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Abstract

Alves da Silva, Daniel Luca; Celes Filho, Waldemar (Advisor); Ivson,
Paulo (Co-Advisor). Graph-Based Clustering In Deep Feature
Space for Shape Matching. Rio de Janeiro, 2024. 55p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Engineering projects rely on complex 3D CAD models throughout their
life cycle. These 3D models comprise millions of geometries that impose stor-
age, transmission, and rendering challenges. Previous works have successfully
employed shape-matching techniques based on deep learning to reduce the
memory required by these 3D models. This work proposes a graph-based al-
gorithm that improves unsupervised clustering in deep feature space. This ap-
proach dramatically refines shape-matching accuracy and results in even lower
memory requirements for the 3D models. In a labeled dataset, our method
achieves a 95% model reduction, outperforming previous unsupervised tech-
niques that achieved 87% and almost reaching the 97% reduction from a fully
supervised approach. In an unlabeled dataset, our method achieves an aver-
age model reduction of 87% versus an average reduction of 77% from previous
unsupervised techniques.

Keywords
3D CAD models; Point cloud; Shape matching; Deep learning;

Clustering.



Resumo

Alves da Silva, Daniel Luca; Celes Filho, Waldemar; Ivson, Paulo.
Clusterização Baseada em Grafo em Espaço de Características
Profundo para Correspondência de Formas. Rio de Janeiro, 2024.
55p. Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Projetos de engenharia dependem de modelos CAD 3D complexos du-
rante todo o seu ciclo de vida. Esses modelos 3D contêm milhões de geo-
metrias que impõem desafios de armazenamento, transmissão e renderização.
Trabalhos anteriores empregaram com sucesso técnicas de correspondência de
formas baseadas em aprendizado profundo para reduzir a memória exigida por
esses modelos 3D. Este trabalho propõe um algoritmo baseado em grafos que
melhora o agrupamento não supervisionado em espaços profundos de caracte-
rísticas. Essa abordagem refina drasticamente a precisão da correspondência
de formas e resulta em requisitos de memória ainda mais baixos para os mode-
los 3D. Em um conjunto de dados rotulado, nosso método atinge uma redução
de 95% do modelo, superando as técnicas não supervisionadas anteriores que
alcançaram 87% e quase atingindo a redução de 97% de uma abordagem total-
mente supervisionada. Em um conjunto de dados não rotulado, nosso método
atinge uma redução média do modelo de 87% contra uma redução média de
77% das técnicas não supervisionadas anteriores.

Palavras-chave
Modelos CAD 3D; Nuvens de ponto; Correspondência de formas;

Aprendizado profundo; Clusterização.
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And the only word there spoken was the
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1
Introduction

Computer-Aided Design models have a pivotal role in modern industrial
practice. Their usage is present throughout various phases of engineering
endeavors, starting from design, building, and subsequent operation. The
prevalence of Building Information Modeling (6), in conjunction with the
growing adoption of Digital Twins for smart manufacturing (7), resulted in
an increasing need for more intricate and comprehensive 3D CAD models, as
illustrated by Fig. 1.1. Consequently, such models’ storage, transmission, and
rendering have become a challenge even to modern hardware capabilities.

These models have many regular geometries, meaning many geometric
shapes inside them could refer to one triangle mesh and many transformation
matrices. That is, many meshes are instances of the same base mesh. However,
instancing information is usually absent in such models. As a result, instance
detection is a common and vital preprocessing stage before they are delivered
to final users. The redundancy detection also enables rendering performance
improvements using hardware-accelerated instance rendering (8).

Ivson and Celes (8) exploited geometric regularity to reduce the sizes of
models. Their technique was based on least squares optimization. Their work
accomplished impressive model reductions, but their method heavily relies on
mesh topology, as the error evaluation depends on the number of vertices and

Figure 1.1: Example of CAD model with close to 9 million geometries
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their ordering. Figueiredo et al. (9) proposed a deep learning-based framework
for shape matching that has overcome the dependency on mesh topology but
relied on large annotated data sets. Their work was based on deep learning
models that processed uniform point clouds sampled on the surfaces of the 3D
CAD geometries. Most recently, Figueiredo et al. (5) proposed an unsupervised
deep learning-based framework that has overcome the need for large annotated
data sets through unsupervised feature learning and unsupervised clustering
algorithms but falls short in model reduction when compared to the supervised
counterpart.

Our work builds on top of the existing unsupervised shape-matching
framework presented by Figueiredo et al. (5) to further exploit the similarity of
geometries close in the feature space. We achieve significantly better results by
changing the clustering step. We construct a graph that captures relationships
between meshes and derive clusters based on this representation.

Once we can determine which meshes are instances of other meshes, the
goal of reducing the model size can be achieved by finding the smallest subset
of meshes required to represent the remaining meshes of the model. This is a
problem of Minimum Weighted Set Cover (MWSC), a well-known NP-Hard
problem (10). An alternative way to model our problem is as a Minimum
Weighted Directed Dominating Set (MWDDS). We design an algorithm to
represent our data in a directed graph such that every mesh corresponds to
a node with an associated weight, and an arc connects a node to every one
of its instances. We then exploit the connections in the graph to extend our
knowledge of instances and find an approximate solution to the MWDDS while
evading to compute all arcs.

Our proposed graph-based algorithm improves unsupervised clustering,
resulting in greater shape-matching accuracy and even lower 3D model sizes.
We verify that our method achieves an average model reduction of 87% in
an unlabeled dataset versus an average reduction of 77% from previous unsu-
pervised techniques. In a labeled dataset, our method achieves a 95% model
reduction, outperforming previous unsupervised techniques that acquired 87%
and almost getting as far as the 97% reduction from a fully supervised ap-
proach, effectively bridging the gap between both.

The structure of this document is as follows: Chapter 2 introduces the
core concepts of this work; Chapter 3 discusses previous works on shape-
matching techniques and geometry registration; In Chapter 4, we present our
shape-matching algorithm; In Chapter 5 we detail our experiments, the model
reductions we achieved and highlight critical aspects of our work in comparison
to previous ones; In Chapter 6, we conclude and propose future work.



2
Theoretical Background

This chapter showcases concepts and building block techniques for our
work. We introduce basic notions of deep neural networks and autoencoders.
Afterward, we detail two neural network architectures tailored specifically
for processing point cloud data. After that, we briefly discuss the idea of
clustering and mention two clustering algorithms. Then, we formulate the
shape-matching problem as a minimum dominating set problem and justify
our algorithm design choices.

2.1
Deep Neural Networks

Neural networks are mathematical models that draw their name and
inspiration from neuroscience (1). The building blocks of neural networks are
interconnected neurons that apply individual transformations to their input.
Deep neural network models are referred to as deep models because they
contain several intermediate layers between input and output, called hidden
layers. These layers can learn progressively low-level to high-level patterns of
the data.

A fundamental example of a deep learning model is the multilayer
perceptron (MLP). An MLP is a model of stacked layers of neurons with links
connecting every neuron in each layer to every neuron in the subsequent layer.
MLPs are a type of feedforward network because there is no feedback link in
its layers. For example, MLP architectures have been used to tackle problems
in the healthcare domain related to breast cancer (11), Parkinson’s disease,
diabetes, coronary heart disease, and orthopedic patients classification (12). It
has been proven that MLPs can approximate any function (13), however, for
practical reasons, this architecture may be inadequate for some domains where
specific architectures have been demonstrated more successful.

One such example is convolutional neural networks (14). This type of
network is based on the mathematical operation called convolution, which
processes input in a spatially sensitive manner. CNNs have been successfully
applied to grid-like data like images (15) or time-series (16). One of the reasons
for the success of CNNs is their ability to learn hierarchical patterns (17).

In Fig. 2.1, we can see an illustration of a deep learning model with the
patterns that activate its hidden layers. Typically, the last layers of a CNN
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Figure 2.1: Illustration of a deep learning model. Image extracted from (1).

are flattened and fed to fully connected layers that are exactly like an MLP
network.

2.2
Autoencoders

Autoencoders are a type of neural network that aims to resolve the
problem of extracting meaningful information from real-world data without
annotation. Autoencoders are structured as a combination of two parts: the
encoder and the decoder. Both parts are trained in conjunction to respectively
learn to transform data into a representation space and reconstruct the input
data from this representation. The output layer of the encoder is the input to
the decoder and is denoted as the bottleneck. The bottleneck is the layer that
outputs a "code" for the input. This code can also be referred to as the feature
vector.

An autoencoder is undercomplete when the bottleneck has a lower
dimension than the input data. A reduced dimension helps to achieve the
autoencoder’s goal as it forces the encoder to select only the most critical
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Figure 2.2: Schema of an autoencoder. Michela Massi, CC BY-SA 4.0
<https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

features of the input, as the decoder needs these features in order to reconstruct
the original data. As such, an autoencoder can be used to compress data.

