote by Sn := X1 + . . . + Xn their sum. If |Xi| ≤ C a.s. for
1 ≤ i ≤ n, then for all ϵ > 0 we have

P
(∣∣∣∣ 1nSn − 1

n
E[Sn]

∣∣∣∣ > ϵ
)

≤ 2e−c(ϵ)n,

where c(ϵ) = (2C)−2ϵ2.
There is a vast literature on large deviations for various classes of

dynamical systems and many spaces of observables see [1], [7], [14], [17].
We also want to study the Central Limit Theorem (CLT) for certain

dynamical systems.
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Definition 1.4 We say that an ergodic system (f, µ) satisfies the central limit
theorem in the space of observables B if for every φ ∈ B with zero mean there
exists σ(φ) > 0 such that

Sn φ

σ(φ)
√
n

→ N (0, 1), in distribution.

In other words, for all λ ∈ R,

µ

{
x ∈ M : Snφ(x)

σ(φ)
√
n

≤ λ

}
→
ˆ λ

∞
e− x2

2
dx√
2π
.

In order to study such properties we will consider the following stochastic
counterpart of deterministic dynamical systems.

Definition 1.5 A stochastic dynamical system (SDS) is a pair (M,K) where
K : M → Prob(M) is a continuous map and Prob(M) is endowed with the
weak* topology. K is called a Markov (or transition) kernel on M.

For each x ∈ M , Kx ∈ Prob(M) and given a measurable set A ⊂ M , we may
interpret Kx(A) as the probability that the point x transitions to the set A.
By induction we define the iterated kernel

Kn+1
x =

ˆ
Kn
y dKx(y), ∀n ≥ 1.

We note that Kn
x (A) may be interpreted as the probability that the point x

transitions to the set A in n steps.
In this context we have a natural analogue of the definition of invariant

measure.

Definition 1.6 A measure ν is called K−stationary if

ν(A) =
ˆ
M

Kx(A)dν(x) =: K ∗ ν

for all A ⊂ M measurable.

Definition 1.7 A triplet (M,K, ν) with ν being K−stationary is called a
Markov system.

Example 1.1 Given a DDS (M, f), if we put Kx = δf(x), we obtain an SDS.
Moreover, if µ is f -invariant, then it is K-stationary.

Remark 1.3 K−stationary measures always exist.
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Given a Markov system (M,K, ν), let X+ = MN be the space of
sequences on M and let B+ be the σ−algebra generated by cylinders on X+,
where

C([A0, A1, . . . , An]) =
{
{xn}n≥0 ∈ X+ : x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An

}
.

By Kolmogorov’s extension theorem, given any π ∈ Prob(M), there is a
unique probability measure PK,π ∈ Prob(X+) such that

PK,π(C([A0, A1, . . . , An])) =
ˆ
A0

ˆ
An

. . .

ˆ
A1

1 dKx0(x1) . . . dKxn−1(xn) dπ(x0) .

PK,π is called the Markov measure with initial distribution π and
transition kernel K. When π = δx0 , for some x0 ∈ M , we simply write Px0

for the corresponding Markov measure.
Let us consider a Markov chain {Zn}n∈N with values in M and with

transition kernel K. Given an observable φ : M → R, the corresponding
stochastic Birkhoff sums are defined as

Snφ = φ(Z0) + φ(Z1) + · · · + φ(Zn−1).

In the next section we will describe how to obtain LDT estimates and a CLT for
stochastic Birkhoff sums under a mixing hypothesis on the transition kernel.

1.2
Abstract LDT & CLT

In the Markov chain setting we usually do not have independence. A
natural substitute for independence is that our system quickly converges to
the stationary distribution. This is the concept of mixing. More precisely, we
are interested in the convergence Kn

x → ν as n → ∞. The most convenient
way to study this convergence will be through the action of the kernel on
observables. Let L∞(M) be the set of bounded measurable functions on M .
Endowed with the norm ||φ||∞ := supx∈M |φ(x)| it is a Banach space.

Definition 1.8 The Markov operator QK : L∞(M) → L∞(M) associated to
the transition kernel K : M → Prob(M) is defined by the relation

Qφ (x) :=
ˆ
M

φ(y) dKx(y) ∀φ ∈ L∞(M).

The strongest possible type of convergence (and hence of mixing) happens if
Qnφ →

ˆ
φdν uniformly for all φ ∈ L∞(M). In this setting LDT estimates
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are already available, see [11].
A weaker form of mixing (which we call spectral strong mixing) is defined

as follows: there are constants C > 0 and σ ∈ (0, 1) such that

∥Qnφ−
ˆ
M

φdν∥B ≤ Cσn∥φ∥B

for all φ ∈ B and n ∈ N. This form of mixing is equivalent to saying that the
operator Q restricted to B has the spectral gap property, that is, its spectrum
consists of the eigenvalue 1 and a compact set strictly contained in the unit
ball. LDT estimates are also available in this setting [14].

The following even weaker notion of mixing is the one which will be the
main hypothesis for the abstract theorems of this dissertation.

Definition 1.9 A Markov system (M,K, ν) is strongly mixing with power rate
on a set B ⊂ L∞(M) of observables if there exist C > 0 and p > 0 such that

∥Qnφ−
ˆ
φdν∥∞ ≤ C

1
np

∥φ∥B ∀φ ∈ B.

Since we assume that our space B is a Banach subspace of L∞(M), this concept
of mixing is much more general then the previously defined spectral strong
mixing. Moreover, it is more flexible since it does not require an exponential
decay. Now we state the first main theorem of this work, an abstract LDT
theorem of Cai et al. for strongly mixing Markov systems, see [6].

Theorem 1.1 (Abstract LDT) Let (M,K, ν) be a strongly mixing Markov
system with power rate rn = C 1

np , p > 0 on B ⊂ L∞(M). Let {Zn}n≥0 be a
Markov chain with transition kernel K. Then for all ε > 0 and φ ∈ B there
are c(ε) > 0 and n(ε) ∈ N such that for all x0 ∈ M and n ≥ n(ε) we have:

Px0

{∣∣∣∣∣ 1nSn(φ(Zi)) −
ˆ
φdν

∣∣∣∣∣ > ε

}
≤ 8 e−c(ε)n

where c(ε), n(ε), depend explicitly on the input data, namely on the norm ||φ||B
of the observable and the mixing parameters (C, p).

If instead of the strong mixing condition we just ask that Qnφ →
ˆ
M

φdν

uniformly, then an LDT estimate holds but not in an effective way, that is, the
parameters c(ε) and n(ε) cannot be determined explicitly from the input data.
Effective LDT estimates have important applications to dynamical systems, see
for instance [1], [9]. The next theorem is a CLT for strongly mixing Markov
systems.
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Theorem 1.2 (Abstract CLT) Let (M,K, ν,B) be a strongly mixing Markov
system with mixing rate rn = C 1

np , where p > 1 and B is a dense subset of
C0(M). Assume that for any open set U ⊂ M with ν(U) > 0 there exists φ ∈ B
such that 0 ≤ φ ≤ 1U and

´
M
φdν > 0. For any observable φ ∈ B, if φ is not

ν-a.e. constant then the CLT holds.

The theorem above is a consequence (see [6]) of an abstract central limit
theorem due to Gordin-Livšic (see [13], [12]).

We will apply the abstract LDT estimate and the abstract CLT to certain
dynamical systems that we describe below. We know that a DDS (f, µ) can
be viewed as SDS where Kx = δf(x) is the transition Kernel. The associated
Markov operator is then Qφ = φ ◦ f , the Koopman operator. Unfortunately,
the Koopman operator is not strongly mixing, so the abstract theorems we
stated in the previous section do not apply. In what follows we describe two
approaches to derive LDT estimates for some classes of dynamical systems.
The methods described here are expected to apply to many other classes
of examples. Both approaches depend on the behavior of the powers of an
operator, either the Markov or the transfer operator.

Given a reference measure µ and a non singular DDS (M, f), for any
h ∈ L1(µ), let µh = h dµ and define its evolution by the dynamics as

Lh := df∗µh
dµ

∈ L1(µ) .

Then the operator h → Lh is called the transfer operator. The spectral
properties of the transfer operator encode information about the absolutely
continuous invariant measures (a.c.i.m) of f . The transfer operator does not
have rich spectral properties when considered in L1(µ). Given a specific DDS
(M, f), it is not an easy task to find a Banach space B in which one can prove
that the transfer operator is quasi compact, see [3], [8] and references therein.
Once we know that the transfer operator is quasi compact and 1 is a simple
eigenvalue on a Banach space (B, || · ||B) with || · ||B ≥ || · ||∞, we can show that
the correlation sequence

Cn(ψ, φ) :=
ˆ
φ ψ ◦ fndµ−

ˆ
φdµ

ˆ
ψdµ,

decays exponentially fast when we take φ ∈ B and ψ ∈ L1(µ). This is a
sufficient condition that allows Alves et al. (see [1]) to derive LDT estimates
for such system. More precisely we have the following.

Theorem 1.3 (Alves, Freitas, Luzzatto, Vaienti) Let (M, f, µ) be an
ergodic dynamical system and let B ⊂ L∞(µ) be a Banach subspace. Let φ ∈ B
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and assume that ∀ψ ∈ L1(µ) we have

∞∑
n=1

|Cn(ψ, φ)| < ∞ .

Then for every ϵ > 0 there exist c(ε) > 0 and n(ε) ∈ N such that for all
n ≥ n(ε)

µ

{
x ∈ M :

∣∣∣∣∣ 1nSn φ(x) −
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ 2e−c(ε)n.

The parameters c(ε), n(ε) are explicitly determined by the input data.

Another way of deriving LDT estimates is to associate to the transfer
operator L a Markov operator Q by a change of the reference measure (which
will be an a.c.i.m) and show that the spectral gap property of L implies the
strong mixing of Q. This will imply LDT estimates for a Markov chain whose
transition kernel is defined by assigning to a point x a weighted sum of Dirac
masses centered at its pre-images f−1({x}).

1.3
Applications to Certain Dynamical Systems

The two aforementioned approaches for establishing LDT estimates will
be applied to C1+θ-expanding maps on a compact connected manifold M , as
well as to topologically mixing piecewise expanding maps of a compact interval
I. Below we state these LDT estimates. For more details and for the statements
of the CLT see chapters 4 and 5.

Theorem 1.4 (LDT) Given θ ∈ (0, 1), let f : M → M be a C1+θ expanding
map and let φ ∈ Cθ be an observable. For any ε > 0 there are n(ε) ∈ N and
c(ε) > 0 such that for all n ≥ n(ε) we have

µ

{
x ∈ M :

∣∣∣∣∣ 1nSn φ(x) −
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ Ce−c(ε)n

where µ = gdm is the unique a.c.i.m of f and the parameters n(ε) and c(ε)
only depend (explicitly) on the Cθ-norms of φ, g and 1

g
.

Theorem 1.5 (LDT) Let f : I → I be a topologically mixing piecewise
expanding map, and let φ ∈ BV (I) be an observable with bounded variation.
For any ε > 0 there are n(ε) ∈ N and c(ε) > 0 such that for all n ≥ n(ε) we
have

µ

{
x ∈ I :

∣∣∣∣∣ 1nSnφ(x) −
ˆ
I

φdµ

∣∣∣∣∣ > ε

}
≤ Ce−c(ε)n

where µ = gdm is the unique a.c.i.m of f and the parameters n(ε) and c(ε)
only depend (explicitly) on the BV -norms of φ, g and 1

g
.
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Another application, this time only of the Markov operator approach is to the
study of statistical properties of random torus translations.

Let Σ := Td be the d-dimensional torus, m its Haar measure and let
µ ∈ Prob(Σ) be another probability measure. Let X := ΣZ and consider
(X,µZ) as a product probability space of symbols where each symbol is an
element of the torus. Let σ : X → X be the bilateral shift map. Finally, define
the skew-product map

f : X × Td → X × Td, f(ω, θ) = (σω, θ + ω0).

The triple (X×Td, f, µZ×m) is called a mixed random-quasiperiodic dynamical
system. It is in fact a partially hyperbolic dynamical system.

The fiber dynamics encodes the following Markov chain (or random walk
on the torus):

θ → θ + ω0 → θ + ω0 + ω1 → . . .

The corresponding Markov operator is given by

Q : L∞(Td) → L∞(Td), Qφ(θ) =
ˆ
φ(θ + ω0)dµ(ω0) .

Definition 1.10 We say that µ ∈ Prob(T d) satisfies a mixing Diophantine
condition (mixing DC) if

|µ̂(k)| ≤ 1 − γ

|k|τ
, ∀k ∈ Zd \ {0},

for some γ, τ > 0, where µ̂(k) are the Fourier coefficients of the measure µ.
In this case we write µ ∈ DC(γ, τ).

Assuming the mixing Diophantine condition above, we can prove that Q is
strongly mixing and using the abstract theorems we derive LDT estimates and
a CLT for this skew-product dynamical system.

Theorem 1.6 If µ ∈ DC(γ, τ) then Q is strongly mixing with power rate on
any space of Hölder continuous functions Cα(Td). More precisely, there are
constants C > 0 and p > 0 such that

∥Qnφ−
ˆ
φdm∥C0 ≤ C∥φ∥α

1
np
, ∀φ ∈ Cα(T d),∀n ≥ 1.

In fact, p can be chosen to be α
τ

− ι, for any ι > 0, in which case C will depend
on ι.

