Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: GRAPH-BASED CLUSTERING IN DEEP FEATURE SPACE FOR SHAPE MATCHING
Autor: DANIEL LUCA ALVES DA SILVA
Colaborador(es): WALDEMAR CELES FILHO - Orientador
PAULO IVSON NETTO SANTOS - Coorientador
Catalogação: 02/JUL/2024 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67175&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67175&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.67175
Resumo:
Engineering projects rely on complex 3D CAD models throughout their life cycle. These 3D models comprise millions of geometries that impose storage, transmission, and rendering challenges. Previous works have successfully employed shape-matching techniques based on deep learning to reduce the memory required by these 3D models. This work proposes a graph-based algorithm that improves unsupervised clustering in deep feature space. This approach dramatically refines shape-matching accuracy and results in even lower memory requirements for the 3D models. In a labeled dataset, our method achieves a 95 percent model reduction, outperforming previous unsupervised techniques that achieved 87 percent and almost reaching the 97 percent reduction from a fully supervised approach. In an unlabeled dataset, our method achieves an average model reduction of 87 percent versus an average reduction of 77 percent from previous unsupervised techniques.
Descrição: Arquivo:   
COMPLETE PDF