If the bottleneck has a dimension equal to or higher than the input
data, however, an autoencoder is said to be overcomplete. An overcomplete
autoencoder can be useful for learning a wider range of features, but it requires
the usage of regularization techniques to prevent the network from learning to
encode the input with the identity function because in such case the code
would be identical to the input and consequently useless.

Autoencoders can also be helpful for various tasks like classification (18),
regression (19), and clustering (20). They can also be used for transfer learning
if they are trained on large general datasets and then fine-tuned for tasks in
domain-specific smaller ones.

They are often used as building blocks for other deep-learning models.
Autoencoders are the foundation for variational autoencoders, a technique that
can be used for data generation. Pre-trained autoencoders can also be used to
improve the stability of training generative adversarial networks .

2.3
PointNet and PointNet++

PointNet (21) was the first deep learning architecture to process raw point
cloud data. At the time, most researchers would transform point clouds into
regular 3D voxel grids or collections of images and then process them with a
deep network architecture. However, quantization artifacts arise from regular-
grid data representation, and such artifacts can conceal natural invariances of
the data. PointNet takes point clouds as input and outputs either class labels
for the entire point cloud or segments the input with per-point labels.
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Figure 2.3: The PointNet architecture. The classification network operates on a
set of points, applying transformations to them and aggregating their features.
This process generates scores for various categories. The segmentation network,
an extension of the classification framework, combines global and local features
to provide scores for individual points. "mlp" refers to a multilayer perceptron,
with the sizes of its layers specified within brackets. Image adapted from (2).

In the initial layers of PointNet, each point is processed identically and
independently in an MLP. Then, PointNet achieves permutation invariance by
adding symmetric functions in the net computation. So, the network learns a
set of optimization functions that pick meaningful points of the point cloud.
The final fully connected layers of the network combine these learned values
to output class labels. As a result, the network learns to select a sparse set
of key points that roughly resembles the skeleton of objects. PointNet learns
to probe the space so that noise or small corruptions in the input set are not
expected to change the network’s output.

As the basic idea of PointNet is to learn a spatial encoding of each
point and then aggregate all individual point features to a global point
cloud signature, it does not capture local structures yielded by the metric
space in which points lie. This results in a limited ability to recognize fine-
grained patterns and to generalize to complex scenes. To address this issue,
PointNet++ has been proposed (3). It has a hierarchical neural network that
applies PointNet recursively on partitions of the input point set.

Inspired by CNN architectures, PointNet++ progressively captures fea-
tures along a multi-resolution hierarchy at increasingly larger scales. These
local features are grouped into larger units to produce higher-level features.
PointNet++ uses PointNet as a local feature learner that shares weights when
processing features of the same level, like convolutional networks.

PointNet++ applies three layers at each level to process the input data
progressively: the sampling, grouping, and PointNet layers. The sampling layer
selects a subset of points from the input set as centroids of local regions
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Figure 2.4: PointNet++ architecture. The network progressively abstracts the
points from a local to a wider receptive field through sampling, grouping, and
PointNet layers. Image adapted from (3).

with farthest point sampling (FPS) to guarantee its appropriate coverage. The
grouping layer then constructs local region sets by finding all points within a
radius of the query point. The grouping layer will encounter a distinct number
of neighbors for each centroid. This way, a fixed region scale is guaranteed for
the local neighborhood. The PointNet layer uses a mini-PointNet to encode the
selected points into feature vectors and is flexible enough to output fixed-length
vectors besides the varying number of inputs.

Unlike CNNs, PointNet++ applies transformations in a data-dependent
manner since the local regions depend on the selection of centroids from input
data. PointNet++ successfully extracts multi-scale patterns by concatenating
summarized features from each sub-region to a global feature vector obtained
by processing the whole set of input points with a single PointNet, using a
three-level hierarchical network with three fully connected layers.

2.4
Clustering

Clustering algorithms are used to group unlabeled data into meaningful
subsets. Their core concern is to extract the underlying structure of the data
given as input. There are many approaches to this problem (22) like algorithms
based on partitions, hierarchy, density, or graphs, to name a few. Generally, the
goal of a clustering algorithm is to minimize clusters’ internal similarity and
maximize inter-cluster dissimilarity while abiding by a precise and practical
measurement of similarity.
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2.4.1
K-Means∥

K-Means is a popular centroid-based clustering algorithm. It takes the
number of clusters to be generated and a set of points as input. The first
step of K-Means is randomly initializing values for centroids. In the second
step, K-Means assigns each point to the cluster represented by the nearest
centroid. During the third step, the centroids of each cluster are updated with
the average of all elements inside the cluster. Then, the second and third steps
are repeated until there is no change in the composition of clusters anymore.

The K-Means∥ (23) algorithm is a variant of K-Means. It also takes the
number of generated clusters as a parameter. The main difference between
K-Means∥ and K-Means lies in the initialization of the centroids. While the
original algorithm selects random centroids, the K-Means∥ selects the initial
centroids with a probability proportional to the squared distance to the nearest
cluster centroid, a strategy first proposed by K-Means++ (24). The novelty of
K-Means∥ over K-Means++ is a parallel version of the algorithm that improves
scalability.

All K-Means variations share the limitation of being sensitive to the
number of clusters given as input, not being well suited to non-spherical data,
sensitivity to outliers, potential local minima, or density variation amongst
clusters.

(a) Spherical, synthetic
Gaussian data, with un-
equal cluster radii and
density

(b) Synthetic elliptical
Gaussian data.

(c) Spherical, synthetic
Gaussian data

Figure 2.5: Examples where K-Means fails to produce good clusters. Images
extracted from (4).
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2.4.2
HDBSCAN

Hierarchical Density-Based Spatial Clustering of Applications with Noise,
or HDBSCAN (25), is a clustering algorithm based on density and hierarchy.
This algorithm extends DBSCAN (26), a density-based algorithm. The core
idea is that regions with many concentrated elements should belong to the same
cluster. HDBSCAN can be conceptually understood as a search for clusters
that persist over all density values and consequently dismisses the need for the
density parameter required by DBSCAN.

The algorithm relies on the concept of a core distance to define a metric
called mutual reachability distance. The core distance κ depends on a parameter
mpts, as it is the distance d from a point x to its mpts-th nearest neighbor. The
distance d can be the Euclidean distance. The mutual reachability distance
dmreach is given below for i ̸= j.

dmreach(xi, xj) = max(κ(xi), κ(xj), d(xi, xj)) (2-1)
This metric is used to construct a mutual reachability graph denoted Gms

associating each point x from the input to a node n of the graph, and the
weight of edge (ni, nj) to be the distance dmreach(xi, xj). The algorithm builds
the minimum spanning tree (MST) of Gms and considers this tree the first
cluster.

From this point onward, the algorithm estimates a persistence value λ

for clusters as the inverse of its edges’ maximum weight ϵ. The algorithm
proceeds to remove the edge of the greatest weight and evaluates the remaining
connected components for each removal. The evaluation of each connected
component is based on an integer parameter m, which defines the minimum
number of nodes necessary to constitute a cluster. If only one connected
component has more than m nodes, this connected component is considered
to be the same cluster as the previous step. The components that have less
than m nodes are considered noise. If more than one component has sufficient
elements, both are considered two novel clusters.

As the removal of edges progresses, the value for ϵ decreases, the value
for λ increases as a consequence, and the tree condenses. Finally, the stability
σ of a cluster is defined in terms of the sum of the λ values of its nodes. Below,
λmax is the value for λ where x was removed from Ci, and λmin is the value of
λ where Ci appeared.

σ(Ci) =
∑

x∈Ci

(λmax(x)− λmin) (2-2)

Finally, the algorithm outputs the set of clusters as the non-overlapping
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clusters that maximize the sum of stability. These clusters may be produced
at any level of density. Usually, the parameter m is simplified to take the same
value as mpts.

2.5
Minimum Dominating Set Problem applied to Shape Matching

A digraph is denoted by G = (V, A) where V is the set of nodes and A

is the set of arcs. Each arc is an ordered pair (u, v) representing an edge that
starts in u and ends in v. A triangle mesh Tv is a successfully detected instance
of a mesh Tu if there is a matrix M , an error function E, and a threshold α such
that E(M∗Tu, Tv) < α. Thus, a CAD model’s geometries and instance relations
can be represented in a digraph structure where each geometry corresponds to
a node, and every arc represents a successful registration of the starting node
to the ending node. Therefore, an arc (u, v) means that there is a matrix Muv

such that E(Muv ∗ TU , TV ) < α.
In a directed graph, a node u dominates a node v if the arc (u, v) exists.

A set of nodes B is a dominating set of G if for every v ∈ V \ B there
is another node u ∈ B such that the arc (u, v) ∈ A. The representation of
the geometries of a model and its instance relations in a graph allows the
reduction of the model size because we only need to represent the meshes
associated with the nodes of the dominating set of the graph. The geometry
of every dominated node can be represented by the base mesh associated with
the node that dominates it and a known transformation matrix.