Moreover, an effective LDT estimate holds for the Markov chain on the
torus θ → θ+ω0 → θ+ω0 +ω1 → . . . starting from any point θ ∈ Td and with
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any observable φ ∈ Cα(Td). More precisely, for all ϵ > 0 there is n(ϵ) ∈ N
such that for all θ ∈ Td and n ≥ n(ϵ) we have

µN
{∣∣∣∣∣ 1n [φ(θ) + . . .+ φ(θ + ω0 + . . .+ ωn−1)] −

ˆ
φdm

∣∣∣∣∣ > ϵ

}
< e−c(ϵ)n

where c(ϵ) = cϵ2+ 1
p , n(ϵ) = nϵ− 1

p for constants c > 0 and n ∈ N which depend
explicitly and uniformly on the data, namely on ∥φ∥α, γ, τ .

Theorem 1.7 Assume that µ ∈ Prob(Td) satisfies a mixing DC with
parameters γ, τ > 0 and let α > τ . Then for every φ ∈ Cα(Td) nonzero
with zero mean, there exists σ = σ(φ) > 0 such that

Snφ

σ
√
n

d→ N (0, 1).

More precisely, for Lebesgue almost every θ ∈ Td and for all λ ∈ R we have

lim
n→∞

µN
{

1√
n

[φ(θ) + . . .+ φ(θ + ω0 + . . .+ ωn−1)] ≤ λ

}
=
ˆ λ

−∞

e−x2/2
√

2π
dx.

The rest of this dissertation is organized as follows. In chapter 2 we define
the main concepts regarding SDS and prove the abstract LDT estimate of (Cai
et al) and the CLT. In chapter 3 we study the basic properties of transfer
operators; in particular we show how to use the spectral gap of the operator to
derive decay of correlations of observables and then prove the abstract result
of (Alves et al) which shows how decay of correlations imply LDT estimates.
In chapter 4 we study expanding maps on compact connected manifolds with
a focus on proving the spectral gap in the space of Hölder observables and
then show how to obtain LDT estimates via decay of correlations and via
Markov systems. Chapter 5 follows the same roadmap of chapter 4 for the
class of piecewise expanding maps on an interval. In chapter 6 we study the
Markov operator of random toral translations, proving that it satisfies the
strong mixing property and therefore admits LDT estimates and CLT.



2
Limit Laws for Markov Systems

This chapter introduces Markov systems which represent the main
framework to obtain limit theorems in this work. It is mostly based on [6].

2.1
Markov Systems

Let M be a compact metric space. We begin with the concept of stochastic
dynamical system.

Definition 2.1 A stochastic dynamical system (SDS) is a continuous map
K : M → Prob(M), where Prob(M) denotes the set of probability measures
on M endowed with the weak* topology.

Given x ∈ M ,
Kx(A) =

ˆ
1A(y)dKx(y)

can be interpreted as the probability that the point x will transition to the set
A. Inductively,

Kn
x (A) :=

ˆ
Ky(A)dKn−1

x (y)

can be interpreted as the probability that x will transition to A in n steps.

Definition 2.2 A measure ν ∈ Prob(M) is K-stationary if

ν(A) =
ˆ
M

Kx(A) dν(x),

for all Borel sets A ⊂ M .

A stochastic dynamical system (M,K) naturally induces an averaging operator
in L∞(M), the space of bounded measurable functions φ : M → R. We will
consider L∞(M) endowed with the supremum norm, so L∞(M) is a Banach
space.

Definition 2.3 The Markov operator QK : L∞(M) → L∞(M) induced by the
stochastic dynamical system K is defined by the relation,

Qφ(x) :=
ˆ
M

φ(y)dKx(y) ∀x ∈ M, ∀φ ∈ L∞(M).
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Inductively we have,

Qnφ(x) =
ˆ
M

φ(y)dKn
x (y) .

Remark 2.1 The Markov operator is positive and Q1 = 1. Conversely, if L is
a positive bounded linear operator and L1 = 1, by Riesz-Markov representation
theorem there exists an SDS such that its Markov operator is L.

Now we give an example of SDS.

Example 2.1 A deterministic dynamical system f can also be naturally
viewed as an SDS of the form Kx = δf(x). In this case a K-stationary measure
µ satisfies

µ(A) =
ˆ
M

δf(x)(A)dµ(x) = µ(f−1(A)),

i.e. µ is f -invariant. The Markov operator associated to this SDS is given by

Qφ(x) =
ˆ
M

φ(y)dδf(x)(y) = φ(f(x))

which is the well known Koopman operator.

Now we describe how to associate to an SDS a Markov process.
On the product space X+ = MN consider the sequence of random

variables {Zn : X+ → M}n∈N, Zn(x) := xn where x = {xn}n ∈ X+. By
Kolmogorov’s extension theorem, given π ∈ Prob(M) there exists a unique
probability measure Pπ on X+ for which {Zn}n∈N is a Markov process with
transition probability kernel K and initial probability distribution π. If π is a
K-stationary measure then Pπ is invariant by the shift map

σ : X+ → X+, σ({xn}n∈N) = {xn+1}n∈N .

Given an observable φ : M → R (a priory in L∞(M)) and n ∈ N, we
define the n-th stochastic Birkhoff sum of φ by Snφ : X+ → R,

Snφ(x) = φ(Z0(x)) + φ(Z1(x)) + . . .+ φ(Zn−1(x))

= φ(x0) + φ(x1) + . . .+ φ(xn−1) .

To establish limit laws for Snφ we will need to understand how the
iterates of the Markov operator converge to the integral with respect to the
stationary measure. The general idea is that if the convergence Qnφ →

´
φdν

is good enough (the convergence can be interpreted in different ways, precise
definitions will be given in the next section), then the process Z0, Z1, . . . , Zn−1
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although not being i.i.d., displays a sort of weak dependence such that it is still
possible to recover the classical limit laws available for i.i.d. random variables.
The Markov operator Q defined in L∞(M), usually will not provide much
information about the weak dependence of the Markov process. So if we want
to see richer convergence properties, for instance fast rate of mixing, we must
restrict the operator to a Banach subspace B ⊂ L∞(M). Such Banach space
must contain the constant function 1 which leads us to the next definition.

Definition 2.4 A Markov system is a tuple (M,K, ν,B) where:

1. M is a compact metric space,

2. K is an SDS,

3. ν is a K-stationary measure,

4. (B, ∥.∥B) is a Banach space continuously embedded in L∞(M), while
Q|B is a continuous operator. In other words, for all φ ∈ B we have
∥φ∥∞ ≤ ∥φ∥B and ∥Qφ∥B ≤ C∥φ∥B for some constant C ∈ (0,∞).

2.2
Strong Mixing and Statistical Properties

In general, mixing refers to the convergence Kn
x → ν. Such convergence

can be studied relative to different norms and spaces. The definition below
provides the strongest possible mode of convergence of a Markov system.

Definition 2.5 We say that (M,K, ν,B = L∞(M)) is uniformly ergodic if
there exist C > 0 and 0 < σ < 1 such that:

∥Qnφ−
ˆ
φdν∥∞ ≤ Cσn∥φ∥∞, ∀φ ∈ L∞(M).

A weaker form of convergence is the following

Definition 2.6 A Markov system (M,K, ν,B) is spectrally strongly mixing if
there exist C > 0 and 0 < σ < 1 such that:

∥Qnφ−
ˆ
φdν∥B ≤ Cσn∥φ∥B, ∀φ ∈ B.

The definition above is successfully verified when we can show that the
Markov operator Q|B satisfies the spectral gap property, which is the case for
many Markov processes such as the ones we will study in chapters 4 and 5.
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Definition 2.7 We say that a bounded linear operator L : B → B has the
spectral gap property if we can write it as L = λP +N where:

1 P is a projection (i.e. P = P 2) and dim(Im(P )) = 1;

2 N is a bounded operator with spectral radius ρ(N) < λ;

3 PN = NP = 0.

There is a concept slightly weaker than the spectral gap property which
is easier to verify.

Definition 2.8 A bounded linear operator L on a Banach space B is called
quasi-compact if there exists a direct sum decomposition B = F ⊕H such that
0 < ρ < ρ(L) where

1. F and H are closed and L-invariant: L(F ) ⊆ F , L(H) ⊆ H.

2. dim(F ) < ∞ and all eigenvalues of L|F : F → F have modulus larger
than ρ.

3. The spectral radius of L|H is smaller than ρ.

Remark 2.2 The spectral gap property of L immediately implies its quasi
compactness. If L is quasi compact and its peripheral spectrum consists of
a simple eigenvalue λ, then L has the spectral gap property (see [14]).

There are, however, interesting examples where it is not possible to have
such properties, for instance in the case of the skew-product type dynamics we
will study in chapter 6. In [6], the authors motivated by such model introduced
the following much weaker concept of mixing.

Definition 2.9 A Markov system (M,K, ν,B) is strongly mixing with power
rate if there exist C > 0 and p > 0 such that

∥Qnφ−
ˆ
φdν∥∞ ≤ C

1
np

∥φ∥B ∀φ ∈ B.

Remark 2.3 This definition is weaker not only because it allows for
polynomial instead of exponential decay, but also because it asks for an upper
bound on || · ||∞ instead of on the stronger norm || · ||B.

Now we state an effective LDT estimate for strongly mixing Markov
chains as above.
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Theorem 2.1 (Abstract LDT) Let (M,K, ν,B) be a strongly mixing
Markov system with rate rn = C 1

np , p > 0 and let {Zn}n≥0 be a K-Markov
chain. Then for all ε > 0 and φ ∈ B there are c(ε) > 0 and n(ε) ∈ N such that
for all x0 ∈ M and n ≥ n(ε) we have:

Px0

{∣∣∣∣∣ 1nSnφ(Zi) −
ˆ
φdν

∣∣∣∣∣ > ε

}
≤ 8e−c(ε)n

where c(ε) = c̄ε2+ 1
p , n(ε) = n̄ε− 1

p , and c̄ and n̄ depend explicitly and uniformly
on the data. More precisely, c̄ = C(3CL)−(2+ 1

p
) and n̄ = (3CL)

1
p , where C, p

are the parameters in the strong mixing condition and L := ||φ||B.

Proof Fix x0 ∈ M . Without loss of generality, assume that
´
φdν = 0,

otherwise consider φ −
´
φdν. Moreover, replacing φ by −φ, it is enough to

estimate Px0{Snφ ≥ nϵ}. Following Bernstein’s trick, introducing a parameter
t > 0 (which will be optimized latter), we have

Px0{Snφ ≥ nϵ} = Px0{etSnφ ≥ etnϵ} ≤ e−tnϵ Ex0(etSnφ),

where we used Chebyshev’s inequality.
Thus we need to estimate the exponential moments Ex0(etSnφ). The next lemma
relates these exponential moments with the powers of the Markov operator Q.

Lemma 2.2 Let φ ∈ B, ∥φ∥B =: L < ∞. Let n ≥ n0 be two integers and
denote by m :=

⌊
n
n0

⌋
. Then for all t > 0,

Ex0(etSnφ) ≤ e2tn0L ∥Qn0(etn0φ)∥m−1
∞ .

Proof Write n = mn0 + r, with 0 ≤ r < n0. Fix t > 0 and let f := etφ : M →
R, so 0 < f ≤ etL. Then for all x = {xn}n≥0 ∈ X+, we have:

etSnφ(x) =
n−1∏
j=0

etφ(xj) =
n−1∏
j=0

f(xj)

= f(x0) f(xn0) · · · f(x(m−1)n0) f(x1) f(xn0+1) · · · f(x(m−1)n0+1) · · ·

· · · f(xn0−1) f(x2n0−1) · · · f(xmn0−1) f(xmn0) f(xmn0+1) · · · f(xmn0+r−1)

=: F0(x)F1(x) · · ·Fn0−1(x)Fn0(x) ,

where we defined Fk : X+ → R as:

Fk(x) := f(xk) f(xn0+k) · · · f(x(m−1)n0+k) for 0 ≤ k ≤ n0 − 1
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and
Fn0(x) := f(xmn0) f(xmn0+1) · · · f(xmn0+r−1).

By Hölder’s inequality,

Ex0(etSnφ) = Ex0(F0 · · ·Fn0−1 Fn0)

≤
(
n0−1∏
k=0

Ex0(F n0
k )

) 1
n0

∥Fn0∥∞ .

Note that ∥Fn0∥∞ ≤ etn0L. We will show that

Ex0(F n0
k ) ≤ etn0L ∥Qn0(etn0φ)∥m−1

∞ ∀ k = 0, . . . , n0 − 1

which will conclude the proof.
Fix k ∈ {0, . . . , n0 − 1} and note that

F n0
k (x) = etn0φ(xk) etn0φ(xn0+k) · · · etn0φ(x(m−1)n0+k) .

To simplify notations, let G : X+ → R, G(x) := F n0
k (x), and g : M → R,

g(a) := etn0φ(a). Then 0 < g ≤ etn0L and

G(x) = g(xk) · g(xn0+k) · . . . · g(x(m−1)n0+k),

which is a function that depends on a finite and sparse set of coordinates,
arranged in an arithmetic progression of length m with distance n0 between
consecutive terms. We will show that

Ex0(G) ≤ etn0L∥Qn0g∥m−1 ,

where

Ex0(G) =
ˆ
X+

G(x) dPx0(x) =
ˆ
X+

G(x)
( 1∏
i=n

dKxi−1(xi)
)
.

We split the set of (m−1)n0+k many indices I = {1, 2, . . . , (m−1)n0+k}
into

I = {1, 2, . . . , k} ∪ I1 ∪ . . . ∪ Im−1,

where for j = 1, . . . ,m− 1, Ij := {(j − 1)n0 + k+ 1, . . . , jn0 + k} is a block of
length n0.

Then, since G(x) does not depend on the variables xj with j /∈ I, we
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have

Ex0(G) =
ˆ
X+

G(x)
(
Y−1∏
i=n

dKxi−1(xi)
)

=
ˆ
g(xk) · · · g(x(m−2)n0+k)

ˆ g(x(m−1)n0+k)
∏

i∈Im−1

dKxi−1(xi)


×
∏

i∈I\Im−1

dKxi−1(xi)

=
ˆ
g(xk) · · · g(x(m−2)n0+k)

(
Qn0g(x(m−2)n0+k)

)
×

∏
i∈I\Im−1

dKxi−1(xi)

≤ ∥Qn0g∥∞

ˆ
g(xk) · · · g(x(m−2)n0+k)

∏
i∈I\Im−1

dKxi−1(xi).

In the last inequality above we used the fact that

Qn0g(a) ≤ ∥Qn0g∥∞

which holds for all a ∈ M .
Repeating the argument m− 1 times, we obtain the desired bound:

Ex0(G) ≤ ∥Qn0g∥m−1
ˆ
g(xk) dKxk−1(xk) . . . dKx0(x1) ≤ ∥Qn0g∥m−1etn0L,

thus finishing the proof of the lemma. ■

We return to the proof of the theorem. Using the strong mixing
assumption, for all n0 ∈ N and φ ∈ B, we have that

∥Qn0φ∥∞ ≤ C∥φ∥B
1
np0

≤ CL

np0
.

By Lemma 2.2.2, for all n ≥ n0,

Ex0(etSnφ) ≤ e2tn0L ∥Qn0(etn0φ)∥
n

n0
−1

∞ .

However, φ ∈ B does not necessarily imply that etn0φ ∈ B, so the strong
mixing condition cannot be directly applied to the observable etn0φ.

The following inequality holds for all y ∈ R:

ey ≤ 1 + y + y2

2 e
|y|.
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Hence we can write

etn0φ = 1 + tn0φ+ 1
2t

2n2
0φ

2ψ(tn0φ)

where the function ψ satisfies the bound |ψ(tn0φ)| ≤ etn0|φ|. Then,

etn0φ = 1 + tn0φ+ 1
2t

2n2
0φ

2ψ(tn0φ)

where ∥ψ(tn0φ)∥∞ ≤ etn0∥φ∥∞ ≤ 2 if t ≤ 1
2Ln0

. Then we have

Qn0(etn0φ) = 1 + tn0Qn0(φ) + 1
2t

2n2
0Qn0(φ2ψ(tn0φ)).

This shows that
∥Qn0(etn0φ)∥∞ ≤ 1 + 2t2n2

0L
2C

provided that tn0CL
1/n0 ≤ t2n2

0L
2C (and that C ≥ 1, which we may of course

assume). Note that we can choose t ∈ R satisfying both constraints, namely
1

Ln1+p
0

≤ t ≤ 1
2Ln0

if n0 is large enough that np0 ≥ 2. Using the inequality

(1 + y)
1
y ≤ e for y > 0, we get

∥Qn0(etn0φ)∥∞
n0 ≤

(
1 + 2t2n2

0L
2C
) 2t2n2

0L2C· n
n0

2t2n2
0L2C ≤ e2t2n0L2Cn.

Combining this with the estimate given by Lemma 2.1 and recalling that
etn0L ≤ 2, we get

Ex0(etSnφ) ≤ e2tn0Le2t2n0L2C/n ≤ 4e2t2n0L2C/n.

Fix ϵ > 0. Using Bernstein’s trick, we have

Px0{Snφ ≥ nϵ} ≤ e−tnϵ Ex0(etSnφ) ≤ 4e−tnϵe2t2n0L2C/n = 4e−n(tϵ−2t2n0L2C).

It remains to maximize tϵ− 2t2n0L
2C with the proper choice of the free

variables. We choose n0 = n0(ϵ) =
(

3CL
ϵ

) 1
p and t = t(ϵ) = 1

Ln1+p
0

.
They satisfy the previous constraints provided that np0 = 3CL

ϵ
≥ 2,

which is not a restriction since the size ϵ of the deviation cannot exceed
2∥φ∥∞ ≤ 2L ≤ 3CL

2 as we may, of course, assume that C ≥ 4
3 . Then,

tϵ− 2t2n0L
2C = C

(
ϵ

3CL

)2+ 1
p

= c(ϵ),

while n must satisfy n ≥ n0(ϵ) to ensure the applicability of Lemma 2.2.2. ■
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Remark 2.4 If we just assume that Qnφ →
ˆ
M

φdν uniformly for all φ ∈ B,

where B embeds in C0(M), then one can prove the following non-effective LDT
estimate. For any ϵ > 0, there are n(ϵ) ∈ N and c(ϵ) > 0 such that for all
x0 ∈ M , we have

Px0

{∣∣∣∣∣ 1nSnφ−
ˆ
M

φdν

∣∣∣∣∣ > ϵ

}
≤ 8e−c(ϵ)n.

This can be proven by slightly modifying the previous argument as follows.
Given φ ∈ B with ∥φ∥B ≤ L, and given any ϵ > 0, let δ := ϵ

3CL and choose
n(ϵ) ∈ N such that

∥Qn0φ−
ˆ
M

φdν∥C0 < δ ∀n0 ≥ n(ϵ).

Thus, δ will play the role of the mixing rate rn0 = 1
np

0
, and the conclusion

will hold with c(ϵ) = ϵ2

3CLn(ϵ) . Note that the parameters n(ϵ) and c(ϵ) depend
in a uniform but not explicit way on the observable φ (in other words, they do
not change much as we vary φ ∈ B, but the threshold n0(ϵ) for the limiting
behavior cannot be determined from the input data).

Now we proceed to establish the Central Limit Theorem (CLT) for
Markov systems. In order to do this we will use the following general CLT.

Theorem 2.3 (Gordin-Livšic) Let (M,K, ν) be an ergodic Markov system, let
φ ∈ L2(ν) with

´
φdν = 0 and assume that

∞∑
n=0

∥Qnφ∥2
2 < ∞.

Denoting ψ := ∑∞
n=0 Qnφ, we have that ψ ∈ L2(ν) and φ = ψ − Qψ. If

σ2(φ) := ∥ψ∥2
2 − ∥Qψ∥2

2 > 0, then :

Snφ

σ(φ)
√
n

d−→ N (0, 1).

Theorem 2.4 (Abstract CLT) Let (M,K, ν,B) be a strongly mixing Markov
system with mixing rate rn = C 1

np with p > 1, where B is a dense subset of
C0(M). Assume that for any open set U ⊂ M with ν(U) > 0 there exists φ ∈ B
such that 0 ≤ φ ≤ 1U and

´
M
φdν > 0. For any observable φ ∈ B, if φ is not

ν-a.e. constant then the CLT holds.

Proof The strong mixing condition and the density of B in C0(M) imply that
ν is the unique K-stationary measure, which in turn implies the ergodicity of
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the Markov system, since the ergodic measures are the extremal points of the
set of K-stationary measures. Indeed, if ν̃ is a K-stationary measure, then for
any φ ∈ C0(M) we have

´
Qnφdν̃ =

´
φdν̃ for all n ∈ N. By strong mixing,

for any φ ∈ B we have that Qnφ →
´
φdν uniformly. Integrating with respect

to ν̃, we conclude that
´
φdν̃ =

´
φdν for all φ ∈ B, so for all φ ∈ C0(M),

which shows that ν̃ = ν.
Let φ ∈ B be a non ν-a.e. constant observable. We may, of course, assume

that
´
φdν = 0, otherwise we consider φ−

´
φdν.

Let ψ := ∑∞
n=0 Qnφ. Since φ ∈ C0(M) and p > 1, the strong mixing

assumption on Q implies (via the Weierstrass M-test) that ψ ∈ C0(M) as
well.

It remains to show that σ2(φ) > 0, which ensures the applicability of the
previous theorem.

Assume by contradiction that σ2(φ) = ∥ψ∥2
2 − ∥Qψ∥2

2 = 0. Then,

0 ≤
ˆ

((Qψ)(x) − ψ(y))2 dKx(y) dν(x)

=
ˆ (

(Qψ)(x))2 + ψ(y)2 − 2ψ(y)(Qψ)(x)
)
dKx(y) dν(x)

=
ˆ (

ψ(y)2 − ((Qψ)(x))2
)
dKx(y) dν(x)

=
ˆ
ψ(y)2 dKx(y) dν(x) −

ˆ
((Qψ)(x))2 dν(x)

= ∥ψ∥2
2 − ∥Qψ∥2

2 = 0 (since ν is K-stationary).

Therefore, ψ(y) = Qψ(x) for ν-a.e. x ∈ M and Kx-a.e. y ∈ M . By induction,
we obtain that for all n ≥ 1, ψ(y) = (Qnψ)(x) for ν-a.e. x ∈ M and for Kn

x -a.e.
y ∈ M , which implies that for all n ≥ 1 and for ν-a.e. x ∈ M , the function
ψ is Kn

x -a.e. constant. Let us show that, in fact, ψ is ν-a.e. constant.If ψ is
not ν-a.e. constant, then there exist two disjoint open subsets U1 and U2 of M
such that ν(U1), ν(U2) > 0 and ψ|U1 < ψ|U2 . By the assumption, there are two
observables φ1, φ2 ∈ E such that 0 ≤ φi ≤ 1Ui

and
´
φi dν > 0 for i = 1, 2.

Moreover, for all x ∈ M and n ≥ 1,

Kn
x (Ui) = (Qn1Ui

)(x) ≥ (Qnφi)(x) →
ˆ
φi dν > 0,

where the above convergence as n → ∞ is uniform in x ∈ M .
Thus, for a large enough integer n and for all x ∈ M , both sets U1 and

U2 have positive Kn
x measure. However, ψ|U1 < ψ|U2 , which contradicts the

fact that ψ is Kn
x -a.e. constant for ν-a.e. x ∈ M .

We conclude that ψ is ν-a.e. constant. Since ν is K-stationary, it follows
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that ϕ = ψ − Qψ = 0 ν-a.e., which is a contradiction. ■



3
Transfer Operators

This chapter introduces general facts about the transfer operator and
the relationship between its spectral properties and the statistical properties
of the underlying dynamical system.

3.1
Basic Properties

Let M be a measurable space and let µ be a reference probability measure
on M .

Definition 3.1 A map f : M → M is non-singular with respect to µ if given
any measurable set E ⊂ M , µ(f−1(E)) = 0 if and only if µ(E) = 0.

Given h ∈ L1(µ), we define µh := hdµ. If f is a non-singular map then it is easy
to see that f∗µh ≪ µ. By Radon-Nikodym theorem, there exists the density
df∗µh

dµ
∈ L1(µ). Thus we can define the transfer operator L : L1(µ) → L1(µ),

Lh := df∗µh
dµ

.

Definition 3.2 Given a map f : M → M , we define its correspondent
Koopman operator U : L∞(M) → L∞(M) by:

Uφ = φ ◦ f, ∀φ ∈ L∞(M).

The next proposition characterizes the transfer operator as the dual of
the Koopman operator.

Proposition 3.1 Lh is the unique element in L1(µ) such that ∀φ ∈ L∞(µ),
we have ˆ

φ (Lh) dµ =
ˆ

(φ ◦ f)h dµ =
ˆ
Uφhdµ . (3-1)

Proof For every φ ∈ L∞(µ) we have
ˆ
φ · (Lh)dµ =

ˆ
φ
df∗µh
dµ

dµ =
ˆ
φdf∗µh =

ˆ
(φ ◦ f)h dµ.



Chapter 3. Transfer Operators 32

This identity characterizes Lh. Indeed, suppose that there are h1, h2 ∈
L1(µ) such that for i = 1, 2,

ˆ
φhi dµ =

ˆ
(φ ◦ f)h dµ

for all φ ∈ L∞(µ). Choose φ = sgn(h1 − h2). Then
ˆ

|h1 − h2| dµ =
ˆ
φ · (h1 − h2) dµ =

ˆ
φh1 dµ−

ˆ
φh2 dµ

=
ˆ

(φ ◦ f)h dµ−
ˆ

(φ ◦ f)h dµ = 0,

hence h1 = h2 a.e. ■

Proposition 3.2 L is a positive and bounded linear operator, with norm 1 in
L1(µ).

Proof Fix h ≥ 0, and let φ := 1Lh<0 be the indicator function of the set
{x ∈ M : Lh(x) < 0}. Then

0 ≥
ˆ
φ (Lh) dµ =

ˆ
(φ ◦ f)h dµ ≥ 0 .

It follows that
´

{Lh<0} (Lh) dµ = 0. This can only happen if µ{Lh < 0} = 0,
therefore L is positive. Now we want to prove that ||L||1 = ||h||1, let
φ := sgn(Lh), then

∥Lh∥1 =
ˆ

|(Lh)| dµ =
ˆ
φ (Lh) dµ =

ˆ
(φ◦f)h dµ ≤ ∥φ◦f∥∞∥h∥1 = ∥h∥1,

hence ∥Lh∥1 ≤ ∥h∥1.
Finally, if h > 0, ∥Lh∥1 =

´
|Lh| dµ =

´
Lh dµ =

´
(1 ◦ f)h dµ = ∥h∥1,

so ∥L∥1 = 1. ■

Proposition 3.3 If Lh = h, then dµh = hdµ is an f-invariant measure
absolutely continuous with respect to µ.

Proof Given any φ ∈ L∞(µ),
ˆ
φ dµh =

ˆ
φ h dµ =

ˆ
φ Lh dµ =

ˆ
φ ◦ f dµh

which is equivalent to the invariance of µh with respect to f . ■

Proposition 3.4 Suppose µ is an f -invariant measure. Then for all h ∈
L1(µ),

U Lh = Lh ◦ f = Eµ(h|f−1(F)),
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where U is the Koopman operator, associated to f .