The smallest possible size of a model can be attained by finding the
set with smallest size that can represent all geometries. In order for us to
find such set we need the graph that encodes the geometric relations of the
model, where the size of each node’s geometry corresponds to the node’s
weight, and then solve the Minimum Weighted Directed Dominating Set
(MWDDS) on this graph. The MWDDS can be reduced to the Minimum
Weighted Set Cover (MWSC) where each node u results in a set SU , such that
SU ← {u ∪w0 ∪w1 ∪ ... ∪wn} and wi are the nodes for which (u, wi) ∈ A and
the weight for SU is the weight for u. The MWSC is a well-known NP-Hard
problem (10).

An alignment procedure can be used to compute an approximation
matrix for every pair of geometries in a CAD model. If we encoded this
information in a graph G∗, we could find the minimum number of base meshes
necessary to represent every geometry in the model by solving the MWDDS
on G∗. However, we find it impractical to compute all arcs on this graph.
Computing an approximation matrix for a pair of geometries is costly and the
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number of arcs in a complete graph is O(n2). In our approach, we proceed
to compute a graph with a subset of arcs that connect potentially similar
geometries.

There are greedy algorithms to the Minimum Weighted Set Cover (27, 28)
as well as exact solutions (29). However, as stated by Albuquerque and Vidal
(30), solutions to the MWSC generated from graphs with medium or high
densities result in large sets that become unusually challenging for existing
approaches. Hence, there is a need for more specific methods.

There exists work for the Minimum Directed Dominating Set on un-
weighted graphs (31), but the literature on approaches to the Minimum
Weighted Directed Dominating Set (MWDDS) problem is not vast. Nakkala
et al. (32) recently addressed this by presenting four approaches to this prob-
lem: two approaches based on swarm intelligence, one based on integer linear
programming, and one matheuristic. There is a broader literature on how to
solve the more specific undirected problem of Minimum Weighted Dominating
Set (33, 34, 35, 30).

On the other hand, in this work we take advantage of the existing
geometric relations between nodes to extend the number of edges in the initial
graph and approximate the optimal solutions with heuristics. To do so, we
design a three-stage clustering algorithm.



3
Previous Works

In this Chapter, we discuss previous works on shape-matching techniques
applicable to the CAD domain. First, we explain a least squares algorithm and
its limitations. Then, we mention deep-learning supervised works that can be
used to reduce CAD models’ sizes, and the instance registration procedure
proposed by one of its works. Finally, we discuss an unsupervised shape-
matching method and its adjustments to the instance procedure mentioned
before.

Multiple works aim to detect similarities among 3D shapes. Among these,
some are not well suited to the CAD domain because they do not take free-form
scaling into account when detecting similarity (36, 37, 38, 39, 40, 41, 42, 43).

3.1
Least-Squares instance detection

Ivson and Celes (8) proposed a method for finding mesh instances based
on least squares that can detect non-uniform scaling. However, their work has
drawbacks regarding mesh topology, as their algorithm solely relies on the
ordered vertices of the meshes as input. This results in error values sensitive to
vertex ordering, even when the underlying mesh structure remains unchanged.
Additionally, their method overlooks holes in the geometries.

They assume each triangle mesh to be an ordered set of vertices. For
each pair of meshes with the same number of vertices, they compute an affine
matrix M that minimizes the error given in (Equation 3-1). Below, q are the
vertices of a possible instance and p are the vertices of a candidate base mesh.

E =
∑

i

∥qi −M ∗ pi∥2 (3-1)

Their algorithm processes the meshes of the model sequentially and
creates a set of base meshes. Each new processed mesh is compared to the
known base meshes that have the same number of vertices and is considered
as an instance if there is a transformation from the base meshes that comply
with an error threshold given as input to their algorithm.

3.2
Supervised Deep Learning Approaches

There are already well-established deep-learning techniques that can re-
duce redundancy in 3D CAD models. The PointNet (2) and later PointNet++
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(3) architectures propelled such advances by enabling successful segmentation
and classification of 3D point clouds. Later work took advantage of these ar-
chitectures by sampling point clouds on the surface of 3D CAD geometries, for
which one example is the Supervised Primitive Fitting Network (SPFN) pro-
posed by Li et al. (44). SPFN is built on top of PointNet++ to segment point
cloud data into parametric surfaces such as planes, spheres, cones, and cylin-
ders. It intends to fit parametric surfaces to point clouds scanned on real-world
objects. Still, it can be used to reduce the size of CAD geometries represented
by mesh triangles by subdividing them into parametric segments.

Figueiredo et al. (9) proposed a Deep Learning Framework powered by a
PointNet++ classifier trained on a previously labeled data set. Each label has
an associated base mesh that will replace the classified geometries in their work.
Along with their classifier, they also contributed with an alignment procedure
that computes the transformation matrix required to represent each instance
mesh. Different meshes may have the same label in their data set yet not be
aligned. Their framework is not limited to parametric surfaces but will not
extend well to different models that lack label information.

3.2.1
Instance Registration

The approximation of a matrix that transforms a base mesh into a
candidate instance requires the usage of a registration procedure and the
definition of error functions. The registration procedure proposed by Figueiredo
et al. (9) takes two normalized meshes as input: a base mesh B and a target
mesh T . It performs an optimization that finds a 3x3 matrix M that fits the
base mesh to the target mesh, such that the surface error function ES between
a dense point cloud PMB sampled on the surface of M ∗B to the target mesh
T is minimized. The expression for ES is given below, where NQ is the number
of points of the point cloud Q and Dmin denotes the minimum distance from
a point to the surface of T .

ES(Q, T ) =
∑

q∈Q Dmin(q, T )
NQ

(3-2)

The optimization procedure starts with an alignment of both input
meshes using Principal Component Analysis (PCA) and then proceeds to
use the Adam (45) optimizer to update a matrix that transforms the base
mesh into the target mesh. It consists of two nested loops that jointly drive
the optimization. Their outer loop controls the optimization procedure, either
interrupting the process when the desired surface error is achieved or increasing
the density of the point clouds used to align the base mesh to the target mesh
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when the inner loop finds a local minimum. It also guarantees that the point
cloud sampled on the base mesh remains uniform. Meanwhile, the inner loop
performs the actual optimization. It computes the gradients for the update
of the matrix with the Chamfer pseudo-distance, a fast and differentiable
function.

3.3
Unsupervised Shape Matching Method

To overcome the limitations of the Deep Learning supervised approach,
Figueiredo et al. (5) have proposed a modified shape-matching framework that
does not require annotated data sets. They rely on a PointNet++ autoencoder
to do deep processing of point clouds and learn to extract meaningful features
from point cloud data.

Their shape-matching method’s first step is to extract feature vectors
from the 3D CAD geometries by uniformly sampling point clouds on the sur-
faces of 3D geometries before feeding them to the deep neural network au-
toencoder. Taking the feature vectors as input, they perform an unsupervised
clustering step and pick a base mesh for each cluster. Then, they use the align-
ment method first proposed by Figueiredo et al. (9) to register the meshes to
their selected base mesh. They introduced a verification function with three
error evaluations to guarantee that the resulting model remains faithful to the
input, and unsuccessful registrations are discarded as instances and kept as
individual meshes in the model. Their work successfully reduces models’ sizes
and even outperforms previous approaches on certain models, but stays akin to
results presented by the supervised classification algorithm. Our work bridges
that gap.

Their framework generalizes to any triangle mesh that may be present in
the model, as they do not restrict the geometries to primitives like cones and
cylinders. Their method also guarantees an upper bound on geometric errors,
using tailored error functions to discard unsuccessful cluster assignments.

Their method is adequate for the 3D CAD domain as it takes into account
affine transformations instead of just rigid-body transformations.

Instance identification through feature vectors may benefit from unsuper-
vised clustering algorithms. Figueiredo et al. (5) has used K-Means∥ (23) and
HDBSCAN (25) in this step. Other unsupervised clustering algorithms could
be proposed, such as Birch (46) or Mean Shift (47). However, the disadvantage
of relying on such algorithms is that they will assign each mesh to a cluster
based on its distribution on the feature space alone and might be sensitive to
outliers. In our work, on the other hand, we interpret the feature vectors as



Chapter 3. Previous Works 29

nodes of a graph and extract subgraphs from it as a way to identify clusters.

3.3.1
Instance Registration Evaluation

Registration of M ∗ B into T will be rejected in the unsupervised
framework if the final error is above certain thresholds. The functions evaluated
are the symmetric surface error SymES (Equation 3-3) and the maximum
distance error SymEmax (Equation 3-4), both evaluated with normalized
meshes. In the expressions below PS1 and PS2 are dense point clouds sampled
on the surfaces of P1 and P2, respectively. Additionally, the final area cannot
differ above a certain threshold given in squared meters.

SymES(S1, S2) = max(ES(PS1, S2), ES(PS2, S1)) (3-3)

SymEmax(S1, S2) = max(Emax(PS1, S2), Emax(PS2, S1)) (3-4)

Emax(Q, T ) = max
q∈Q

(Dmin(q, T )) (3-5)
At the end of each registration procedure, T is considered an instance of

B if the errors are below fine-tuned parameters reported by (5). The values
should be SymES(M ∗ B, T ) ≤ 0.05, SymEmax(M ∗ B, T ) ≤ 0.07 and the
absolute total area difference is below 0.01 squared meters.