Proof Lh ◦ f is clearly f−1(F) measurable. Given a set A = f−1(B), B ∈ F ,
ˆ
A

Lh ◦ f dµ =
ˆ
f−1(B)

Lh ◦ f dµ =
ˆ
B

Lh dµ =
ˆ
A

hdµ,

which shows that UL is the conditional expection Eµ(h|f−1(F)). ■

Definition 3.3 (Correlations) The correlation sequence between two
observables φ and ψ is given by:

Cn(ψ, φ) :=
ˆ
ψ φ ◦ fndµ−

ˆ
φdµ

ˆ
ψdµ ∀n ∈ N.

Sometimes it is also convenient to consider the normalized version of this
sequence.

Definition 3.4 Let B1,B2 be Banach spaces, φ ∈ B1 and ψ ∈ B2, the
normalized correlation sequence is given by:

Corn(ψ, φ) := Cn(ψ, φ)
||φ||B1 ||ψ||B2

Definition 3.5 We say that a dynamical system (f, µ) is mixing if for all
measurable sets A,B we have

lim
n→∞

Cn(1A,1B) = lim
n→∞

(µ(A ∩ f−1(B)) − µ(A)µ(B)) = 0

The next proposition relates the decay of correlations and the
convergence of the powers of L.

Proposition 3.5 If ψ ∈ L∞(µ) and φ ∈ L1(µ), then for all n ∈ N,

|Cn(ψ, φ)| ≤ ||Lnφ−
ˆ
φdµ||L1 ||ψ||∞ .

In particular, the rate of decay of correlations is O(||Lnψ −
´
ψdµ||1).
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Proof We have that

|Cn(ψ, φ)| :=
∣∣∣∣∣
ˆ
φψ ◦ fndµ−

ˆ
ψdµ

ˆ
φdµ

∣∣∣∣∣
=
∣∣∣∣∣
ˆ

Lnφψdµ−
ˆ
ψ dµ

ˆ
φdµ

∣∣∣∣∣
=
∣∣∣∣∣
ˆ

(Lnφ−
ˆ
φdµ)ψ dµ

∣∣∣∣∣
≤
ˆ ∣∣∣∣∣(Lnφ−

ˆ
φdµ)ψ

∣∣∣∣∣ dµ
≤ ||Lnφ−

ˆ
φdµ||1 ||ψ||∞

which establishes the claim. ■

In view of the above proposition it is important to study the convergence
Lnφ →

ˆ
φdµ in a space of observables (B, ||.||B) with ||.||B ≥ ||.||1, where we

can prove quasi-compactness of L|B. More precisely, we will consider a Banach
space B ⊂ L1(µ) with the following six properties.

1) There exists a semi-norm |.|B, such that B = {φ ∈ L1(µ) : |φ|B < ∞} is
a Banach space when endowed with the norm ||.||B = |.|B + ||.||1.

2) The inclusion B → L1(µ) is compact.

3) L(B) ⊂ B and L|B is bounded with respect to || · ||B.

4) (Lasota-Yorke inequality) There are r ∈ (0, 1) and R > 0 such that for
all k ≥ 1,

||Lkf ||B ≤ rk||f ||B +R|f |B .

5) B is a Banach algebra with the norm ||.||B, that is, there is C > 0 such
that:

||φψ||B ≤ C||φ||B ||ψ||B, ∀φ, ψ ∈ B .

6) B is continuously embedded in L∞(µ), i.e, there exists C > 0 such that:

||φ||∞ ≤ C||φ||B, ∀φ ∈ B .

Under conditions 1-4 above, Ionescu-Tulcea and Marinescu theorem (see
Theorem 4.3 for its statement) implies that L is quasicompact on B. If the
leading eigenvalue 1 is simple and if {z ∈ σ(L) : |z| = ρ(L)} = {1} then L has
the spectral gap property on B.

The iterates of the transfer operator enjoy the following spectral
decomposition:

Ln = Π +Nn,
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where Π projects φ ∈ B onto the fixed points of L,

Π(φ) = h

ˆ
φdm

and the linear operator N verifies

∥Nn(φ)∥B ≤ C ′′rn∥φ∥B,

where C ′′ > 0 and r ∈ (0, 1) are constants depending on f . In particular,

||Lnφ− Πφ||B = ||Nnφ||B
||Lnφ||B ≤ C ′′rn||φ||B,

for every φ ∈ B with
´
φdm = 0.

We will apply this argument in chapters 4 and 5 to uniformly expanding
maps as well as to piecewise expanding maps to derive the exponential
convergence Lnφ →

ˆ
φdµ for observables φ in an appropriate Banach algebra

B. This in turn will imply exponential decay of correlations against L1(µ)
functions. Furthermore, as we will see next, such decay of correlations implies
large deviations estimates.

3.2
Decay of Correlations & Large Deviations

In this section we prove the following theorem due to Alves et al, (see [1]).

Theorem 3.6 (Alves, Freitas, Luzzatto, Vaienti) Let (M, f, µ) be an
ergodic dynamical system and let B ⊂ L∞(µ) be a Banach subspace. Let φ ∈ B
and assume that ∀ψ ∈ L1(µ) we have

∞∑
n=1

|Cn(ψ, φ)| < ∞ .

Then for every ϵ > 0 there exist c(ε) > 0 and n(ε) ∈ N such that for all
n ≥ n(ε)

µ

{
x ∈ M :

∣∣∣∣∣ 1nSn φ(x) −
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ 2e−c(ε)n

The parameters c(ε), n(ε) are explicitly determined by the input data.

The approach in [1] is based on a strategy employed by Melbourne [17] to
obtain large deviations for certain dynamical systems with slow rate of mixing.
The proof of the exponential LDT estimates relies on an application of the
Azuma-Hoeffding’s inequality for martingale differences which we recall bellow.



Chapter 3. Transfer Operators 36

Definition 3.6 Given a filtration of σ−algebras F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ F on
a probability space (Ω,F ,P), a sequence of random variables {Xi}ni=1 is said to
be adapted to this filtration if Xi is Fi− measurable for all i = 1, . . . , n.

Definition 3.7 Given a filtration of σ−algebras F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ F on
a probability space (Ω,F ,P), a sequence of adapted random variables {Xi}ni=1

is said to be a martingale difference if it satisfies the following conditions:

1. E|Xi| < ∞,

2. E[Xi|Fi−1] = 0.

Theorem 3.7 (Azuma-Hoeffding) Let {Xi}ni=1 be a sequence of martingale
differences. If there is C > 0 such that ∥Xi∥∞ ≤ C, then for all ε > 0 we have

P
(

1
n

n∑
i=1

Xi ≥ ε

)
≤ e− nε2

2C2 .

Now we precisely define what is the martingale sequence for which we
apply the Azuma-Hoeffding inequality. Recall that (M, f, µ) is an MPDS. Let
us start by defining the appropriate filtration. For every i = 1, . . . , n let

Fi = f−(n−i)(M).

Then we clearly have F1 ⊂ F2 ⊂ · · · ⊂ Fn.
Fix φ ∈ B such that

´
φdµ = 0 and define

χ :=
∞∑
i=0

Liφ and ξ := φ+ χ− χ ◦ f.

Finally, for all i = 1, 2, . . . , n consider

Zi = ξ ◦ fn−i .

It is easy to see that

Snφ =
n∑
i=1

φ ◦ fn−i

=
n∑
i=1

(φ ◦ fn−i + χ ◦ fn−i − χ ◦ fn−i+1) +
n∑
i=1

(χ ◦ fn−i+1 − χ ◦ fn−i)

=
n∑
i=1

Zi + χ ◦ fn − χ .

Now we show that {Zi}ni=0 is a martingale difference.
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Lemma 3.8 {Zi}ni=0 is a finite martingale difference with respect to the
filtration {Fi}ni=0.

Proof By definition Zi is Fi measurable. Note that,

E(Z1) =
ˆ
φ ◦ fn−1dµ+

ˆ
χ ◦ fn−1dµ−

ˆ
χ ◦ fndµ

=
ˆ
φdµ+

ˆ
χdµ−

ˆ
χdµ = 0 (by invariance).

Moreover,

Lξ = Lφ+ Lχ− Lχ ◦ f = Lφ+ Lχ− χ = Lφ− Lφ = 0,

which implies that for all i = 0, . . . , n− 2,

E(Zn−i | Fn−i−1) = E(ξ ◦ fi | f−(i+1)(M)) = U i+1Li+1U iξ = U i+1Lξ = 0,

where we used the following property that holds when µ is f -invariant, see
(Proposition 3.4):

E(· | f−(i+1)(M)) = U i+1P i+1 .

We conclude that {Zi}ni=0 is a martingale difference. ■

The next lemma shows how our assumption on the decay of correlations
implies that χ is an element of L∞(µ). We emphasize here the importance of
having decay against all L1(µ) functions.

Lemma 3.9 Let φ ∈ L∞(µ) with
´
φdµ = 0. If there is a rate function

r(n), n ≥ 0 with ∑∞
n=0 r(n) < ∞ such that Corn(ψ, φ) ≤ r(n) for all n ≥ 0

and all ψ ∈ L1(µ), then the function

χ :=
∞∑
n=0

Lnφ ∈ L∞(µ) .

Proof By the Riesz representation theorem, to each φ ∈ L∞(µ) we can
associate the linear functional Fφ,

Fφ(ψ) =
ˆ
φψdµ, ∀ψ ∈ L1(µ) .

Moreover we know that ||φ||∞ = ||Fφ||, so for all n ≥ 0 we have
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||Lnφ||∞ = sup |
´

Lnφψdµ|
||ψ|L1

= sup
´

|φψ ◦ fn|dµ
||ψ|L1

= ||φ||∞||ψ||L1Corn(ψ, φ)
||ψ||L1

≤ ||φ||∞r(n),

which implies that

||
∞∑
n=0

Lnφ||∞ ≤
∞∑
n=0

||Lnφ||∞ ≤ ||φ||∞
∞∑
n=0

r(n) ≤ ∞,

and concludes the proof. ■

Theorem 3.10 Let φ ∈ L∞(µ) and suppose that

χ :=
∞∑
n=0

Lnφ ∈ L∞(µ) .

Then for every ϵ > 0 there exists N(ϵ, φ) = 4
ϵ∥χ∥∞

such that for n ≥ N

µ

{
x ∈ M :

∣∣∣∣∣ 1nSn(φ(x)) −
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ 2e−c(ϵ)n,

where c(ϵ) = ϵ2

8 (||φ||∞ + 2(||∑Lnφ||∞)2.

Proof By the definition of Zi it is clear that for i = 1, 2, . . . , n we have,

||Zi||∞ ≤ ||φ||∞ + 2||χ||∞ (3-2)
By lemma 3.1.2 we know that {Zi}ni=0 is a martingale difference. Then
Azuma-Hoeffding inequality is applicable and we get.

µ
( 1
n

∣∣∣∑Zi
∣∣∣ > ε

2

)
≤ 2 exp

{
− ε2n

8(||φ||∞ + 2||χ||∞)2

}

for all n ∈ N. In particular for n ≥ N where 2
N ||χ||∞ ≤ ε

2 we obtain,

µ
( 1
n

|Sn| > ε
)

≤ µ
( 1
n

∣∣∣∑Zi
∣∣∣+ 2

N
||χ||∞ > ε

)
≤ µ

( 1
n

∣∣∣∑Zi
∣∣∣ > ε

2

)
≤ 2 exp

{
− ε2n

8(||φ||∞ + 2||χ||∞)2

}
,

which establishes the result. ■
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Together with the previous lemma, this theorem establishes the main
result of this section, Theorem 3.6.

3.3
An Associated Markov System

The previous section provided a criterion for establishing LDT estimates
for non singular maps via decay of correlations, which in turn can be derived
from the spectral properties of the transfer operator.

In this section, we explain how to derive limit laws (LDT estimates and
CLT) for non singular maps via the abstract results in section 2.2, assuming
that the transfer operator satisfies the spectral gap property. The transfer
operator is a Markov operator if and only if L1 = 1, i.e, the reference measure
is the absolutely continuous invariant measure. That is not typically the case,
so the abstract theorems cannot be directly applied to transfer operators. To
bypass this technical problem we will associate to our original transfer operator
a new one, which will be Markov.

Suppose that (M, f, µ) is non singular and that the corresponding
transfer operator L has the spectral gap property on a Banach algebra
B ⊂ L∞(µ). Let h be such that Lh = h. Let us consider dµ = hdm as
our new reference measure, set µφ = φdµ and define Qφ(x) = df∗µφ

dµ
, the

transfer operator of f with reference measure µ. This operator has the following
properties.

Proposition 3.11

1 Q is a Markov operator and µ is a stationary measure with respect to Q.

2 (Qφ)h = L(φh).

Proof Since Q is a transfer operator we already know that it is positive. Note
that Q1 = 1 since for all φ ∈ L∞(M) we have,

ˆ
φQ1 dµ =

ˆ
φ ◦ f 1 dµ =

ˆ
φ ◦ f dµ =

ˆ
φdµ.

Thus Q is a Markov operator.
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Let ψ ∈ L∞(M). Using the duality characterization of Q and L,
ˆ
ψQφhdm =

ˆ
ψQφdµ

=
ˆ
ψ ◦ fφdµ

=
ˆ
ψ ◦ fφhdm

=
ˆ
ψL(φh)dm.

Since this holds for any ψ ∈ L∞(M) we conclude that (Qφ)h = L(φh). ■

Proposition 3.12 The Markov system (M,K, µ,B) is strongly mixing with
exponential rate.

Proof By the previous proposition it follows by induction that for all n ∈ N,

(Qnφ)h = Ln(φh) .

Then
Qnφ−

ˆ
φdµ = 1

h

(
Ln(φh) −

ˆ
φh dµ

)
.

Applying the mixing property of L and the fact that B is a Banach
algebra we get:

||Qnφ−
ˆ
φdµ||∞ ≤ ||1

h
(Ln(φh) −

ˆ
φhdµ)||B

≤ C(h)||(Ln(φh) −
ˆ
φhdµ)||B

≤ C(h)σn||φh||B
≤ C ′(h)σn||φ||B ,

where C(h) and C ′(h) depend only on the B norms of h and 1
h
. ■

In light of the proposition above, the abstract results from the previous
chapter imply LDT estimates and CLT for a Markov chain with transition
kernel K corresponding to the Markov operator Q defined above. This
transition kernel K assigns to a point x a weighted average of Dirac masses
supported on the pre-images f−1(x). These LDT estimates and CLT for
such a Markov chain translate into similar properties for the dynamical
system (M, f, µ). We will show this (with full details) in concrete examples
in chapters 4 and 5.
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In summary, we have two approaches to establish LDT estimates for
systems whose transfer operator L have a spectral gap. One is through decays
of correlations (i.e. the result of Alves et al). The other stems from the abstract
LDT theorem for strongly mixing Markov systems of Cai et al. In the same
setting the abstract CLT theorem is also applicable.



4
Expanding Maps

The main goal of this chapter is to introduce expanding maps on compact,
connected manifolds. These maps were extensively studied in thermodynamic
formalism and represent a typical model when one is looking to understand
the statistical properties of hyperbolic systems. We mostly follow [3] and plan
to:

i Define expanding maps and list their basic properties.

ii Define the transfer operator and list its basic properties.

iii Study the action of the transfer operator on the space of Hölder densities.
The main goal here is to prove its quasi-compactness.

iv Use the quasi-compactness results to derive statistical properties for
Birkhoff sums. This will be done by applying the abstract results of
the previous chapter.

4.1
Basic Properties

Let M be a compact, connected, finite dimensional Riemannian manifold
and let d denote its metric.

Definition 4.1 Given r > 1, a Cr map f : M → M is uniformly expanding
if there exists λ > 1 such that for all x ∈ M and v ∈ TxM we have,

||Dxfv|| ≥ λ||v||. (4-1)

Remark 4.1 By the inverse function theorem and the compactness of M,
f−1({x}) is finite for every x ∈ M . Moreover, since M is connected it follows
that #f−1({x}) is constant. We denote this constant by deg(f) and call it the
degree of the map f .

Example 4.1 If M = S1, f(z) = z2 is called the angle doubling map, arguably
the most simple example of an expanding map.

Definition 4.2 A dynamical system (M, f) is topologically mixing if given two
open sets A,B ⊂ M there is an integer number N such that n ≥ N implies
A ∩ fn(B) ̸= ∅.
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Remark 4.2 Since M is compact and f is an expanding map, the change of
variables formula implies for every open set A ⊂ M there exist n := n(A) such
that fn(A) = M . Therefore, every expanding map is topologically mixing.

An interesting dynamical property of expanding maps that will be used
latter is the strong backwards shadowing. Let f be a λ-expanding map that
is, a map satisfying (4-1) for some λ > 1. For any x, y ∈ M there exists a
bijection p between the sets f−1(x) and f−1(y) such that for all x′ ∈ f−1(x),

d(x′, p(x′)) ≤ d(x, y)
λ

.

To see this first note that by the inverse function theorem, for each
x′ ∈ f−1(x) there exists a neighborhood B of x′ and g : B → M such that
f ◦ g = id and g(x′) = x. Since f is expanding, g must be contracting, that is:

d(g(x′), g(x′′)) ≤ λ−1d(x′, x′′), ∀x′, x′′ ∈ B.

By compactness, we may choose B as an open ball with the same radius
ρ > 0, for all x ∈ M , which then shows that the property is satisfied.

Remark 4.3 Another simple fact is that if f is λ- expanding then
infx∈M det |Dxf | ≥ λn.

4.2
Transfer Operators

In this section we define the transfer operator of a uniformly expanding
map f on M and recall some of its basic properties. We fix m the Lebesgue
measure on the manifold M as our reference measure. Given h ∈ L1(m),
recall that the transfer operator is given by the Radon-Nikodym derivative
Lh = df∗mh

dm
, where dmh := hdm.

Example 4.2 Let f : S1 → S1 be the angle doubling map. Then

Lh(x) =
h(x2 ) + h(x+1

2 )
2 .

In fact, the transfer operator admits a simple closed form formula which
generalizes the example above.

Proposition 4.1 Let f : M → M be an expanding map. Then

Lh(x) =
∑

x′∈f−1(x)

h(x′)
det |Dx′f |

. (4-2)
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Proof (See [18]) ■

Remark 4.4 In what follows we will use the notation g(x) := 1
det |Dxf | ,

therefore the transfer operator is written as

Lh(x) =
∑

x′∈f−1(x)
g(x′)h(x′).

Remark 4.5 By the change of variables formula we know that L∗m = m, so
1 is an eigenvalue of L.

4.3
Quasi-Compactness

In this section we prove the quasi compactness of the transfer operator
of C1+θ expanding maps in the space of Cθ densities. First, we define what we
mean by a C1+θ map.

Definition 4.3 We say that f ∈ C1+θ for 0 < θ < 1 if f ∈ C1 and it has a
θ-Hölder continuous derivative, meaning that there exists C > 0 such that:

||Dx′f −Dy′f || ≤ Cd(x, y)θ (4-3)

for all x ∈ M , y in the same coordinate chart of x and x′, y′ being the respective
representations of x, y in Euclidean coordinates.

Now we define precisely the Banach space in which we prove the quasi
compactness of L.

Definition 4.4 Let

Cθ(M) =
{
φ : M → R : ∃C > 0 s.t |φ(x) − φ(y)| ≤ Cd(x, y)θ ∀x, y ∈ M

}
.

Let ||φ||θ = ||φ||∞ + vθ(φ), where

vθ(φ) := sup
x ̸=y

|φ(x) − φ(y)|
d(x, y)θ

is the θ-Hölder seminorm.
Then || · ||θ is a norm and (Cθ(M), || · ||θ) is a Banach space.

The main result of this section is the following.

Theorem 4.2 Let λ > 1, 0 < θ < 1, and f : M → M be a C1+θ and
λ-expanding map of a compact, connected, Riemannian manifold. Then the
correspondent transfer operator has a spectral gap on the space of θ-Hölder
densities.
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Remark 4.6 Since f is topologically mixing and we already know that 1 ∈
σ(L), it suffices to prove that the transfer operator is quasi-compact. For more
details (see [8] page 52).

Remark 4.7 We point out that our approach to prove quasi compactness
differs from the one in [3] where the spectral gap property is proved via
projective cones.

In order to prove the above result we use the following abstract
quasi-compactness result of Ionescu-Tulcea and Marinescu [15]. This version
of the theorem can be found in [14].

Theorem 4.3 (Ionescu-Tulcea and Marinescu) Suppose (X, ||.||) is a Banach
space and L : X → X is a bounded linear operator with spectral radius ρ(L).
Assume that there exists a semi-norm ||.||′ with the following properties:

1. Continuity: ||.||′ is continuous in (X, || · ||).

2. Pre-compactness: for any sequence {fn}n ⊂ X, if sup ||fn|| < ∞ then
there exist a subsequence {nk}k and g ∈ X such that ||Lfnk

− g||′ → 0.

3. Boundness: There exists M > 0 such that ||Lf ||′ ≤ M ||f ||′ for all
f ∈ X.

4. Lasota-Yorke (or Doeblin-Fortet): there are k ≥ 1, 0 < r < ρ(L),
and R > 0 such that

||Lkf || ≤ rk||f || +R||f ||′
. (4-4)

Then L : X → X is quasi-compact.

We will check the conditions in Ionescu-Tulcea and Marinescu theorem
for the transfer operator where (X, || · ||) = Cθ((M), || · ||θ) and || · ||′ = || · ||∞.

In the next lemmas we will repeatedly use the following two facts:

1 If f is a λ-expanding map on a n-dimensional manifold M , then
| detDxf | ≥ λn(see Remark 4.3).

2 By the strong backwards shadowing property, ∀x, y ∈ M , there exists a
bijection p : f−1(x) → f−1(y) such that d(x′, p(x′)) ≤ d(x,y)

λ
.

Lemma 4.4 (Invariance) L(Cθ(M)) ⊂ Cθ(M).
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Proof Let φ ∈ Cθ(M). Then

|Lφ(x) − Lφ(y)|
d(x, y)θ ≤

∑
x′∈f−1(x) |g(x′)φ(x′) − g(p(x′))φ(p(x′))|

d(x, y)θ

≤ λθ

λn
∑

x′∈f−1(x)

|φ(x) − φ(p(x′))|
d(x, p(x′))θ

≤ λ(θ−n)deg(f)|φ|θ
≤ λθ|φ|θ,

which shows that Lφ is θ-Hölder continuous. ■

Lemma 4.5 (Continuity) The norm ||.||∞ is continuous in Cθ(M) endowed
with the Hölder norm || · ||θ.
Proof If ||φn − φ||θ → 0 by definition we must have ||φn − φ||∞ → 0. ■

Lemma 4.6 (Pre-compactness) For any sequence {fn}n ⊂ Cθ(M), if
sup ||fn|| < ∞ then there exist a subsequence {nk}k and g ∈ Cθ(M) such
that ||Lfnk

− g||∞ → 0.

Proof If sup ||fn||θ < ∞ then lemma 4.4 implies that {Lfn}n is an
equicontinuous family and by Arzelà-Ascoli theorem there exists a subsequence
{fnk

} and g ∈ C0(M) such that ||Lfnk
− g||∞ → 0.

Furthermore, ||g||θ ≤ sup ||Lfn||θ < ∞. ■

Lemma 4.7 (Boundness) ||Lf ||∞ ≤ M ||f ||∞ for all φ ∈ Cθ(M).

Proof Let φ ∈ Cθ(M). Then

||Lφ(x)||∞ ≤
∑

x′∈f−1(x)
|φ(x′)|g(x′)

≤ deg(f)λ−n||φ||∞ ≤ ||φ||∞ .

■

Lemma 4.8 (Lasota-Yorke Inequality) There are k ≥ 1, 0 < r < ρ(L), and
R > 0 such that

||Lkφ||θ ≤ rk||φ||θ +R||φ||∞ ∀φ ∈ Cθ(M). (4-5)

Proof We first prove that there exists 0 < r < 1 and R1 > 0 such that

|Lφ|θ ≤ r|φ|θ +R1||φ||∞. (4-6)
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We have

|Lφ(x) − Lφ(y)|
d(x, y)θ = 1

d(x, y)θ |
∑

x′∈f−1(x)
g(x′)φ(x′) −

∑
y′∈f−1(y)

g(y′)φ(y′)|

≤ 1
d(x, y)θ

∑
x′∈f−1(x)

|(g(x′)φ(x′) − g(p(x′))φ(p(x′)))|

≤
∑

x′∈f−1(x)
|g(x′)| |φ(x′) − φ(p(x′)|

d(x, y)θ +

|g(x′) − g(p(x′))|
d(x, y)θ φ(p(x′))

≤
∑

x′∈f−1(x)
|g(x′)|λ−θ |φ(x′) − φ(p(x′)|

d(x, p(x′))θ +

λ−θ |g(x′) − g(p(x′))|
d(x, p(x′))θ φ(p(x′))

≤ deg(f)λ−(θ+n)|φ|θ + deg(f)λ−(θ+2n)| detDf |θ|φ|∞ .

Therefore by the definition of the Hölder norm,

|Lφ|θ ≤ λ−θ|φ|θ + | detDf |θ|φ|∞ .

By induction we conclude that

|Lnφ|θ ≤ λ−θ|Ln−1φ|θ +R|φ|∞

≤ λ−nθ|φ|θ +
n−1∑
j=1

λ−θjR|φ|∞.

Defining R1 = R
1−λ−θ finishes the proof. ■

By Theorem 4.3 we conclude that L is quasi-compact and its essential
spectral radius is smaller than λ−θ < 1. Since ||L||θ ≤ 1, there exists a finite
set Θ ⊂ [0, 2π) such that

L =
∑
θ∈Θ

eiθΠθ +N,

where Πθ are finite rank operators such that ΠθΠθ′ = δθ,θ′ , ΠθN = NΠθ = 0
and ρ(N) < λ−θ. Furthermore, 1 ∈ σ(L∗) which implies that 0 ∈ Θ. It follows
that,

lim
n→∞

1
n

n−1∑
k=0

e−kiθLk =
∑
θ′∈Θ

lim
n→∞

1
n

n−1∑
k=0

eki(θ
′−θ)Πθ + e−ikθNk = Πθ .

Let h∗ = Π01. Then Lh∗ = LΠ01 = Π01 = h∗. Applying the equation
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above we have
lim
n→∞

1
n

n−1∑
k=0

Lk1 = Π01 = h∗.

Since L is a positive operator we have conclude that h∗ ≥ 0. In fact, h∗

is bounded away from zero by the next lemma.

Lemma 4.9 The invariant density h∗ is bounded away from zero.

Proof We already know that h∗ ≥ 0 and that h∗ is continuous. Suppose by
contradiction that there exists x̄ ∈ M such that h∗(x̄) = 0. It follows that

0 = h∗(x̄) = Lnh∗(x̄) =
∑

y∈f−n(x̄)

1
| detDyfn|

h(y),

therefore h(y) = 0 for all y ∈ f−n(x), n ∈ N. Since f is expanding, we have
that the preimages of f are dense in M . By the continuity of h∗ we conclude
that h∗ ≡ 0, which is a contradiction. ■

4.4
LDT via Decay of Correlations

In this section we use the information on the spectral gap to derive
statistical properties for expanding maps. We remark that some of these
properties were already stated in the past chapter but here we collect the
precise constants for the class of maps we have at hand.