4
Proposed Method

In this Chapter, we describe our proposed graph-based clustering algo-
rithm. We detail the three stages of our method, provide a simplified visual-
ization of how it proceeds, and present the adjustments we made to the former
unsupervised shape-matching framework proposed by Figueiredo et al. (5).
We elaborate on how we compose transformation matrices while traversing
the graph and use such matrices to attempt to add arcs to the graph. We also
detail the heuristics we used to pick base meshes in each connected component
and explain the intuition behind them.

4.1
Clustering Algorithm

In this work, we propose a three-stage clustering algorithm that narrows
down the number of comparisons between meshes, then groups similar meshes,
and finally produces clusters. Each stage is described below:

1. Extract feature vectors from the geometries of a model and select the K

nearest neighbors for each mesh in the feature space.

2. For each pair of neighbors Tu and Tv perform an alignment procedure to
compute a matrix that approximates Tv using Tu and vice versa. We build
our graph with the arcs (u, v) and (v, u) that correspond to successful
registrations.

3. Apply a greedy algorithm to select base meshes and insert new arcs into
our graph. It stops when we find a dominating set.

In Fig. 4.1, we can see an example of how the algorithm processes the
feature vectors taken from the autoencoder. The first stage produces pairs
of potential arcs from the feature vectors of the geometries. The second
stage performs the registrations for each pair of neighbors and selects the
transformations that respect the error thresholds to build our directed graph.
Finally, the third stage greedily inserts new arcs into the graph and stops when
it has found a dominating set.
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(a) Each dot represents a feature vector
extracted from the autoencoder when fed
with the point cloud sampled on the sur-
face of a mesh.

(b) In the first stage, we find the K

nearest neighbors for each mesh.

(c) In the second stage, we compute
the registrations and select the successful
ones to become arcs of a directed graph.
This image shows an undirected graph for
simplification purposes.

(d) The third stage generates the output
of our algorithm by greedily selecting the
set of base meshes. Selected base meshes
are nodes in yellow, and their instances
are nodes in green.

Figure 4.1: Simplified visualization of the stages of our algorithm.

Our models are composed of triangle meshes centered at the origin, then
rotated using a Principal Component Analysis (PCA) technique, and finally
scaled so that all their vertex coordinates range in the [−0.5, 0.5] interval. These
normalized geometries are densely sampled using the method proposed by
Osada et al. (48). These are characteristics kept from the framework developed
by Figueiredo et al. (5). However, our method changes the clustering and final
registration steps. In Fig. 4.2, we display an overview of the adapted shape-
matching framework we use to test our algorithm.

Figure 4.2: Unsupervised shape-matching framework based on the method
proposed by Figueiredo et al. (5)
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4.1.1
First stage

The dense point clouds sampled on the surfaces of our normalized
meshes are given as input to a pre-trained autoencoder based on PointNet++
that extracts feature vectors for each point cloud. At this moment, each
feature vector corresponds to a triangle mesh from the original model. In this
latent space, we find for each geometry its K nearest neighbors. Where K

is a hyperparameter to our algorithm. We compute the neighbors using the
Euclidean distance in the feature space.

The output of the first stage of our algorithm is a set of pairs of geome-
tries. Each pair indicates two geometries that were found to be sufficiently
close neighbors according to the KNN algorithm.

4.1.2
Second stage

The second stage of our algorithm involves computing a matrix that
transforms a base mesh into a candidate instance. This requires the usage of
a registration procedure and the definition of error functions. The registration
procedure proposed by Figueiredo et al. (9) takes two normalized meshes as
input: a base mesh TB and a target mesh T . We employ this procedure to find a
matrix M that approximates the normalized target mesh with the normalized
base mesh, such that the surface error function ES (Equation 3-2) between a
dense point cloud PMTB

sampled on the surface of M ∗ TB to the target mesh
T is minimized.

A registration of M ∗TB into T will be rejected if the final error is above
given thresholds. The functions evaluated are the symmetric surface error
SymES (Equation 3-3) and the maximum distance error SymEmax (Equation
3-4). Additionally, the final area cannot differ more than a threshold given in
squared meters.

Emax(Q, T ) = max
q∈Q

(Dmin(q, T )) (4-1)
At the end of each registration procedure, we consider T an instance of

TB when SymES(M ∗ TB, T ) ≤ 0.05, SymEmax(M ∗ TB, T ) ≤ 0.07 and the
absolute total area difference is below 0.01 squared meters. These values are
the same fine-tuned parameters reported by Figueiredo et al. (5).

We highlight that even though the error functions are symmetric, they
are evaluated in the local space of the target mesh. The matrix M represents an
affine transformation that does not preserve distances and, therefore, cannot
guarantee that the error thresholds between M−1 ∗ T and TB are met. For
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that reason, we perform the registration procedure between neighbors in both
directions.

4.1.3
Third stage

Starting from the graph produced in the second stage, the third stage
of the algorithm extracts a set of clusters, each consisting of a base mesh
and its instances. For that, we consider the strongly connected components
individually. We propose the greedy algorithm presented in Algorithm 1 to
select a set of base meshes for each strongly connected component. This
algorithm initializes an empty set of base meshes and uses a greedy criterion
to update it. In each iteration, new arcs starting in the selected base mesh are
tested and then added to our graph. This algorithm stops when it has found
a dominating set for the current connected component. Instead of computing
new matrices using the previously presented alignment procedure, we traverse
the graph to extend our knowledge of instances using the method detailed in
Algorithm 2. This way, we avoid performing the costly operation of computing
transformation matrices again.

Algorithm 1: Greedy Base Mesh Selection
Input:

G: Graph
nodes: nodes of the current connected component

Output:
B: Base mesh set picked among nodes

1 C ← Subgraph(G, nodes)
2 B ← ∅
3 while ¬IsDominatingSet(B, C) do
4 newBase← PickBaseMesh(G, nodeSubset)
5 B ← B ∪ {newBase}
6 for each node t of G do
7 M ← ComposeMatrix(G, newBase, t)
8 if ErrorIsAcceptable(M, newBase, t) then
9 AddArc(G, < newBase, t >)

10 coveredSet← Neighbors(G, B) ∪B
11 nodeSubset← nodeSubset \ coveredSet

We aim to insert as few new arcs as necessary and stop as soon as we
find a dominating set for each connected component. If only one base mesh
can represent a connected component, our picking criterion may pick this base
mesh and stop after the first iteration. Our algorithm ends when all connected
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components have been processed, and there is a dominating set for the whole
graph.

Algorithm 2: Matrix Composition
Input:

G: Connected component
s: Node representing a candidate base mesh
t: Node representing a possible instance

Output:
M : Matrix that approximates t with s

1 Initialize the matrix M with an identity matrix
2 Find shortest p path from node s to node t
3 for arc a in path p do
4 Update matrix M with matrix associated to a

4.1.3.1
Virtual arcs

Arcs represent successful registrations, so we assume that the existence of
two arcs (u, w) and (w, v), with associated matrices Muw and Mwv, respectively,
suggests the possibility of adding a virtual arc (u, v) with matrix Muv =
Mwv ∗ Muw. We aim to insert virtual arcs into the connected components
to find new pairs of valid registrations that can minimize the number of base
meshes and further reduce the model’s size. The graph may have multiple
paths from a candidate base mesh to candidate instances. We can see this
illustrated in Fig. 4.3. From u to v, there are multiple paths, and each path
may result in a distinct transformation matrix. We found empirically that using
an error function as arc weight, we can compute the shortest path to find
a good enough registration matrix. Interestingly, the shortest path between
two nodes sometimes enhanced the quality of successful registrations between
initial neighbors. This means that we have improved some local minima of the
optimization method.

The method for collecting the transformation matrix from a node s to
a node t is presented in Algorithm 2. Virtual arcs are only added to the
graph if their transformation respects the thresholds described by all previously
mentioned error functions.
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Figure 4.3: Illustration of possible paths between two different nodes

4.1.3.2
Greedy base mesh selection

We tested two picking criteria: the maximum degree and the shortest
path. The first one is always to pick the node with the highest degree among
the remaining nodes as defined in Algorithm 3. The second one consists of
running the shortest path algorithm and adding up, for each node, the lengths
of the shortest paths from it to all other nodes in the connected component so
the node with the minimum sum is chosen. This is presented in Algorithm 4.

We must emphasize that we design these simple heuristics based on
connectivity and arc weight because we strive to add as few arcs as necessary.
The intuition behind the maximum degree is that a highly connected node
may be more likely to have more instances in the connected component. The
intuition behind the shortest path is that the sum of arc weight can be viewed
as a rough estimation of the error between nodes farther apart, and the node
with the minimum expected error may be a more promising choice, even though
the actual error is not the sum of the arc errors.