Theorem 4.10 (Exponential Decay of Correlations) For all φ ∈ Cθ with´
φdµ = 0 and ψ ∈ L1, we have

Cn(ψ, φ) ≤ C λ−nθ ||ψ||L1 .

Proof We estimate the decay of correlations as follows:

|Cn(ψ, φ)| :=
∣∣∣∣∣
ˆ
φψ ◦ fndµ−

ˆ
φdµ

ˆ
ψdµ

∣∣∣∣∣
=
∣∣∣∣∣
ˆ

Lnφψdµ

∣∣∣∣∣
=
∣∣∣∣∣
ˆ

Lnφψ dµ

∣∣∣∣∣
≤
ˆ

|Lnφψ| dµ

≤ ||Lnφ||θ ||ψ||L1 ≤ C λ−nθ ||ψ||L1 ,

which establishes the result. ■
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Proposition 4.11 (Mixing) The absolutely continuous invariant measure µ

of a C1+θ, λ-expanding map is mixing.

Proof Let φ, ψ ∈ L2(µ). We show that Cn(φ, ψ) → 0 when n → ∞, which
is well known to be equivalent to the system (f, µ) being mixing(see [18]).
Without loss of generality we can suppose that

´
φdµ = 0. The space of

θ-Hölder functions is dense in L2, so we can consider sequences of Hölder
functions {φk}k and {ψk}k such that ||φk −φ||2 and ||ψk −ψ||2 approach zero
when k goes to infinity. Then

|Cn(φ, ψ)| := |
ˆ
ψφ ◦ fndµ|

≤ |
ˆ
ψkφk ◦ fndµ| + |

ˆ
(φk ◦ fn)(ψ − ψk)dµ|

+ |
ˆ

((φ− φk) ◦ fn)ψdµ|

≤ Cλ−nθ|ψk|θ
ˆ

|φk|dµ+
ˆ
φkdµ

ˆ
ψkdµ+ ||φk||2||ψ − ψk||2

+ ||ψk||2||φ− φk||2 .

Since ||φk−φ||2 → 0 and
´
φdµ = 0 we have that

´
φk → 0 as k → ∞. Letting

n and k go to ∞, we have that Cn(φ, ψ)) → 0. ■

Theorem 4.12 Let (f, µ) be a λ-expanding map equipped with its a.c.i.m. µ.
Let B ⊂ L∞(µ) be the Banach space Cθ(M)and φ ∈ B. Then for every ϵ > 0
there exist τ(ε) > 0 and n(ε) ∈ N such that for all n ≥ n(ε)

µ

{
x ∈ M :

∣∣∣∣∣ 1nSn(φ(x)) −
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ 2e−c(ε)n ,

where c(ε) and n(ε) are explicitly determined by the input data.

Proof By Theorem 4.10, we know that the sequence ξ(n) = Cλ−nθ satisfies
that Cn(φ, ψ) ≤ ξ(n)||ψ||L1 . Since ∑∞

n=0 ξ(n) < ∞, then theorem 3.6 is
applicable and it implies the LDT estimates. ■

4.5
Statistical Properties via Markov Systems

In this section we apply the abstract theorems of chapter 2 to derive
statistical properties for Birkhoff sums of expanding maps. The transfer
operator is Markov if and only if L1 = 1, i.e, the Lebesgue measure is the
absolutely continuous invariant measure of f . That is not typically the case
so the abstract theorems cannot be directly applied to transfer operators as
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explained before. To bypass this technical problem we will associate to our
original transfer operator a new one which will be Markov. Let h be the unique
absolutely continuous invariant measure of f , let us consider dµ = hdm as our
new reference measure and define Qφ(x) = df∗µφ

dµ
, the transfer operator of f

with reference measure µ. This operator has the following properties, as shown
already in the general context of the previous chapter (Proposition 3.11).

Proposition 4.13 The operator Q defined above has the following properties.

1. Q is Markov,

2. µ is a stationary measure with respect to Q,

3. (Qφ)h = L(φh).

Remark 4.8 The formula in the above proposition implies that Q has the
following closed form:

Qφ(x) =
∑

x′∈f−1(x)

h(x′)
h(x)

1
| detDx′f |

φ(x′) (4-7)

so the associated Markov kernel is

Kx(y) =
∑

x′∈f−1(x)

h(x′)
h(x)

1
| detDx′f |

δx′ (4-8)

so this Markov chain sends x to one of its pre-images.

Applying proposition 3.12 to this Markov system we conclude the
following.

Corollary 1 The Markov system (M,K, µ,Cθ) is strongly mixing with
exponential rate.

Theorem 4.14 (LDT) Let f : M → M be a C1+θ(M) and expanding map,
and let φ ∈ Cθ. Given any ε > 0 there are n(ε) ∈ N and c(ε) > 0 such that
for all n ≥ n(ε) we have

µ

{
x : M

∣∣∣∣∣ 1nSn(φ(x)) −
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ Ce−c(ε)n,

where the parameters n(ε) and c(ε) depend (explicitly) only on the Cθ-norms
of φ, g and 1

g
.

Proof Let X+ = MN and let Pµ be the Markov measure with initial
distribution µ and transition kernel

Kx =
∑

x′∈f−1(x)

h(x′)
h(x)

1
|detDx′f |

δx′ .
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Since the Markov system (M,K, µ,Cθ) was shown to be strongly mixing,
it follows from the Abstract LDT Theorem 2.1 that the stochastic Birkhoff
sums

Snφ(ω) = φ(ω0) + φ(ω1) + . . . φ(ωn−1)

satisfy an LDT estimate w.r.t Pµ for all observables φ ∈ Cθ. More precisely,

Pµ
{∣∣∣∣∣ 1nSnφ−

ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ Ce−c(ε)n .

Now we will show that the above estimate can actually be transferred
to the deterministic Birkhoff sums of our dynamical system (f, µ). First thing
we notice is that although the set of possible symbols is uncountable(these are
the points of M) the allowed transitions are finite (recall that Kx is supported
on the pre-images of x. So the space of allowed transitions is described by

Ω = ∩
j∈N

{ω ∈ X+ : f(ωj+1) = ωj} = ∩
j∈N

σ−j{ω ∈ X+ : f(ω1) = ω0}.

Notice that
P{ω ∈ X+ : f(ω1) = ω0} =

ˆ
Kω0(ω1)dµ(ω0).

By stationarity, we have that σ−j{ω ∈ X+ : f(ω1) = ω0} = 1 for all j ∈ N
and from here it follows that P(Ω) = 1. Consider the deviation set for the
deterministic Birkhoff sum, that is, let

E :=
{
x ∈ M :

∣∣∣∣∣ 1nSn(φ(x)) −
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
.

By stationarity of the measure µ,

µ(E) =
ˆ
Kn
x (E)dµ(x) =

ˆ
Px(ω ∈ X+ : ωn ∈ E)dµ(x)

= Px(ω ∈ X+ : ωn ∈ E) = Px(ω ∈ Ω : ωn ∈ E)

= Pµ
{
x ∈ Ω

∣∣∣∣∣ 1nSn(φ(ω)) −
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ Ce−c(ε)n

which concludes the proof. ■

In the same context we also have the following central limit theorem.

Theorem 4.15 (CLT) If
´
M
φ = 0 and φ is not a coboundary, i.e, there is

no ψ ∈ C0(M) such that φ(x) = ψ(x) − ψ(f(x)), then there exists σ(φ) > 0,
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such that for any x ∈ M

Sn(φ(x))
σ

√
n

d−→ N (0, 1).

Proof Assume that φ has zero µ mean and it is not a coboundary. Let us
verify the hypothesis of the Abstract CLT for the Markov system (M,K, µ,Cθ).
Define ψ := ∑∞

n=0 Qnφ and suppose by contradiction that σ2(φ) := ||ψ||22 −
||Qψ||22 = 0. This would imply that Qψ(x) = ψ(y) for µ and Kx a.e point. By
the definition of K this implies that ψ(y) = Qψ(f(y)) for µ a.e. But since ψ ,
Qψ are continuous and dµ = hdm is continuous and bounded away from zero,
we must have that ψ(y) = Qψ(f(y)) for all x ∈ M . Then

φ = ψ − Qψ = Qψ ◦ f − Qψ

which shows that φ is a coboundary a contradiction. Applying the abstract
CLT theorem we have that

P
{
ω ∈ X+ : Snφ(ω)

σ
√
n

≤ λ

}
→
ˆ λ

∞
e− x2

2
dx√
2π
. asn → ∞.

By the same argument of the previous theorem we transfer the CLT from the
stochastic to the deterministic system thus obtaining

Sn(φ(x))
σ

√
n

d−→ N (0, 1).

■

In summary, the hyperbolicity and regularity of f allow us to show
that its transfer operator acts in a smoothing way on the space of θ-Hölder
observables. Since we have a spectral gap, we can apply the results developed
in the previous chapters to obtain LTD estimates. One path is through decays
of correlations (i.e. using Theorem 3.6). The other path, shown above, is
via the abstract LDT estimates for strongly mixing Markov systems, namely
Theorem 2.1. The two paths lead to similar types of estimates, although the
parameters in the latter may be more explicit. Moreover, in the same setting
the abstract CLT, Theorem 2.4, is also applicable.



5
Piecewise Expanding Maps

The main goal of this chapter is to introduce piecewise expanding maps
on the interval. This is the simplest case where statistical properties are studied
in the presence of discontinuities. We plan to:

1 Define expanding maps and list their basic properties;

2 Study some examples of transfer operators for this class of dynamics;

3 Study the action of the transfer operator on the space of densities of
bounded variation;

4 Use the quasi-compactness results to derive statistical properties for
Birkhoff sums. This will be done in a similar fashion to the previous
chapter.

5.1
Basic Properties

Definition 5.1 (Piecewise monotone map) Let I = [a, b] be a compact
interval. A map f : I → I is called piecewise monotonic if there is a partition
P of I, a = a0 < a1 < · · · < aq = b, and a number n ≥ 1 such that:

1 f |(ai−1,ai) is a Cr function, For all i = 1, . . . , q which admits a extension
to a Cr function on the closed interval [ai−1, ai].

2 |f ′(x)| > 0 on (ai−1, ai), for i = 1, . . . , q.

Example 5.1 (tent map) Let I = [0, 1] and u ∈ I the tent map with height u
is given by:

f(x) =

2ux if 0 < x < 1
2

2u(1 − x) if 1
2 ≤ x ≤ 1

(5-1)

Example 5.2 Let I = [0, 1]], f(x) = 2x mod 1 is called the doubling map:

f(x) =

2x if 0 < x < 1
2

2x− 1 if 1
2 ≤ x ≤ 1

(5-2)



Chapter 5. Piecewise Expanding Maps 54

Figure 5.1: Doubling Map

Figure 5.2: Tent Map

5.2
Transfer Operators

Piecewise expanding maps are non-singular so the construction of the
transfer operator is the same.

Example 5.3 (Doubling Map) Let f : I → I, then Lh(x) = h( x
2 )+h( x+1

2 )
2 .

In fact, the transfer operator admits a nice closed formula which
generalizes the example above.

Proposition 5.1 Let f : I → I be a piecewise monotone map. Then

Lh(x) =
∑

x′∈f−1(x)

h(x′)
|f ′(x)| . (5-3)

Proof See ([4] page 86) ■
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Example 5.4 (Transfer Operator for the Tent Map)

Lh(x) =
h( x

2u)
2u +

h(2u−x
2u )

2u . (5-4)

Unlike the case of expanding maps, the space of Hölder continuous
functions is not necessarily preserved by the transfer operator for any
monotonic function. Let us define the specific class of dynamics we will study.

Definition 5.2 (Piecewise Expanding) A map f : I → I is called piecewise
expanding if there exists a partition P of I, a = a0 < a1 < · · · < aq = b, and a
number n ≥ 1 such that:

1) The restriction f |(ai−1,ai) to each (ai−1, ai) is C2 , and |f ′(x)| ≥ λ > 2
for all i = 1, . . . , q and for all x ∈ (ai−1, ai).

2)
ˆ
I

|f ′′|
f ′2 dm < ∞.

Remark 5.1 The Tent and Doubling maps trivially satisfy condition 2) above.
In fact, these examples already satisfy ∥ f ′′

f ′2 ∥∞ < ∞. The next example, which
appears in the study of the Lorenz attractor (see [2]), does not have a uniform

bound on the distortion |f ′′|
f ′2 , but it admits a bounded L1 norm. Therefore, the

results we derive in this chapter also apply to this map.

Example 5.5 (One dimensional Lorenz map) Let I = [0, 1]. The one
dimensional Lorenz map with parameters θ ≥ 0 and 0 ≤ α < 1 is given
by

f(x) =

θ|x− 2|α if 0 ≤ x < 1
2

(1 − θ)|x− 2|α if 1
2 < x ≤ 1

The action of transfer operators corresponding to piecewise expanding
maps improves the regularity of the functions of bounded variation.

5.3
Bounded Variation Functions

In this section we collect some relevant facts about bounded variation
(BV) functions.

Definition 5.3 Let φ : I → R. The variation var φ is defined by:

varφ = sup
n∑
i=1

|φ(xi−1) − φ(xi)| (5-5)

where the supremum is taken over all the finite partitions of the interval
I. Given a specific partition P, we denote by varPφ the variation over the
partition P.
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Definition 5.4 A function φ is said to be of bounded variation if varφ <
∞. We define the space of functions of bounded variation as

BV = {φ ∈ L1 : φ < ∞}.

Proposition 5.2 The following simple properties of the variation hold.

1. var(φ1 + φ2) ≤ varφ1 + varφ2.

2. var(φ1φ2) ≤ varφ1supφ2 + supφ1varφ2.

3. var(φ1ψ) ≤ varφ1supφ2 + supψ′ ´ |φ|dm, if ψ is C1.

4. var|φ| ≤ varφ.

Proof see [3] ■

5.4
Quasi-Compactness

In this section we consider the space BV endowed with the norm
||φ||BV := varφ + ||φ||L1 . Instead of studying the space of densities directly
we will actually study the transfer operator on measures. First we define the
action of the following functionals on the set of measures on I.

|µ| = sup
φ∈C0,∥φ∥∞=1

|µ(φ)| (5-6)

∥µ∥ = sup
φ∈C1,∥φ∥∞=1

|µ(φ′), | (5-7)

where we denote by µ(φ)

µ(φ) =
ˆ
I

φdµ.

These functionals are in fact norms on the space of signed measures M(I).
Note that, for each φ ∈ C0(I;R) and ϵ > 0, one can find φϵ ∈ C1(I;R)

such that
|φ− φϵ| ≤ ϵ|φ|∞ .

Writing µ(φ) = µ(φ− φϵ) + µ(φϵ) we obtain

µ(φ) ≤ |µ|ϵ|φ|∞ + µ(φϵ) = |µ| ϵ|φ|∞ + µ( d
dt

ˆ t

0
φϵ) = (|µ|ϵ+ ||µ||(1 + ϵ))|φ|∞.

Since ϵ is arbitrary we get
|µ| ≤ |||µ|| .
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Lemma 5.3 Let B := {µ ∈ M(I) : ||µ|| < ∞}. If µ ∈ B then µ is absolutely
continuous with respect to the Lebesgue measure. Moreover,

dµ

dm
∈ Lp, for all p < ∞.

Proof Let φ ∈ C0(I;R). Then for each ϵ ∈ (0, 1) there exists φϵ ∈ C1(R;R),
supported in [−ϵ, 1 + ϵ], such that |φ − φϵ|C0(I;R) ≤ ϵ, |φϵ|∞ ≤ 1, and
|φϵ − φ|∞ ≤ |φ|∞(1 + ϵ). Let,

F (ψ) := −1
2 ||ψ||

and define the following convolution

wϵ(x) =
ˆ
F (x− z)φϵ(z)dz.

Note that w′′
ϵ = φϵ, Therefore,

µ(φ) ≤ C(|µ| + ||µ||)|φ|Lp

so the linear functional µ : C0 → R can be extended to a linear functional on
Lp. Since the dual of Lp is Lq where q is the dual of p, that is, 1

p
+ 1

q
= 1. It

follows that there exists h ∈ Lq such that µ(φ) =
´
h(x)φ(x)dx. ■

Remark 5.2 For all µ ∈ B setting h := dµ
dm

, we have that |h|L1 = |µ| and
|h|BV = ||µ||. See [3] chapter 3.

Theorem 5.4 Let f : I → I be a piecewise expanding map. Then the
corresponding transfer operator is quasi-compact on the space of BV densities.

As in chapter 4, the proof of the quasicompactness theorem comes from
the verification of the hypothesis in Ionescu-Tulcea and Marinescu’s theorem.
We do that in the following series of lemmas.

Lemma 5.5 (Continuity) ||.||L1 is continuous in BV (I).
Proof If ||φn − φ||BV → 0 by definition we must have ||φn − φ||L1 → 0. By
the dominated convergence theorem it follows that ||φn||L1 → ||φ||L1 ■

Lemma 5.6 (Pre-compactness) The ball B = {µ ∈ B : ∥µ∥ ≤ 1} is relatively
compact in (M(X), |.|)
Proof For each t ∈ N, let us consider a partition {Aj} of [0, 1] into intervals
of size t−1. Define

P ′
t(x) = t

∑
j

1Aj
(x)
ˆ
Aj

φ(x)dx.
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Firstly of all, note that

P ′
tµ(φ) := µ(Ptφ) =

ˆ
hPtφ =

ˆ
Pth · φ

and
P ′
tµ(φ′) =

ˆ
hPtφ

′ = ||µ|| |
ˆ x

0
Ptφ

′dz| ≤ 4||µ||

In addition,

µ(Ptφ− φ) = ||µ|| |
ˆ x

0
Ptφ− φdz| .

If xk ∈ Aj = [j/t, (j + 1)/t), then

|
ˆ x

0
(Ptφ− φ)dz| =

ˆ xk

jt−1
φ ≤ |φ|∞t−1 .

Thus
||P ′

tµ|| ≤ 4||µ|| and |P ′
tµ− µ| ≤ 42 t−1 .

Furthermore, P ′
tµ = t

∑
i=1 µ(Ai)mAi

. So the range of P ′
t is a finite

dimensional space. This implies that if {µnj
} ⊂ B, then {P ′

tµ} is in a finite
dimensional bounded set, so it is compact. Therefore, there exists µt and nj

such that limj→∞ ||P ′
tµnj

− µt|| = 0. In addition, for t′ ≥ t,

|µt − µt′| ≤ |µt − P ′
tµnj

| + |µt − P ′
t′µnj

| + |P ′
tµnj

− P ′
t′µnj

| ≤ Ct−1

It follows that there exists tj and a measure µ such that

lim
j→∞

|µ− Ptjµnj
| = 0 ,

which proves the pre-compactness of B ■

Remark 5.3 We are working with measures in B, which by lemma 5.3 must be
absolutely continuous. We recall that the transfer operator and the pushforward
f∗ are related by d(f∗µ) = (Lh)dx, if dµ = hdx.

Lemma 5.7 (Boundness) For each µ ∈ B, we have |f∗µ| ≤ |µ|.

Proof Given µ ∈ B,

|f∗µ| = sup
φ∈C0,|φ|∞=1

|µ(φ ◦ f)| ≤ |µ|,

which concludes the proof. ■
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The next lemma is a Lasota-Yorke inequality. We closely follow the proof
in [10].

Lemma 5.8 (Lasota-Yorke Inequality) Let f be a piecewise expanding map
and µ ∈ B. Then

∥f∗µ∥ ≤ 2
inf f ′ ∥µ∥ + 2

min(di − di+1)
µ(1) + 2µ

(
f ′′

(f ′)2

)
(5-8)

Proof Note that

f∗µ(φ′) =
∑

Z∈{(di,di+1)|i∈(1,...,n−1)}
f∗µ(φ′χZ),

since f∗µ gives zero weight to the points di ( f∗µ is absolutely continuous).For
each such Z define φZ to be linear and such that φZ = φ on ∂Z, then define
ψZ = φ−φZ , on Z, and extend it to [0, 1] by setting it to zero outside Z. This
is a continuous function. Moreover, for each x ∈ Z, |φ′

Z |∞ ≤ 2|φ|∞
min(di−di+1) .Thus,

|f∗µ(φ′)| =
∣∣∣∣∣∑
Z

µ(ψ′
Z ◦ fχf−1(Z)) + µ(φ′

Z ◦ fχf−1(Z))
∣∣∣∣∣

Note that on each Z we have ψ′ ◦ Z ◦ f = (ψ
′
Z◦f
f ′ )′ + (ψZ◦f)f ′′

(f ′)2 ,

|f∗µ(φ′)| ≤
∑
Z

µ((ψZ ◦ f(f ′)−1)′χf−1(Z))

+
∑
Z

µ((ψZ ◦ f)f ′′(f ′)−2χf−1(Z))

+ 2|φ|∞µ(1)
min(di − di+1)

≤ |µ((ψZ ◦ f(f ′)−1)′)|

+ 2|φ|∞µ(|f ′′(f ′)−2|) + 2|φ|∞µ(1)
min(di − di+1)

.

(5-9)

Note that
|µ((ψZ ◦ f

f ′ )′)| ≤ |µ| |ψZ ◦ f
f ′ |∞ ≤ ||µ|| 1

inf f ′ |φ|∞

From which we obtain

|f∗µ| ≤ 2|φ|∞
inf f ′ ∥µ∥ + 2φ∞

min(di − di+1)
µ(1) + 2φ∞µ

(
|f ′′|
(f ′)2

)

Taking the supremum over all φ ∈ C1(I), with |φ|∞ = 1 we get,

∥f∗µ∥ ≤ 2
inf f ′ ∥µ∥ + 2

min(di − di+1)
µ(1) + 2µ

(
|f ′′|
(f ′)2

)
.

This concludes the proof of the Lasota-Yorke inequality. ■
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5.5
LDT via Decay of Correlations

All the hypotheses of Ionescu-Tulcea and Marinescu theorem have been
verified. We then conclude that the transfer operator L associated to piecewise
expanding maps is quasi compact on the space of functions of bounded
variation. We may have multiple peripheral eigenvalues. In fact, the peripheral
spectrum σBV (L) ∩ {|z| = 1} is a finite union of cyclic groups (see [8] Lemma
1.58). The next lemma relates the topological transitivity (mixing) of f to the
peripheral spectrum of L.

Lemma 5.9 If the map f is topologically transitive, then 1 is a simple
eigenvalue for f . If all the powers of f are topologically transitive, then {1} is
the entire peripheral spectrum.

Proof If 1 is not a simple eigenvalue, then there exists an invariant set A
such that µ(A) ̸∈ {0, 1}. However, 1A is in BV , which implies that A contains
an open set, and the same applies to Ac (this is true only for d = 1 ) . By
topological transitivity, there is an orbit that visits both of these open sets;
hence, the sets are not invariant. The same argument applied to fn establishes
the lemma. ■

In the following we will restrict ourselves to the case where f is
topologically mixing so by the lemma above it has a unique absolutely
continuous invariant measure.

Corollary 2 Let f be a piecewise expanding map. Then f has exponential decay
of correlations of the BV functions against the L1 functions.

Proof This follows the same reasoning as that of proposition 4.10. ■

From the corollary above and Theorem 3.6, we conclude the following.

Theorem 5.10 Let f : M → M be a topologically mixing piecewise expanding
map. Let B ⊂ L∞(µ) be the set of functions of bounded variation, φ ∈ B. Then
for every ϵ > 0 there exist c(ε) > 0 and n(ε) ∈ N such that for all n ≥ n(ε)

µ

{
x ∈ M :

∣∣∣∣∣ 1nSn(φ(x)) −
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ 2e−c(ε)n,

We note that τ(ε) and n(ε) are explicitly determined by the input data.
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5.6
Statistical Properties via Markov Systems

This section follows the same routine as the last section of the previous
chapter. We will associate to our original transfer operator a new one which
will be Markov. Let h be the unique absolutely continuous invariant measure
of f , let us consider dµ = hdm as our new reference measure and define
Qφ(x) = df∗µφ

dµ
, the transfer operator of f with reference measure µ. We recall

some properties of this operator already proved in chapter 3.

Proposition 5.11 The operator Q defined above satisfies the following
properties.

1. Q is Markov,

2. µ is a stationary measure with respect to Q,

3. (Qφ)h = L(φh).

Remark 5.4 The formula in the above proposition implies that Q has the
following closed form:

Qφ(x) =
∑

x′∈f−1(x)

h(x′)
h(x)

1
|detDx′f |

φ(x′) . (5-10)

It follows that the associated Markov kernel is

Kx(y) =
∑

x′∈f−1(x)

h(x′)
h(x)

1
|detDx′f |

δx′ , (5-11)

so this Markov chain sends x to one of its pre-images.

Proposition 5.12 The Markov system (M,K, µ,BV ) is strongly mixing with
exponential rate.
Proof It follows from Proposition 3.12 . ■

Theorem 5.13 (LDT) Let f : M → M a topologically mixing piecewise
expanding map, consider φ ∈ BV . Given any ε > 0 there are n(ε) ∈ N and
c(ε) > 0 such that for all n ≥ n(ε) we have

µ

{∣∣∣∣∣ 1nSn(φ(x)) −
ˆ
M

φdµ

∣∣∣∣∣ > ε

}
≤ Ce−c(ε)n .

The parameters n(ε) and c(ε) only depend (explicitly) on the BV -norms of φ,
g and 1

g
.

Proof This follows the same reasoning as that of theorem 2.2. ■

In the same context we also have a CLT.
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Theorem 5.14 (CLT) If
´
M
φ = 0 and φ is not a coboundary, i.e, there is

no ψ ∈ C0(M) such that φ(x) = ψ(x) − ψ(f(x)), then there exists σ(φ) > 0,
such that

Sn(φ(x))
σ

√
n

d−→ N (0, 1).



6
Limit Laws for Random Toral Translations

In this chapter we study a partially hyperbolic dynamical system which
is not predominantly hyperbolic, namely the skew-product encoding a random
toral translation.

Let Σ := Td, where T = R /Z is the one-dimensional torus, m the
Haar measure on the d-dimensional torus Td and let µ ∈ Prob(Σ) be another
probability measure.

Let X := ΣZ and consider (X,µZ) as a product probability space of
symbols where each symbol is an element of the torus. Let σ : X → X be the
bilateral shift map. Finally, define the skew-product map

f : X × Td → X × Td, f(ω, θ) = (σω, θ + ω0).

The triple (X×Td, f, µZ×m) is called a mixed random-quasiperiodic dynamical
system. This dynamical system was studied by (Cai et al) in [5, 6] and this
chapter closely follows their work. The fiber dynamics encodes the following
Markov chain:

θ → θ + ω0 → θ + ω0 + ω1 → . . .

Its transition kernel is given by K : Td → Prob(Td),

Kθ =
ˆ
δθ+ω0dµ(ω0) .