Algorithm 3: Base mesh selection based on maximum degree
Input:

C: Connected component
nodes: Nodes of the current connected component

Output:
root: Node

1 rootDegree← 0
2 for node v in nodes do
3 if degree(C, v) > rootDegree then
4 root← v
5 rootDegree← degree(C, v)
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Algorithm 4: Base mesh selection based on shortest path
Input:

C: Connected component
nodes: Nodes of the current connected component

Output:
root: Node

1 rootDegree← ShortestLengths(C)
2 minTotalLength←∞
3 for each node s of S do
4 acc← 0
5 for each node t of S do
6 acc← acc + lengths[s][t]
7 if acc < minTotalLength then
8 root← s



5
Results

In this Chapter, we showcase the results our clustering algorithm achieved
and compare them to the results of previous approaches. We describe the
data sets we used and detail how to train an autoencoder. We display the
values we used as parameters for our algorithm and their impact on our
results. We show that our results had a significant improvement over previous
approaches even with a small number of neighbors. We compare our algorithm
to a fully supervised approach by applying it to a labeled data set and find
that we significantly bridge the gap between the unsupervised and supervised
approaches. We present an upper bound to our greedy base-mesh picking
algorithm. Lastly, we discuss our method and its advantages to prior works.

The experiments were conducted with packages commonly used in
Python, such as PyTorch, NetworkX, Numpy, and Scikit-Learn.

5.1
Data set description

Two data sets were used: a labeled data set composed of 18,851 geometries
classified with 16 different labels and another data set comprising an amount
of 61,561 unlabeled geometries of 5 different 3D CAD models. The unlabeled
data set has geometries with diverse shapes and sizes. Similar geometries might
have been modeled by different professionals using various tools, which makes
the data set representative of the models we aim to reduce. These data sets
were the same used by Figueiredo et al. (5). The labeled data set comprises two
splits, one for training and one for testing. The unlabeled data set is composed
of two halves organized in three splits. The first half is divided into a train
set and a validation set. The second half is the input to our shape-matching
algorithm. In this work, we also produced model reductions on the same splits
used by Figueiredo et al. (5). In order to execute our algorithm, we used the
PointNet++ autoencoder trained on the train split of the unlabeled dataset.

5.2
Autoencoder training

The first halves of the unlabeled data set were used for training and
validation. Each first half was split into train and validation sets following
a 90%/10% respective proportion. The autoencoder was trained with the
combined train sets of the five models for 100 epochs, using the Adam optimizer
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and a value of 0.001 for the learning rate. This training is the same as was
described by Figueiredo et al. (5).

Then, the autoencoder was selected using the best mean reconstruction
quality in the validation set among different epochs. The mean reconstruction
quality on both train and validation sets was 1e−5, showing that the autoen-
coder was able to learn relevant features of the input data.

5.3
Experiments

Among the three error functions proposed by Figueiredo et al. (5)
we found that the maximum distance error SymEmax was the most likely
to discard a registration. Even though its threshold was higher than the
symmetric average distance error SymES, 0.07 as opposed to 0.05, it was
still a more restrictive error evaluation. Therefore, we used this error value as
arc weight in our graphs throughout this work.

We tested our method on the second halves of the five models of our
unlabeled data set. We chose values for K as 3 and 9. As expected, a greater
value for K improved model reduction. By comparing each geometry to a
broader neighborhood, our algorithm found more similarities among geometries
and as a result, fewer clusters. This can be seen in Table 5.1.

Our initial concern was that small values of K might result in too few
comparisons. However, to our surprise, a value of K = 3 already performed
surprisingly well. Compared to previous approaches on the same data (5),
we improved the best average result by almost 9 percent points. The larger
neighborhood of K = 9 performed even better, pushing our results further to
10 percent points over the best average of previous approaches.

Table 5.1: Comparative of Model Reductions Using Different Techniques.

Max Degree Shortest Path
K=9 K=3 K=9 K=3 Figueiredo et al. (5) Ivson et Celes (8)

Model 1 87.94% 86.35% 87.36% 86.00% 76.58% 51.89%
Model 2 84.48% 83.31% 84.55% 83.30% 78.32% 65.66%
Model 3 89.98% 88.91% 89.62% 88.60% 80.71% 72.29%
Model 4 88.22% 87.21% 88.03% 87.11% 70.31% 82.15%
Model 5 88.48% 87.22% 88.30% 87.27% 82.25% 88.09%
Average 87.82% 86.60% 87.57% 86.45% 77.63% 72.01%

We remark that even accounting for individual models, no other unsu-
pervised method performed better than ours. On Model 5, our method was
marginally better than the method by Ivson et Celes (8), the second-best per-
forming method on this model. From Fig. 5.1 to 5.5 the second halves of each
model of the unlabeled dataset are displayed. We present three images for
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each model: the original model, the colored model with instances detected via
K-Means∥, and the instances detected with our graph-based approach.

To analyze the existing gap between the results of supervised shape
matching (9) and our unsupervised shape-matching technique we performed
our method in the aforementioned labeled data set. This data set has regular
geometries of 16 classes. Figueiredo et al. (5) reports a 97.03% reduction on
its test set with a supervised classification algorithm; 97.14% reduction when
employing Ivson and Celes (8) method and an 87.07% reduction when using
their unsupervised shape matching algorithm with a PointNet++ autoencoder
trained on the unlabeled data set. On the other hand, our method with a
neighborhood parameter K set to 9 and Maximum Degree as the base mesh
picking criterion demonstrated significant improvement, achieving a 95.08%
reduction using the latent space defined by the same autoencoder. This means
a substantial advancement in bridging the gap between unsupervised and
supervised shape-matching methods. Figure 5.6 illustrates the parametric
model and the visualization of its identified instances.

Luckily, we have a simple manner of evaluating our greedy choice of
base meshes. In the best scenario, the connected components generated in the
second stage of our method could be represented by the smallest mesh. Let
the lower bound on the model size be L. We can compute it with the sum of
the best possible sizes for base meshes and the total size accounting for the
4x4 matrices required to represent every geometry in the model.

Below, s is a function that denotes the size of a mesh represented by
node u, s4x4 matrix accounts for the size of an individual 4x4 matrix, C(G) is
the set of connected components of G and V is the set of vertices of a graph.

L =
 ∑

Ci∈C(G)
min

u∈V (Ci)
(s (u))

+ |G| ∗ s4x4 matrix (5-1)

The expression below gives an upper bound R on the reduction, where
we compute what the reduction would be in case we achieve the lower bound
on model size.

R = 1− L( ∑
u∈V (G)

s(u)
)

+ |G| ∗ s4x4 matrix

(5-2)

In Table 5.2, we can see that an optimal solution to the Minimum Dom-
inating Set cannot increase the model reduction of the connected components
generated by a K = 9 neighborhood even 2 percent points in Model 3. The
distance from the upper bound to the results we achieved in the remaining
models is even narrower.
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(a) Original Model 1

(b) Instance detection with KMeans∥ (5)

(c) Instance detection with our graph-based method

Figure 5.1: Second half of Model 1. Green geometries represent instance
meshes, and red geometries are base meshes.
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(a) Original Model 2

(b) Instance detection with KMeans∥ (5)

(c) Instance detection with our graph-based method

Figure 5.2: Second half of Model 2. Green geometries represent instance
meshes, and red geometries are base meshes.
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(a) Original Model 3

(b) Instance detection with KMeans∥ (5)

(c) Instance detection with our graph-based method

Figure 5.3: Second half of Model 3. Green geometries represent instance
meshes, and red geometries are base meshes.
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(a) Original Model 4

(b) Instance detection with KMeans∥ (5)

(c) Instance detection with our graph-based method

Figure 5.4: Second half of Model 4. Green geometries represent instance
meshes, and red geometries are base meshes.
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(a) Original Model 5

(b) Instance detection with KMeans∥ (5)

(c) Instance detection with our graph-based method

Figure 5.5: Second half of Model 5. Green geometries represent instance
meshes, and red geometries are base meshes.
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Figure 5.6: Test split of the labeled data set. The original model is above,
and the model with instance information is below. Geometries in red are base
meshes and geometries in green are accepted instances.

Table 5.2: A comparison between actual results from our greedy base mesh
picking algorithms to the upper bound of model reductions for connected
components generated by a K = 9 neighborhood.

Max Degree Shortest Path Upper bound
Model 1 87.94% 87.36% 88.87%
Model 2 84.48% 84.55% 85.40%
Model 3 89.98% 89.62% 91.74%
Model 4 88.22% 88.03% 88.72%
Model 5 88.48% 88.30% 89.34%
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5.4
Discussion

The most notable advantage of our algorithm is that it assigns nodes
to clusters only in the last stage when we have already collected subsets of
elements that are close in the feature space and share similar geometries. On
the other hand, the original framework developed by Figueiredo et al. (5) has
an unsupervised clustering step that only considers the points representing
meshes in feature space. Their method relies on characteristics of the clustering
algorithms to pick reference meshes. For instance, for K-Means∥, their reference
mesh is the one closest to the centroid of each cluster. This leads to some
clusters with very low instance ratios because meshes in the same cluster are
either instances of the selected reference mesh or unique meshes. In addition,
performing the registration as an intermediate step enables us to improve our
choice of base meshes using the error and actual instance information, which
is not the case in the clustering step of previous work.