The corresponding Markov operator is

Q : L∞(Td) → L∞(Td), Qφ(θ) =
ˆ
φ(θ + ω0)dµ(ω0).

The Lebesgue measure m is K-stationary. Therefore (Td, K,m) is a Markov
system. Now we recall a basic definition in Fourier analysis.

Definition 6.1 Given µ ∈ Prob(Td), the Fourier coefficients of µ are

µ̂(k) =
ˆ
Td

ek(x)dµ(x) ,
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where ek(x) = e2πi<k,x> for k ∈ Zd and x ∈ Td are the characters of the
multiplicative group Td.

Lemma 6.1 The characters {ek : k ∈ Zd} form a complete basis of
eigenvectors for the Markov operator Q : L2(Td) → L2(Td). That is, Qek =
µ̂(k)ek, ∀k ∈ Zd, and if φ = ∑

k∈Zd φ̂(k)ek in L2(Td,m), then

Qφ =
∑
k∈Zd

µ̂(k)φ̂(k)ek in L2(Td,m).

Proof By the linearity and boundedness of Q, it is enough to prove the first
equality. For any θ ∈ T d and any k ∈ Zd, we have

Qek(θ) =
ˆ
T d

ek(θ + ω0) dµ(ω0)

=
ˆ
T d

ek(θ)ek(ω0) dµ(ω0)

= ek(θ)
ˆ
T d

ek dµ

= ek(θ)µ̂(k).

Thus, the result follows. ■

We now recall the definition of mixing for the Markov operator and
characterize it in terms of the Fourier coefficients of the µ measure.

Definition 6.2 The system (Q,m) is called mixing if ∀φ ∈ C0(Td),

Qnφ(θ) →
ˆ
Td

φdm as n → ∞, ∀θ ∈ Td.

Theorem 6.2 The following statements are equivalent:

1. (Q,m) is mixing.

2. |µ̂(k)| < 1, ∀k ∈ Zd \ {0}.

3. ∀k ∈ Zd \ {0}, ∀E ⊂ Td with µ(E) = 1, ∃α ̸= β ∈ E such that
⟨k, α− β⟩ /∈ Z.

4. The semigroup generated by the set S := {α − β : α, β ∈ supp(µ)} is
dense in Td.

We say that µ is mixing if any of the statements above is true.

Proof
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1. (1) ⇒ (2): If there is k ∈ Zd\{0} such that |µ̂(k)| = 1, then since Qnek =
µ̂(k)nek for all n ∈ N, we have |Qnek| = |µ̂(k)nek| = 1 ↛ 0 =

´
ek dm as

n → ∞. This contradicts the mixing condition.

2. (2) ⇒ (1): We first establish the convergence in Definition 6.2 for
trigonometric polynomials, then proceed by approximation. Let p =∑

|k|≤N ckek be a trigonometric polynomial. Note that
´
p dm = c0 and

µ̂(0) = 1, so we have

Qnp−
ˆ
p dm =

∑
0<|k|≤N

ckµ̂(k)nek.

Hence, ∥∥∥∥∥Qnp−
ˆ
p dm

∥∥∥∥∥
C0

≤
∑

0<|k|≤N
|ck||µ̂(k)|n.

Let σ := max{|µ̂(k)| : 0 < |k| ≤ N} < 1. Then,
∥∥∥∥∥Qnp−

ˆ
p dm

∥∥∥∥∥
C0

≤
∑

0<|k|≤N
|ck|σn → 0 as n → ∞.

Given any observable φ ∈ C0(Td) and given ϵ > 0, by the Weierstrass
approximation theorem, there exists a trigonometric polynomial p such
that ∥φ−p∥C0 < ϵ. Moreover, by the previous argument, there is n(ϵ) ∈ N
such that ∥Qnp−

´
p dm∥C0 < ϵ for all n ≥ n(ϵ). Writing φ = p+φ− p,

we have
Qnφ = Qnp+ Qn(φ− p)

and ˆ
φdm =

ˆ
p dm+

ˆ
(φ− p) dm.

Then, for all n ≥ n(ϵ),
∥∥∥∥∥Qnφ−

ˆ
φdm

∥∥∥∥∥
C0

≤
∥∥∥∥∥Qnp−

ˆ
p dm

∥∥∥∥∥
C0

+∥φ− p∥C0
+∥Qn(φ− p)∥C0

≤ 3ϵ,

which proves the mixing of (Q,m), and it also shows that the convergence
in Definition 3.1 must be uniform.

3. (2) ⇔ (3): Let k ∈ Zd \ {0}. Then |µ̂(k)| = 1 if and only if
ˆ
e2πi⟨k,α⟩ dµ(α) = 1,

which, by the lemma below, is equivalent to e2πi⟨k,α⟩ being constant for
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µ-a.e. α ∈ Σ. This holds if and only if there is E ⊂ Σ with µ(E) = 1
such that for all α, β ∈ E, e2πi⟨k,α⟩ = e2πi⟨k,β⟩. This is equivalent to
e2πi⟨k,α−β⟩ = 1 for all α, β ∈ E, establishing the claim.

4. (3) ⇒ (4): The closed semigroup H generated by S can be written
as H = ⋃

n≥1 Sn, where Sn := S + Sn−1. By the Poincaré recurrence
theorem, H is also a group. Assuming by contradiction that H ̸= Td, by
Pontryagin’s duality for locally compact abelian groups, there exists a
nontrivial character ek : Td → C containing H in its kernel. In particular,
this implies that there exists k ∈ Zd \ {0} such that ⟨k, θ⟩ ∈ Z for all
θ ∈ S, which is a contradiction.

5. (4) ⇒ (3): Assume by contradiction that for some k ∈ Zd \ {0} and
E ⊂ Td, with full µ-measure, we have ⟨k, β − α⟩ ∈ Z or equivalently
e2πi⟨k,β−α⟩ = 1, for all α, β ∈ E. Because E is dense in supp(µ), this
implies by continuity that e2πi⟨k,θ⟩ = 1 for all θ ∈ S. Then ek is a
nontrivial character of Td, and H := {θ ∈ Td : ek(θ) = 1} is a proper
compact subgroup of Td. The assumption implies that S ⊂ H, hence the
closed semigroup generated by S is contained in H, a contradiction with
(4).

■

Lemma 6.3 Let (Ω, ρ) be a probability space. Assume that f : Ω → C is
Lebesgue integrable. If ˆ

Ω
f dρ =

ˆ
Ω

|f | dρ,

then arg f is constant ρ-a.e. That is, ∃θ0 ∈ R such that f(x) = eiθ0|f(x)| for
ρ-a.e. x ∈ Ω.

Proof Let θ0 := arg
(´

Ω f dρ
)
, so we can write

ˆ
Ω
f dρ = eiθ0

ˆ
Ω

|f | dρ.
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Then

0 =
ˆ

Ω
f dρ−

ˆ
Ω

|f | dρ

= e−iθ0

ˆ
Ω
f dρ−

ˆ
Ω

|f | dρ

=
ˆ

Ω
e−iθ0f − |f | dρ

= Re
(ˆ

Ω
e−iθ0f − |f | dρ

)

=
ˆ

Ω
Re(e−iθ0f) − |f | dρ.

Since Re(e−iθ0f) ≤ |e−iθ0f |, it follows that Re(e−iθ0f) = |e−iθ0f | ≥ 0, ρ-a.e. In
particular, Im(e−iθ0f) = 0 ρ-a.e. Therefore,

e−iθ0f = Re(e−iθ0f) = |f | ρ-a.e.

which implies f = eiθ0|f | ρ-a.e. ■

Now we aim to obtain a strong mixing condition as in Definition 2.9.
In order to do that we must consider a quantitative version of mixing for the
measure µ.

Definition 6.3 We say that µ ∈ Prob(Td) satisfies a mixing Diophantine
condition (mixing DC) if

|µ̂(k)| ≤ 1 − γ

|k|τ
, ∀k ∈ Zd \ {0},

for some γ, τ > 0. In this case, we write µ ∈ DC(γ, τ).

Remark 6.1 The mixing DC is inspired by the concept of the Diophantine
condition (DC) for points on the torus. We say that α ∈ Td satisfies the
Diophantine condition DC(γ, τ) if

inf
j∈Z

|⟨k, α⟩ − j| ≥ γ

|k|τ
, ∀k ∈ Zd \ {0}.

It is usually assumed when talking about a DC for points on the torus that
γ > 0 and τ > d. This is because when τ < d, the set of points satisfying
DC(γ, τ) is empty; when τ = d, it has Lebesgue measure zero on Td; while
when τ > d, the set ⋃γ>0 DC(γ, τ) has full Lebesgue measure.

We will also need the following theorem on approximation by
trigonometric polynomials.
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Theorem 6.4 (Jackson) If u ∈ Cα(Td), that is, if u is α-Hölder continuous,
then for all n ≥ 1 there exists a trigonometric polynomial pn of degree ≤ n

satisfying:
||u− pn||∞ ≤ Cn−α

for some universal constant C > 0.

Proof See p.49 in [16] ■

The following result shows that the mixing DC of a measure µ ensures
the strong mixing of the corresponding Markov system (Q,m).

Proposition 6.5 If µ ∈ DC(γ, τ), then Q is strongly mixing with a power
rate on any space of α-Hölder continuous functions Cα(Td). More precisely,
there exist C < ∞ and p > 0 such that∥∥∥∥∥Qnφ−

ˆ
φdm

∥∥∥∥∥
C0

≤ C∥φ∥α
1
np

∀φ ∈ Cα(Td), n ≥ 1.

In fact, p can be chosen as α
τ

− ι for any ι > 0, in which case C will depend
on ι.

Proof Fix an observable φ ∈ Cα(Td). The trick for obtaining a sharp rate
of convergence is to approximate φ by trigonometric polynomials, with an
error bound (and algebraic complexity) correlated to the number of iterates
of the Markov operator. Fix n to be this number of iterates. Let N be the
degree of approximation, which will be chosen later. Since φ ∈ Cα(Td), by
Jackson’s approximation theorem, there exists a trigonometric polynomial pN ,
with deg pN ≤ N , such that for some universal constant C0 < ∞,

∥φ− pN∥C0 ≤ C0∥φ∥α
1
Nα

.

In fact, pN is the convolution of φ with the Jackson kernel, so

pN =
∑

|k|≤N
ckek,

where the coefficients ck satisfy |ck| ≤ |φ̂(k)| ≤ ∥φ∥α. We can then write

φ = pN + (φ− pN) =: pN + rN .

By linearity, we have
Qnφ = QnpN + QnrN

and ˆ
φdm =

ˆ
pN dm+

ˆ
rN dm.
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Thus,
Qnφ−

ˆ
φdm = QnpN −

ˆ
pN dm+ QnrN −

ˆ
rN dm,

which shows that∥∥∥∥∥Qnφ−
ˆ
φdm

∥∥∥∥∥
C0

≤
∥∥∥∥∥QnpN −

ˆ
pN dm

∥∥∥∥∥
C0

+ ∥QnrN∥C0 +
ˆ

|rN | dm.

Due to the bound on rN = φ− pN and the fact that Q is a bounded operator
with norm 1 on C0(Td), the second and third terms on the right-hand side
above are smaller than C0∥φ∥α 1

Nα . It remains to estimate the first term. Since
pN = ∑

|k|≤N ckek,

QnpN =
∑

|k|≤N
ckQnek =

∑
|k|≤N

ckµ̂(k)nek.

This implies ∥∥∥∥∥QnpN −
ˆ
pN dm

∥∥∥∥∥
C0

≤
∑

0<|k|≤N
|ck||µ̂(k)|n

≤ ∥φ∥α
∑

0<|k|≤N
(1 − γ|k|−τ )n

≤ |φ∥α(2N)d(1 − γN τ )n.

Using the inequality (1−x) 1
x ≤ e−1 for x ∈ (0, 1), we have (for N large enough)

(1 − γN τ )n ≤ e−nγNτ

.

Combining the above estimates, we obtain∥∥∥∥∥Qnφ−
ˆ
φdm

∥∥∥∥∥
C0

≤ 2d∥φ∥α(2N)de−nγNτ + 2C0∥φ∥α
1
Nα

.

Fix any ϵ > 0 and choose N := (nγ)
1

1−ϵ
τ . Then

1
Nα

= 1
γ

α
τ (1 − ϵ) 1

n
( α

τ
−1)

= C1
1
np
,

where p := α
τ
(1 − ϵ) = α

τ
− o(1), while

(2N)de−nγNτ = (nγ)
d

1−ϵ e−(nγ)ϵ ≪ 1
np

for n large enough. This completes the proof provided the constant C is chosen
large enough depending on α, γ, τ , d, and ϵ. ■
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As a consequence of the mixing of this operator and the abstract CLT &
LDT theorems, we conclude the following.

Theorem 6.6 Assume that µ ∈ DC(γ, τ). Then for all φ ∈ Cα(Td), for all
θ ∈ Td, and for all ϵ > 0, there exists n(ϵ) ∈ N such that for all n ≥ n(ϵ), we
have

µN
{∣∣∣∣∣ 1nSnφ−

ˆ
φdm

∣∣∣∣∣ > ϵ

}
< e−c(ϵ)n,

where c(ϵ) = cϵ2+ 1
p , n(ϵ) = nϵ− 1

p for constants c > 0 and n ∈ N, which depend
explicitly and uniformly on the data.

Theorem 6.7 Assume that µ ∈ DC(γ, τ) and let α > τ . Then for every
φ ∈ Cα(Td) nonzero with zero mean, there exists σ = σ(φ) > 0 such that

Snφ

σ
√
n

d−→ N (0, 1).
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