In Fig. 5.7, we can see feature vectors projected onto two dimensions
using PCA. Initially, these vectors were grouped into the same cluster by a K-
Means∥ algorithm. However, this cluster had a poor conversion ratio because
many geometries did not match the selected reference mesh. In contrast, our
method could identify more instances and assign them to different clusters
accordingly.

These features were derived from Model 2, and each clustering considered
all geometries within this model. Hence, the colored dots in 5.7b do not nec-
essarily represent entire clusters. It’s evident that many instances disregarded
by the previous method were recognized as instances of common base meshes.
There is a clear contrast between both results, as our algorithm placed the
same meshes into different clusters because many were instances of neighbor-
ing geometries. It’s worth noting that clusters with low conversion are also
present when using HDBSCAN (25).
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(a) The nodes in red represent discarded
instances of the chosen base mesh, rep-
resented in yellow. Green dots represent
successfully identified instances of the
base mesh.

(b) The same meshes of Fig. 5.7a, as-
signed to different clusters. Each color
represents a different cluster generated by
our algorithm, with a parameter of K=3.

Figure 5.7: A comparison between different cluster assignments of feature
vectors originally placed in the same cluster by a K-Means∥ in 5.7a, and cluster
assignments performed by our algorithm in 5.7b.

In our case, intuitively, each connected component would directly cor-
respond to a cluster since the arcs represent successful registrations between
pairs of nodes. However, only one reference mesh is often insufficient to rep-
resent a whole connected component within the error tolerance because the
error usually increases between nodes farther apart. That is why we use the
greedy base mesh selection in Algorithm 1.

For comparison, we calculated the ratio of clusters identified per number
of geometries. We found that in all models, the number of clusters significantly
differed depending on both K and the model. In Table 5.3, we can see how a
neighborhood of K = 3 can significantly reduce the total meshes required to
represent the model information. In Table 5.4, the number of total meshes is
reduced even further. In these tables, singular meshes account for the meshes
that had no successful registration in the first stage of our algorithm, resulting
in connected components of a single node in the second stage. In contrast, total
meshes are the number of clusters generated in the third stage and include
singular meshes.

Given that the CAD domain typically consists of numerous repeated
instances of the same base geometries, it is unsurprising that models with more
geometries, such as Model 3 and Model 4 (each exceeding 10,000), exhibit
a lower total mesh ratio. Also, the difference between singular meshes from
a neighborhood of K = 3 to one of K = 9 is worth of note. This decrease
indicates the importance of comparing a mesh to a significant number of
neighbors to identify instances correctly. This need may arise due to utilizing
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Table 5.3: Number of base meshes for each model found by our algorithm when
K = 3 and Maximum Degree

Singular meshes Total meshes Geometries Ratio
Model 1 62 136 1581 8.6%
Model 2 77 193 2598 7.4%
Model 3 97 371 10332 3.6%
Model 4 122 423 11323 3.7%
Model 5 119 338 4947 6.8%

Table 5.4: Number of base meshes for each model found by our algorithm when
K = 9 and Maximum Degree

Singular meshes Total meshes Geometries Ratio
Model 1 58 122 1581 7.7%
Model 2 64 163 2598 6.3%
Model 3 91 288 10332 2.8%
Model 4 89 318 11323 2.8%
Model 5 88 266 4947 5.4%

feature vectors from normalized geometries because the normalization process
leads to the loss of finer details.

Even though our approach has several important properties, it still has
some limitations. For instance, in the first stage of our algorithm, our choice for
K does not guarantee that there will be a comparison between every possible
instance for a base mesh. Sub-optimal clusters will be generated if instances
are not in the same initial connected components. A result that hints this
happened in our experiments is the upper bound of reduction on the labeled
data set, which was 95.79%. By comparison, we know that it is possible to
reduce the size of this model by up to 97.14%, a result that Ivson and Celes’
method (8) achieved.

Another factor that must be taken into account is the execution time of
our algorithm. The first-stage execution time is negligible. Hence, we analyze
the second and third stages of our algorithm. In Table 5.5 we see the total
execution time of the second stage for each model for different values of K,
the only variable that affects the execution time of this stage. We observe
that a larger neighborhood resulted in an almost proportional increase in
the execution time. However, this increase does not result in a proportional
efficiency to our algorithm, as we have seen in Table 5.1. Therefore, a smaller
value for K is advantageous in the sense that it produces good enough results
in less time.

In Table 5.6, we see the elapsed execution time for our two greedy strate-
gies and their different values for K. We notice that a bigger neighborhood
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Table 5.5: Second-stage total execution time for each model (hours)

K=3 K=9
Model 1 33.1 95.1
Model 2 57.3 165.4
Model 3 213.6 614.2
Model 4 233.0 668.7
Model 5 110.3 319.6

resulted in a graph with more initial edges, which results in an increase in
elapsed time due to the shortest path algorithm used to compute the virtual
edges. When comparing the elapsed time for graphs with the same initial num-
ber of edges we see that the shortest path took more time to execute because
it is more complex than simply picking the node with the maximum degree,
but it can be faster than the maximum degree strategy when it finds a better
set of base meshes, for example, in Model 2 with K = 9.

Table 5.6: Third-stage total elapsed time for each model (hours)

Max Degree Shortest Path
K=3 K=9 K=3 K=9

Model 1 1.0 1.1 1.0 1.2
Model 2 1.7 2.2 1.9 2.0
Model 3 14.8 17.1 17.6 18.7
Model 4 6.7 9.0 6.8 9.6
Model 5 1.6 1.8 1.8 2.1



6
Conclusion and Future Work

In this work, we presented a three-stage graph-based clustering algorithm
that improved unsupervised clustering in deep feature space and applied it to
a shape-matching framework (5). Also, as we build on top of existing work,
we retain its advantages, such as preserving the geometries’ intrinsic charac-
teristics, being invariant to vertex ordering, and avoiding manual annotation
on large data sets.

Our work resulted in a further reduction of memory requirements for
the 3D models. It achieved a 95% model reduction in a labeled dataset,
outperforming previous unsupervised techniques that reached 87% and getting
almost as far as the 97% reduction from a fully supervised approach, effectively
bridging the gap between both methods. In an unlabeled dataset, our method
attains an average model reduction of 87% versus an average reduction of 77%
from previous unsupervised techniques.

For future work, we observe that the first stage of our algorithm could
be improved if we combine our approach with other unsupervised clustering
approaches, such as algorithms that build hierarchies like HDBSCAN (25),
Girvan-Newman (49) or Louvain method (50). This way, we could further
ensure the quality of the connected components processed in the following
stages of our algorithm and avoid sub-optimal upper bounds on the reduction
of models.

Another course of action would be to test a metric as an error function
because metrics have guaranteed triangular inequality, so we may save com-
putations when adding virtual edges to our graph. The Hausdorff distance is
an example of a metric that could be used for this purpose.

Since we rely on a PointNet++ (3) autoencoder, future work could
test other architectures for unsupervised feature learning on point clouds
(51, 52, 53) as well as other loss functions (54) to improve the learned latent
space and consequently shape matching accuracy.



7
Bibliography

1 GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT
Press, 2016. <http://www.deeplearningbook.org>.

2 CHARLES, R. Q. et al. PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE, 2017. p. 77–85.
ISBN 978-1-5386-0457-1. Disponível em: <http://ieeexplore.ieee.org/document/
8099499/>.

3 QI, C. R. et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space. Advances in neural information processing systems, v. 30,
p. 10, 2017.

4 RAYKOV, Y. P. et al. What to Do When K-Means Clustering Fails: A Simple
yet Principled Alternative Algorithm. PLOS ONE, v. 11, n. 9, p. e0162259,
set. 2016. ISSN 1932-6203. Disponível em: <https://dx.plos.org/10.1371/journal.
pone.0162259>.

5 FIGUEIREDO, L.; IVSON, P.; CELES, W. Unsupervised method for identifying
shape instances on 3D CAD models. Computers & Graphics, v. 116, p. 228–
238, nov. 2023. ISSN 00978493. Disponível em: <https://linkinghub.elsevier.com/
retrieve/pii/S0097849323001875>.

6 AZHAR, S.; KHALFAN, M.; MAQSOOD, T. Building information modeling
(bim): now and beyond. The Australasian Journal of Construction Eco-
nomics and Building, UTS ePress, Broadway, NSW, Australia, v. 12, n. 4, p.
[15]–28, 2012. Disponível em: <https://search.informit.org/doi/10.3316/informit.
013120167780649>.

7 JIANG, Y. et al. Industrial applications of digital twins. Philosophical Trans-
actions of the Royal Society A, The Royal Society Publishing, v. 379, n. 2207,
p. 20200360, 2021.

8 IVSON, P.; CELES, W. Instanced Rendering of Massive CAD Models Using
Shape Matching. In: 2014 27th SIBGRAPI Conference on Graphics, Pat-
terns and Images. Rio de Janeiro: IEEE, 2014. p. 335–342. ISBN 978-1-4799-
4258-9. Disponível em: <https://ieeexplore.ieee.org/document/6915326/>.

9 FIGUEIREDO, L.; IVSON, P.; CELES, W. Deep learning-based framework for
Shape Instance Registration on 3D CAD models. Computers & Graphics, v. 101,
p. 72–81, dez. 2021. ISSN 00978493. Disponível em: <https://linkinghub.elsevier.
com/retrieve/pii/S009784932100176X>.

10 GAREY, M. R.; JOHNSON, D. S. Computers and intractability. A Guide to
the, 1979.

http://www.deeplearningbook.org
http://ieeexplore.ieee.org/document/8099499/
http://ieeexplore.ieee.org/document/8099499/
https://dx.plos.org/10.1371/journal.pone.0162259
https://dx.plos.org/10.1371/journal.pone.0162259
https://linkinghub.elsevier.com/retrieve/pii/S0097849323001875
https://linkinghub.elsevier.com/retrieve/pii/S0097849323001875
https://search.informit.org/doi/10.3316/informit.013120167780649
https://search.informit.org/doi/10.3316/informit.013120167780649
https://ieeexplore.ieee.org/document/6915326/
https://linkinghub.elsevier.com/retrieve/pii/S009784932100176X
https://linkinghub.elsevier.com/retrieve/pii/S009784932100176X


Chapter 7. Bibliography 52

11 DESAI, M.; SHAH, M. An anatomization on breast cancer detection and
diagnosis employing multi-layer perceptron neural network (MLP) and Convo-
lutional neural network (CNN). Clinical eHealth, v. 4, p. 1–11, 2021. ISSN
2588-9141. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S2588914120300125>.

12 HEIDARI, A. A. et al. An efficient hybrid multilayer perceptron neural net-
work with grasshopper optimization. Soft Computing, v. 23, n. 17, p. 7941–
7958, set. 2019. ISSN 1433-7479. Disponível em: <https://doi.org/10.1007/
s00500-018-3424-2>.

13 CYBENKO, G. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, v. 2, n. 4, p. 303–314, dez.
1989. ISSN 1435-568X. Disponível em: <https://doi.org/10.1007/BF02551274>.

14 LECUN, Y. et al. Handwritten digit recognition with a back-
propagation network. In: TOURETZKY, D. (Ed.). Advances in Neu-
ral Information Processing Systems. Morgan-Kaufmann, 1989. v. 2.
Disponível em: <https://proceedings.neurips.cc/paper_files/paper/1989/file/
53c3bce66e43be4f209556518c2fcb54-Paper.pdf>.

15 KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet classification
with deep convolutional neural networks. Communications of the ACM, v. 60,
n. 6, p. 84–90, maio 2017. ISSN 0001-0782, 1557-7317. Disponível em: <https:
//dl.acm.org/doi/10.1145/3065386>.

16 College of Electronic Science and Engineering, National University of Defense
Technology et al. Convolutional neural networks for time series classification.
Journal of Systems Engineering and Electronics, v. 28, n. 1, p. 162–169,
fev. 2017. ISSN 10044132. Disponível em: <http://ieeexplore.ieee.org/document/
7870510/>.

17 ZEILER, M. D.; FERGUS, R. Visualizing and Understanding Convo-
lutional Networks. arXiv, 2013. ArXiv:1311.2901 [cs]. Disponível em: <http:
//arxiv.org/abs/1311.2901>.

18 XU, W. et al. Variational Autoencoder for Semi-Supervised Text Classification.
Proceedings of the AAAI Conference on Artificial Intelligence, v. 31, n. 1,
fev. 2017. ISSN 2374-3468, 2159-5399. Disponível em: <https://ojs.aaai.org/
index.php/AAAI/article/view/10966>.

19 ZHANG, Z.; SONG, Y.; QI, H. Age Progression/Regression by Condi-
tional Adversarial Autoencoder. arXiv, 2017. ArXiv:1702.08423 [cs]. Disponível
em: <http://arxiv.org/abs/1702.08423>.

20 YANG, X. et al. Deep Spectral Clustering using Dual Autoencoder
Network. arXiv, 2019. ArXiv:1904.13113 [cs, stat]. Disponível em: <http://arxiv.
org/abs/1904.13113>.

21 LI, C.-L. et al. Point Cloud GAN. arXiv, 2018. ArXiv:1810.05795 [cs, stat].
Disponível em: <http://arxiv.org/abs/1810.05795>.

https://www.sciencedirect.com/science/article/pii/S2588914120300125
https://www.sciencedirect.com/science/article/pii/S2588914120300125
https://doi.org/10.1007/s00500-018-3424-2
https://doi.org/10.1007/s00500-018-3424-2
https://doi.org/10.1007/BF02551274
https://proceedings.neurips.cc/paper_files/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://dl.acm.org/doi/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
http://ieeexplore.ieee.org/document/7870510/
http://ieeexplore.ieee.org/document/7870510/
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
https://ojs.aaai.org/index.php/AAAI/article/view/10966
https://ojs.aaai.org/index.php/AAAI/article/view/10966
http://arxiv.org/abs/1702.08423
http://arxiv.org/abs/1904.13113
http://arxiv.org/abs/1904.13113
http://arxiv.org/abs/1810.05795


Chapter 7. Bibliography 53

22 XU, D.; TIAN, Y. A Comprehensive Survey of Clustering Algorithms. Annals
of Data Science, v. 2, n. 2, p. 165–193, jun. 2015. ISSN 2198-5804, 2198-5812.
Disponível em: <http://link.springer.com/10.1007/s40745-015-0040-1>.

23 BAHMANI, B. et al. Scalable K-Means++. 2012.

24 ARTHUR, D.; VASSILVITSKII, S. et al. k-means++: The advantages of
careful seeding. In: Soda. [S.l.: s.n.], 2007. v. 7, p. 1027–1035.

25 CAMPELLO, R. J. G. B.; MOULAVI, D.; SANDER, J. Density-based clustering
based on hierarchical density estimates. In: PEI, J. et al. (Ed.). Advances in
Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013. p. 160–172. ISBN 978-3-642-37456-2.

26 ESTER, M. et al. A density-based algorithm for discovering clusters in large
spatial databases with noise. In: kdd. [S.l.: s.n.], 1996. v. 96, n. 34, p. 226–231.

27 YOUNG, N. E. Greedy set-cover algorithms (1974-1979, chvátal, johnson,
lovász, stein). Encyclopedia of algorithms, Springer Heidelberg, p. 379–381,
2008.

28 HASSIN, R.; LEVIN, A. A Better-Than-Greedy Approximation Algorithm
for the Minimum Set Cover Problem. SIAM Journal on Computing, v. 35,
n. 1, p. 189–200, jan. 2005. ISSN 0097-5397, 1095-7111. Disponível em: <http:
//epubs.siam.org/doi/10.1137/S0097539704444750>.

29 CYGAN, M.; KOWALIK, Å.; WYKURZ, M. Exponential-time approximation
of weighted set cover. Information Processing Letters, v. 109, n. 16, p. 957–
961, jul. 2009. ISSN 00200190. Disponível em: <https://linkinghub.elsevier.com/
retrieve/pii/S0020019009001719>.

30 ALBUQUERQUE, M.; VIDAL, T. An Efficient Matheuristic for the Minimum-
Weight Dominating Set Problem. Applied Soft Computing, v. 72, p. 527–
538, nov. 2018. ISSN 15684946. ArXiv:1808.09809 [cs]. Disponível em: <http:
//arxiv.org/abs/1808.09809>.

31 HABIBULLA, Y.; ZHAO, J.-H.; ZHOU, H.-J. The Directed Dominating Set
Problem: Generalized Leaf Removal and Belief Propagation. In: . [s.n.], 2015.
v. 9130, p. 78–88. ArXiv:1505.03537 [cond-mat, physics:physics]. Disponível em:
<http://arxiv.org/abs/1505.03537>.

32 NAKKALA, M. R.; SINGH, A.; ROSSI, A. Swarm intelligence, exact and
matheuristic approaches for minimum weight directed dominating set problem.
Engineering Applications of Artificial Intelligence, v. 109, p. 104647, mar.
2022. ISSN 09521976. Disponível em: <https://linkinghub.elsevier.com/retrieve/
pii/S0952197621004528>.

33 BOUAMAMA, S.; BLUM, C. A hybrid algorithmic model for the minimum
weight dominating set problem. Simulation Modelling Practice and Theory,
v. 64, p. 57–68, maio 2016. ISSN 1569190X. Disponível em: <https://linkinghub.
elsevier.com/retrieve/pii/S1569190X15001574>.

http://link.springer.com/10.1007/s40745-015-0040-1
http://epubs.siam.org/doi/10.1137/S0097539704444750
http://epubs.siam.org/doi/10.1137/S0097539704444750
https://linkinghub.elsevier.com/retrieve/pii/S0020019009001719
https://linkinghub.elsevier.com/retrieve/pii/S0020019009001719
http://arxiv.org/abs/1808.09809
http://arxiv.org/abs/1808.09809
http://arxiv.org/abs/1505.03537
https://linkinghub.elsevier.com/retrieve/pii/S0952197621004528
https://linkinghub.elsevier.com/retrieve/pii/S0952197621004528
https://linkinghub.elsevier.com/retrieve/pii/S1569190X15001574
https://linkinghub.elsevier.com/retrieve/pii/S1569190X15001574


Chapter 7. Bibliography 54

34 LIN, G.; ZHU, W.; ALI, M. M. An Effective Hybrid Memetic Algorithm for the
Minimum Weight Dominating Set Problem. IEEE Transactions on Evolutionary
Computation, v. 20, n. 6, p. 892–907, dez. 2016. ISSN 1089-778X, 1089-778X,
1941-0026. Disponível em: <http://ieeexplore.ieee.org/document/7426831/>.

35 LIN, G.; GUAN, J. A Binary Particle Swarm Optimization for the Minimum
Weight Dominating Set Problem. Journal of Computer Science and Technol-
ogy, v. 33, n. 2, p. 305–322, mar. 2018. ISSN 1000-9000, 1860-4749. Disponível
em: <http://link.springer.com/10.1007/s11390-017-1781-4>.

36 MITRA, N. J.; GUIBAS, L. J.; PAULY, M. Partial and Approximate Symmetry
Detection for 3D Geometry. ACM Transactions on Graphics (ToG), ACM New
York, NY, USA, v. 25, n. 3, p. 560–568, 2006.

37 GAL, R.; COHEN-OR, D. Salient geometric features for partial shape matching
and similarity. ACM Transactions on Graphics, v. 25, n. 1, p. 130–150, jan.
2006. ISSN 0730-0301, 1557-7368. Disponível em: <https://dl.acm.org/doi/10.
1145/1122501.1122507>.

38 ALT, H. et al. Congruence, similarity, and symmetries of geometric objects.
Discrete & Computational Geometry, Springer, v. 3, n. 3, p. 237–256, 1988.

39 MARTINET, A. et al. Accurate detection of symmetries in 3D shapes. ACM
Transactions on Graphics, v. 25, n. 2, p. 439–464, abr. 2006. ISSN 0730-
0301, 1557-7368. Disponível em: <https://dl.acm.org/doi/10.1145/1138450.
1138462>.

40 PAULY, M. et al. Discovering structural regularity in 3D geometry. In: ACM
SIGGRAPH 2008 papers. Los Angeles California: ACM, 2008. p. 1–11. ISBN
978-1-4503-0112-1. Disponível em: <https://dl.acm.org/doi/10.1145/1399504.
1360642>.

41 HORN, B. K. P. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America A, v. 4, n. 4, p. 629,
abr. 1987. ISSN 1084-7529, 1520-8532. Disponível em: <https://opg.optica.org/
abstract.cfm?URI=josaa-4-4-629>.

42 KANATANI, K. Analysis of 3-D rotation fitting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, v. 16, n. 5, p. 543–549, maio 1994.
ISSN 01628828. Disponível em: <http://ieeexplore.ieee.org/document/291441/
>.

43 EGGERT, D.; LORUSSO, A.; FISHER, R. Estimating 3-D rigid body transfor-
mations: a comparison of four major algorithms. Machine Vision and Applica-
tions, v. 9, n. 5-6, p. 272–290, mar. 1997. ISSN 0932-8092, 1432-1769. Disponível
em: <http://link.springer.com/10.1007/s001380050048>.

44 LI, L. et al. Supervised Fitting of Geometric Primitives to 3D Point Clouds. In:
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Long Beach, CA, USA: IEEE, 2019. p. 2647–2655. ISBN 978-1-72813-
293-8. Disponível em: <https://ieeexplore.ieee.org/document/8953681/>.

http://ieeexplore.ieee.org/document/7426831/
http://link.springer.com/10.1007/s11390-017-1781-4
https://dl.acm.org/doi/10.1145/1122501.1122507
https://dl.acm.org/doi/10.1145/1122501.1122507
https://dl.acm.org/doi/10.1145/1138450.1138462
https://dl.acm.org/doi/10.1145/1138450.1138462
https://dl.acm.org/doi/10.1145/1399504.1360642
https://dl.acm.org/doi/10.1145/1399504.1360642
https://opg.optica.org/abstract.cfm?URI=josaa-4-4-629
https://opg.optica.org/abstract.cfm?URI=josaa-4-4-629
http://ieeexplore.ieee.org/document/291441/
http://ieeexplore.ieee.org/document/291441/
http://link.springer.com/10.1007/s001380050048
https://ieeexplore.ieee.org/document/8953681/


Chapter 7. Bibliography 55

45 KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization.
arXiv, 2017. ArXiv:1412.6980 [cs]. Disponível em: <http://arxiv.org/abs/1412.
6980>.

46 ZHANG, T.; RAMAKRISHNAN, R.; LIVNY, M. Birch: an efficient data
clustering method for very large databases. ACM sigmod record, ACM New
York, NY, USA, v. 25, n. 2, p. 103–114, 1996.

47 DERPANIS, K. G. Mean shift clustering. Lecture Notes, v. 32, p. 1–4, 2005.

48 OSADA, R. et al. Shape distributions. In: . [s.n.], 2002. v. 21, n. 4, p. 807 âĂŞ
832. Cited by: 1540. Disponível em: <https://www.scopus.com/inward/record.
uri?eid=2-s2.0-33645783985&doi=10.1145%2f571647.571648&partnerID=40&
md5=269ab0f4c96f23db485c88cd6dd058c0>.

49 GIRVAN, M.; NEWMAN, M. E. Community structure in social and biological
networks. Proceedings of the national academy of sciences, National Acad
Sciences, v. 99, n. 12, p. 7821–7826, 2002.

50 BLONDEL, V. D. et al. Fast unfolding of communities in large networks.
Journal of statistical mechanics: theory and experiment, IOP Publishing,
v. 2008, n. 10, p. P10008, 2008.

51 YANG, G. et al. PointFlow: 3D Point Cloud Generation With Continuous Nor-
malizing Flows. In: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). Seoul, Korea (South): IEEE, 2019. p. 4540–4549. ISBN 978-1-
72814-803-8. Disponível em: <https://ieeexplore.ieee.org/document/9010395/>.

52 GAO, X.; HU, W.; QI, G.-J. GraphTER: Unsupervised Learning of Graph
Transformation Equivariant Representations via Auto-Encoding Node-Wise Trans-
formations. In: 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020. p. 7161–7170.
ISBN 978-1-72817-168-5. Disponível em: <https://ieeexplore.ieee.org/document/
9156576/>.

53 SUN, Y. et al. PointGrow: Autoregressively Learned Point Cloud Generation
with Self-Attention. In: 2020 IEEE Winter Conference on Applications of
Computer Vision (WACV). Snowmass Village, CO, USA: IEEE, 2020. p. 61–70.
ISBN 978-1-72816-553-0. Disponível em: <https://ieeexplore.ieee.org/document/
9093430/>.

54 NGUYEN, T. et al. Point-set Distances for Learning Representations of 3D
Point Clouds. In: 2021 IEEE/CVF International Conference on Computer
Vision (ICCV). Montreal, QC, Canada: IEEE, 2021. p. 10458–10467. ISBN 978-1-
66542-812-5. Disponível em: <https://ieeexplore.ieee.org/document/9711238/>.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645783985&doi=10.1145%2f571647.571648&partnerID=40&md5=269ab0f4c96f23db485c88cd6dd058c0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645783985&doi=10.1145%2f571647.571648&partnerID=40&md5=269ab0f4c96f23db485c88cd6dd058c0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645783985&doi=10.1145%2f571647.571648&partnerID=40&md5=269ab0f4c96f23db485c88cd6dd058c0
https://ieeexplore.ieee.org/document/9010395/
https://ieeexplore.ieee.org/document/9156576/
https://ieeexplore.ieee.org/document/9156576/
https://ieeexplore.ieee.org/document/9093430/
https://ieeexplore.ieee.org/document/9093430/
https://ieeexplore.ieee.org/document/9711238/

	Graph-Based Clustering In Deep Feature Space for Shape Matching
	Resumo
	Table of contents
	Introduction
	Theoretical Background
	Deep Neural Networks
	Autoencoders
	PointNet and PointNet++
	Clustering
	Minimum Dominating Set Problem applied to Shape Matching

	Previous Works
	Least-Squares instance detection
	Supervised Deep Learning Approaches
	Unsupervised Shape Matching Method

	Proposed Method
	Clustering Algorithm

	Results
	Data set description
	Autoencoder training
	Experiments
	Discussion

	Conclusion and Future Work
	Bibliography

